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Galois Group of p-Power Cyclotomic Extension of Q

For prime p, Gal(Q(⇣p1)/Q) has two concrete descriptions:

{x = (a1 mod p, a2 mod p2, . . .) : an ⌘ an�1 mod pn, a0 6⌘ 0 mod p},

{x = c0 + c1p + c2p
2 + · · · : 0  cn  p � 1, c0 6= 0},

with x acting on finite layer Q(⇣pn) by

⇣pn 7! ⇣xpn = ⇣anpn = ⇣c0+c1p+···+cn�1pn�1

pn .

In terminology of p-adic integers, Gal(Q(⇣p1)/Q) ⇠= Z⇥
p .

Example. From Lecture 1, Gal(Q(⇣21)/Q) has two di↵erent
subgroups h5i and h13i with the same fixed field Q(i).

Theorem. In Z⇥
2 , h5i = h13i = 1 + 4Z2. How is 5 a 2-adic limit

point of h13i? Check 5 = 13x for x = 1 + 2 + 22 + 23 + 28 + · · · ,
which is log(13)/ log(5) using 2-adic logarithm series.



A Z5-extension of Q

For n 2 Z+, (Z/5n+1Z)⇥ = µ⇥ h1 + 5 mod 5n+1i. Make n ! 1:
Z⇥
5 = µ⇥ h1 + 5i = µ⇥ (1 + 5Z5), where

µ = {1, �1, 2+5+2 ·52+53+ · · · , 3+3 ·5+2 ·52+3 ·53+ · · · }.
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A Zp-extension of Q

The group Z⇥
p has a finite torsion subgroup µ and Z⇥

p
⇠= µ⇥ Zp,

which is analogous to R⇥ = {±1}⇥ (0,1)⇠= {±1}⇥ R.
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Set Kp,1 = Q(⇣p1)µ. It’s called the cyclotomic Zp-extension of Q
since Gal(Kp,1/Q) = Z⇥

p /µ ⇠= Zp. The closed subgroups of Zp are
{0} and pnZp for n � 0, so the proper subfields of Kp,1 are Kp,n

of degree pn over Q for n � 1, Gal(Kp,n/Q) ⇠= Zp/pnZp
⇠= Z/pnZ.

Conjecture (Coates). For all p and all n � 1, the field Kp,n has
class number 1. See MO questions 41219 and 82480.



A Zp-extension of a Number Field

For a number field F , Gal(FKp,1/F ) ⇠= Gal(Kp,1/(Kp,1 \ F )),
which is open in Gal(Kp,1/Q) ⇠= Zp, so Gal(FKp,1/F ) ⇠= Zp.
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Call FKp1 the cyclotomic Zp-extension of F . It is the subfield of
F (⇣p1) fixed by elements of finite order in Gal(F (⇣p1)/F ) ⇢ Z⇥

p .



More Zp-extensions of a Number Field

Besides cyclotomic Zp-extensions, others are not constructed
concretely, but they are out there.

If F is not totally real (e.g., F = Q( 3
p
2)) then it has infinitely

many Zp-extensions, but only finitely many “independent” ones
(analogy: R2 is infinite with finite basis). Number of independent
Zp-extensions is between 1 + r2(F ) and [F : Q] = r1(F ) + 2r2(F ).

If F is totally real (e.g., Q, Q(
p
2), Q(↵) where ↵3 � 9↵� 9 = 0)

then r2(F ) = 0 and we expect its cyclotomic Zp-extension is its
only Zp-extension. This is a theorem if F/Q is abelian, e.g., the
only Zp-extension of Q and real quadratic field is their cyclotomic
Zp-extension.

Study of Zp-extensions of number fields was initiated by Iwasawa,
leading to Iwasawa theory, a major area of contemporary number
theory.



Galois Representation into a Complex Matrix Group

If ⇢ : Gal(L/K ) ! GLn(C) is a continuous homomorphism (“Artin
representation”), then it has finite image!

1 A small open neighborhood U of the identity in GLn(C) has
no nontrivial subgroup (“no small subgroups”).

2 Then ⇢�1(U) is open in Gal(L/K ) and contains the identity,
so Gal(L/F ) ⇢ ⇢�1(U) for some finite extension F/K .

3 The image ⇢(Gal(L/F )) is in U and is a subgroup, so it is
trivial. Thus ⇢(� Gal(L/F )) = ⇢(�) for all �: ⇢ is constant on
cosets of Gal(L/F ).

4 The open subgroup Gal(L/F ) in Gal(L/K ) has finite index
(index is [F : K ]), so ⇢ has finitely many values in GLn(C).

Lesson: the Krull topology on Gal(L/K ) and complex topology on
GLn(C) do not interact in an interesting way.



A Galois Representation With Infinite Image

For � 2 GQ = Gal(Q/Q), its e↵ect on the p-power roots of unity is

by raising to some p-adic unit exponent: �(⇣pn) = ⇣a(�)pn for some
a(�) 2 Z⇥

p (independent of n). This gives us a homomorphism

�p : GQ ! Z⇥
p

called the p-adic cyclotomic character.

Example: �p(id.) = 1.

Example: �p(cpx. conj.) = �1.

How can we calculate �p anywhere else when we have no formula
for other elements of GQ?!? Stay tuned. . .

The function �p is surjective and continuous: inverse image of
1 + pnZp is Gal(Q/Q(⇣pn)), which is open in GQ since Q(⇣pn) is
finite.

Lesson: the Krull topology on GQ interacts in an interesting way
with p-adic groups like Z⇥

p or GLn(Zp).



Absolute Galois group

To each field K we can associate a compact group: the Galois
group over K of its maximal separable extension (= its algebraic
closure, in characteristic 0). This is called its absolute Galois group:

GK = Gal(K s/K ).

What does GFp = Gal(Fp/Fp) look like?





Subgroups of GQ and Prime Ideals

In Q, let Z be the ring of all algebraic integers (the roots of monic
polynomials with integer coe�cients). For � 2 GQ, �(Z) = Z.

For a nonzero prime (maximal) ideal p of Z, the field Z/p is a
model of Fp, where p \ Z = pZ.

Analogue. Z[i ]/(3) = F9, Z[i ]/(1 + 2i) = F5, Z[i ]/(1� 2i) = F5.

The group GQ acts on {p : p \ Z = pZ} with one orbit. (Proof:
prove it in finite extensions of Q, then use compactness of GQ.)

Analogue. Gal(Q(i)/Q) = {1, c} and c((1 + 2i)) = (1� 2i).

For groups actions, stabilizer subgroup of each point is important.
In this setting, for historical reasons, it is called the decomposition
group at p:

D(p) = {� 2 GQ : �(p) = p}.

Can show this is a closed subgroup of GQ by looking at its image
in Gal(F/Q) for all finite Galois F/Q and its e↵ect on p \ F .



Frobenius Elements

Elements of D(p) = {� 2 GQ : �(p) = p} preserve congruences
mod p: for ↵ and � in Z,

↵ ⌘ � mod p =) ↵� � 2 p =) �(↵) ⌘ �(�) mod p.

So D(p) makes sense on Z/p ⇠= Fp: we get a homomorphism

D(p) ! Gal((Z/p)/Fp) = GFp .

This is continuous and surjective. (Proof: prove analogue in finite
extensions of Q, then use compactness of GQ).

Definition. A Frobenius element at p in GQ is 'p 2 GQ that looks
like pth power map mod p: 'p(↵) ⌘ ↵p mod p for all ↵ 2 Z.

Example. For a root of unity ⇣m with order m not divisible by p,
'p(⇣m) = ⇣am where (a,m) = 1. Also 'p(⇣m) ⌘ ⇣pm mod p, so
⇣am ⌘ ⇣pm mod p. The mth roots of unity stay distinct when
reduced mod p, so ⇣am = ⇣pm. Thus 'p(⇣m) = ⇣pm when p - m.
When ` is prime, ` 6= p, 'p(⇣`n) = ⇣p`n , so �`('p) = p in Z⇥

` .



Frobenius Elements

A Frobenius element at p in GQ, where p \ Z = pZ, is an element
'p 2 GQ that looks like pth power map mod p: 'p(↵) ⌘ ↵p mod p
for all ↵ 2 Z.

The Chebotarev density theorem says that for finite Galois F/Q,
each element of Gal(F/Q) is a “Frobenius element in Gal(F/Q)”
(in many ways). In our topological language, this means for each
� 2 GQ that �|F = 'p|F for some (in fact infinitely many) 'p in
GQ, so the Frobenius elements of GQ are a dense subset of GQ.

This is why continuous representations of GQ are often described
by their behavior just on suitably chosen Frobenius elements.

Chebotarev proved his “density theorem” in 1922, as a theorem
about Frobenius elements (conjugacy classes) in finite Galois
groups over Q, before Krull developed infinite Galois theory. That
his theorem can be interpreted as saying a certain subset of GQ is
dense is an accident.


