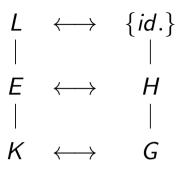
Infinite Galois Theory

June 9, 2020

Let
$$L_n = \mathbf{Q}(\zeta_{2^n})$$
, so $\operatorname{Gal}(L_n/\mathbf{Q}) \cong (\mathbf{Z}/2^n\mathbf{Z})^{\times}$ by $\sigma_a(\zeta_{2^n}) = \zeta_{2^n}^a$.
 $\mathbf{Q}(\zeta_{2^\infty}) = L$
 \vdots
 $\mathbf{Q}(\zeta_8)$
 $|$
 $\mathbf{Q}(\zeta_4) = \mathbf{Q}(i)$
 $|$
 $\mathbf{Q}(\zeta_2) = \mathbf{Q}$

In $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$, 5 and 13 each generate $\{a \mod 2^n : a \equiv 1 \mod 4\}$. It has index 2 and fixed field $\mathbb{Q}(i)$ $(a \equiv 1 \mod 4 \Leftrightarrow i^a = i)$ for $n \ge 2$. Every number in $\mathbb{Q}(\zeta_{2^{\infty}})$ is in some $\mathbb{Q}(\zeta_{2^n})$, so $\langle \sigma_5 \rangle$ and $\langle \sigma_{13} \rangle$ in $\operatorname{Gal}(\mathbb{Q}(\zeta_{2^{\infty}})/\mathbb{Q})$ have fixed field $\mathbb{Q}(i)$ even though $\langle \sigma_5 \rangle \neq \langle \sigma_{13} \rangle$. For odd b, $\langle b \mod 2^n \rangle = \{a \mod 2^n : a \equiv 1 \mod 4\}$ for $n \ge 2$ if $b \equiv 1 \mod 4$ & $b \not\equiv 1 \mod 8$, so $\langle \sigma_b \rangle$ has fixed field $\mathbb{Q}(i)$ in $\mathbb{Q}(\zeta_{2^{\infty}})$.



For an infinite-degree Galois extension L/K, the mappings

 $E \mapsto \text{Gal}(L/E), \quad H \mapsto L^H = \{ \alpha \in L : \sigma(\alpha) = \alpha \text{ for all } \sigma \in H \}$

have $L^{\text{Gal}(L/E)} = E$ (uses Zorn's lemma!) but $\text{Gal}(L/L^H) \supset H$ and $\text{Gal}(L/L^H)$ could be larger than H.

The group Gal(L/K) has a topology with the following properties:

- multiplication and inversion on Gal(L/K) are continuous,
- for finite L/K, the topology on Gal(L/K) is discrete,
- if $K \subset E \subset L$ then Gal(L/E) is *closed* in Gal(L/K).

• for subgroups $H \subset \text{Gal}(L/K)$, $L^H = L^{\overline{H}}$ and $\text{Gal}(L/L^H) = \overline{H}$.

So $Gal(L/L^H) = H \Leftrightarrow H$ is <u>closed</u>. The Galois correspondence is a bijection between all intermediate fields and <u>closed</u> subgroups.

Intuition for Topology on Galois Groups

Idea behind the topology: $\sigma, \tau \in \text{Gal}(L/K)$ are "close" if they agree on a "big" finite subextension F/K in L. **Example**: Gal($\mathbf{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \ldots)/\mathbf{Q}$). When do elements of $\Pi{\pm 1}$ agree as automorphisms on $Q(\sqrt{2},\sqrt{5},\sqrt{7})$ or $Q(\sqrt{6})$? 5 13 15 17 ... [EQUAL] • **Example**: Gal($\mathbf{Q}(\zeta_{2^{\infty}})/\mathbf{Q}$). When do two 2-adic units agree as ao+2a1+4a2 automorphisms on $\mathbf{Q}(\zeta_8)$, or on $\mathbf{Q}(\zeta_{2^n})$? $Q = Q_0 + 2 q_1 + 4 q_2 + 8 R_3 + \cdots$ b=bn+26,+4b2+8b3+... a = b mod 8 a', bje { o 1}

 $a \equiv b m = 0 = b_0 (=1)$ $a_1 = b_1$ ag=b2 That's all!

Definition of Topology on Galois Groups

Definition. Let L/K be Galois.

For $\sigma \in \text{Gal}(L/K)$, a *basic open set* around σ is a coset $\sigma \text{Gal}(L/F)$ for some finite extension F/K inside L. A subset U of Gal(L/K) is called *open* if each element of U is contained in a basic open set that's inside of U: for each $\sigma \in U$, $\sigma \text{Gal}(L/F) \subset U$ for some finite extension F/K in L.

Since $F \subset F' \Rightarrow \sigma \operatorname{Gal}(L/F') \subset \sigma \operatorname{Gal}(L/F)$, making F bigger (but still finite over K!) shrinks the basic open set around σ .

What does σ Gal(L/F) really mean? It's the same thing as the τ where $\tau|_F = \sigma|_F$ so a "basic open set" is all the automorphisms that agree on a specified (finite) extension F/K. This implies Gal(L/F) has finite index in Gal(L/K). $\forall A \in F$, $\mathcal{I}(\mathcal{L}) = \sigma(\mathcal{L}) \Leftrightarrow \sigma^{-} \mathcal{I}(\mathcal{L}) = \sigma(\mathcal{L}) \in \mathcal{I}$ $\forall \mathcal{L} \in \mathcal{F}$, $\mathcal{I}(\mathcal{L}) = \sigma(\mathcal{L}) \Leftrightarrow \sigma^{-} \mathcal{I} \in \mathcal{Gal}(\mathcal{L}(F))$

Example. In Gal($\mathbf{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, ...)/\mathbf{Q}$) = $\prod \{\pm 1\}$, sequences with specified relations among signs in finitely many components and no constraints in remaining components form a basic open set.

Just like basic opens for prod. top.on

Example. In $Gal(\mathbf{Q}(\zeta_{5^{\infty}})/\mathbf{Q})$, a compatible sequence

$$(a_1 \mod 5, a_2 \mod 5^2, a_3 \mod 5^3, \ldots), a_1 \not\equiv 0 \mod 5$$

with specified values for one $a_n \mod 5^n$ and no constraints for later
components is a basic open set.
 $f(a_i)_{n \not\in A}$: $a_2 \not\equiv [2] [9, 7 \mod 25]$
Example. In Gal(\overline{Q}/Q), all σ such that $\sigma(i) = i$ and $\sigma(\sqrt{2}) = \sqrt{2}$
are a basic open set in this mysterious group.
 $f(\sqrt{2}) = \sqrt{2}$

Cosets σ Gal(L/F) for varying σ and F are a basis for a topology on Gal(L/K), like role of open balls to define open sets in a metric space. This is the Krull topology on Gal(L/K).

Example. For nonempty open U_1, \ldots, U_n in Gal(L/K), suppose $\sigma \in \bigcap_i U_i$. Then $\sigma Gal(L/F_i) \subset U_i$ for some finite extensions F_i/K in L. Passing to the finite extension $F := F_1 \cdots F_n$,

$$\sigma \operatorname{Gal}(L/F) \subset \bigcap_{i} \sigma \operatorname{Gal}(L/F_{i}) \subset \bigcap_{i} U_{i}.$$

So all elements of $\bigcap_i U_i$ are in basic open in $\bigcap U_i$: $\bigcap_i U_i$ is open.

Example. For $\sigma \neq \tau$, there is $\alpha \in L$ with $\sigma(\alpha) \neq \tau(\alpha)$. For $F = K(\alpha)$, $\sigma|_F \neq \tau|_F$, so $\sigma \operatorname{Gal}(L/F) \neq \tau \operatorname{Gal}(L/F)$. In fact, $F \in \mathcal{F}(\alpha)$ of $Gal(L/F) \cap \tau \operatorname{Gal}(L/F) = \emptyset$ since different cosets of a subgroup K(a) are *disjoint*. Thus the topology on $\operatorname{Gal}(L/K)$ is Hausdorff.

Theorem. For $K \subset E \subset L$, Gal(L/E) is closed. Loshow Gel (LIK) - Gal (LIZ is open. Pick JE Gal IL/K) - GU(L) ~Gal(L/E) For some LEES. t. J(2) = d K KGA G=Gal(L/K) Let F = K(d), so $[F:K] < \infty$ Consider o Gal (L/F). It's basic open and is $f T \in Gal(L/F)$: $T \mid F = \sigma \mid F$. Sp T inhere has $T(\alpha) = T(\alpha) \neq \alpha$. & Gal (L/E) fixes J. So JGal (L/F) () Gal (L/E)

Closure of a Subgroup

Theorem. For a subgroup H of Gal(L/K), $Gal(L/L^H) = \overline{H}$. Gal (LIL^H) = { T : T fixes eventhing } >H. Saw this is closed on previous slide So H C Gal (LIL^H) = closed = H C Gal (LIL^H) Here, want equality Pick JEGal (L/k), J&H. Show J&Gal (LILH) JEH=closed ⇒ JGal(L(F) ⊂ GAl(UK)-A ZT:T= Jon F}. Open By enlarging F (splitting field over K) we can suppose F/K is Galois and still finite: doing

this (Increase F) shrinks Gal(LIF), so we Can assume bur basic open & Gral (L/F) has F/KGalais. Compare or on F to Hon F. o Gal(L/F) disjoint from H ⇒ nothing in H 166KS like T on F. Claim: There is some ace Fs.t. o(a) = a while h(a)=a y heH. If not, then for all acF, $h(\alpha) = \alpha \forall h \in H \implies r(\alpha) = \alpha$. So & fixes the fixed field of H inside F That says in Gal(F/K), the fixed field LHNF of olf contains fixed field of HILF. Then by finite Galois Theony, JF is contained in HIF: some het looks like Jon F. Then hlfidt => hEJ Gal(LIF). But o Gial (L/F) is disjoint from H, and thus is disjoint from H: contradiction! That provis the claim.

trom the claim, an deF with r(a) = & ond h(a) = & Y heH is an element of L^H moved by J, so of Gal(L/L^H). Thus each reGal(LIK) - H is not in Gal(L/LH) too, So Gal (L/LH) CFI We showed at the start that Gal (LILM) > H, so we have equality: $Gal(L|L^{\mu}) = \overline{H}$