Semistable models of hyperelliptic curves over residue characteristic 2

Jeff Yelton (Emory University)
joint work with
Leonardo Fiore

University of Connecticut (virtual)
June 13th, 2020

Hyperelliptic curves over local fields

Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p}, and residue field R / \mathfrak{p} of characteristic $p \geq 0$.

Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p}, and residue field R / \mathfrak{p} of characteristic $p \geq 0$.

We define a hyperelliptic curve C over K to be a smooth curve which can be given by an affine model of the form

$$
y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right),
$$

where $f(x) \in K[x]$ is a polynomial of degree $d \geq 3$ and roots $a_{1}, \ldots, a_{d} \in \bar{K}$. (If $d=3$ then it is also an elliptic curve.)

Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p}, and residue field R / \mathfrak{p} of characteristic $p \geq 0$.

We define a hyperelliptic curve C over K to be a smooth curve which can be given by an affine model of the form

$$
y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right),
$$

where $f(x) \in K[x]$ is a polynomial of degree $d \geq 3$ and roots $a_{1}, \ldots, a_{d} \in \bar{K}$. (If $d=3$ then it is also an elliptic curve.) For simplicity, let's assume that $a_{1}, \ldots, a_{d} \in R$.

Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p}, and residue field R / \mathfrak{p} of characteristic $p \geq 0$.

We define a hyperelliptic curve C over K to be a smooth curve which can be given by an affine model of the form

$$
y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right)
$$

where $f(x) \in K[x]$ is a polynomial of degree $d \geq 3$ and roots $a_{1}, \ldots, a_{d} \in \bar{K}$. (If $d=3$ then it is also an elliptic curve.) For simplicity, let's assume that $a_{1}, \ldots, a_{d} \in R$.
Since the characteristic $\neq 2$ the singular points on C are of the form $(a, 0)$ where $f(a)=f^{\prime}(a)=0$. Therefore, the smoothness property means that the roots a_{i} of f are all distinct.

Reductions of hyperelliptic curves

Reductions of hyperelliptic curves

We are interested in the reduction of our hyperelliptic curve $C: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right)$, that is, the curve \bar{C} over the residue field R / \mathfrak{p} given by $y^{2}=\prod_{i=1}^{d}\left(x-\bar{a}_{i}\right)$, where each \bar{a}_{i} is the reduction of $a_{i} \bmod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \bar{C} might not be ("bad reduction")!

Reductions of hyperelliptic curves

We are interested in the reduction of our hyperelliptic curve $C: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right)$, that is, the curve \bar{C} over the residue field R / \mathfrak{p} given by $y^{2}=\prod_{i=1}^{d}\left(x-\bar{a}_{i}\right)$, where each \bar{a}_{i} is the reduction of $a_{i} \bmod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \bar{C} might not be ("bad reduction")!
When $p \neq 2$, there will be a singular point on \bar{C} corresponding to each subset (a cluster) of a_{i} 's which are equivalent mod \mathfrak{p}.

Reductions of hyperelliptic curves

We are interested in the reduction of our hyperelliptic curve $C: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right)$, that is, the curve \bar{C} over the residue field R / \mathfrak{p} given by $y^{2}=\prod_{i=1}^{d}\left(x-\bar{a}_{i}\right)$, where each \bar{a}_{i} is the reduction of $a_{i} \bmod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \bar{C} might not be ("bad reduction")!
When $p \neq 2$, there will be a singular point on \bar{C} corresponding to each subset (a cluster) of a_{i} 's which are equivalent mod \mathfrak{p}. If $p \neq 2$, a cluster of 2 roots yields a node on \bar{C}.

Reductions of hyperelliptic curves

We are interested in the reduction of our hyperelliptic curve $C: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right)$, that is, the curve \bar{C} over the residue field R / \mathfrak{p} given by $y^{2}=\prod_{i=1}^{d}\left(x-\bar{a}_{i}\right)$, where each \bar{a}_{i} is the reduction of $a_{i} \bmod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \bar{C} might not be ("bad reduction")!
When $p \neq 2$, there will be a singular point on \bar{C} corresponding to each subset (a cluster) of a_{i} 's which are equivalent mod \mathfrak{p}.

If $p \neq 2$, a cluster of 2 roots yields a node on \bar{C}.

If $p \neq 2$, a cluster of ≥ 3 roots yields a cusp on \bar{C}.

Reductions of hyperelliptic curves

We are interested in the reduction of our hyperelliptic curve $C: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right)$, that is, the curve \bar{C} over the residue field R / \mathfrak{p} given by $y^{2}=\prod_{i=1}^{d}\left(x-\bar{a}_{i}\right)$, where each \bar{a}_{i} is the reduction of $a_{i} \bmod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \bar{C} might not be ("bad reduction")!
When $p \neq 2$, there will be a singular point on \bar{C} corresponding to each subset (a cluster) of a_{i} 's which are equivalent mod \mathfrak{p}.

If $p \neq 2$, a cluster of 2 roots yields a node on \bar{C}.

If $p \neq 2$, a cluster of ≥ 3
roots yields a cusp on \bar{C}.

On the other hand, if $p=2$, the reduced curve $\bar{C}: y^{2}=\prod_{i=1}^{d}\left(x-\bar{a}_{i}\right)$ always has a singular point and every singular point is a cusp!

Semistable reduction

Semistable reduction

Definition
A curve over K is said to have semistable reduction if its reduction over R / \mathfrak{p} has (at worst) nodes as singularities.

Semistable reduction

Definition

A curve over K is said to have semistable reduction if its reduction over R / \mathfrak{p} has (at worst) nodes as singularities.

Theorem (Deligne-Mumford, Artin-Winters)
For any curve C over a discrete valuation field K, there is a curve $C^{\text {ss }}$ over a finite algebraic extension K^{\prime} / K which is isomorphic to C over K^{\prime} and which has semistable reduction.

Semistable reduction

Definition

A curve over K is said to have semistable reduction if its reduction over R / \mathfrak{p} has (at worst) nodes as singularities.
Theorem (Deligne-Mumford, Artin-Winters)
For any curve C over a discrete valuation field K, there is a curve $C^{\text {ss }}$ over a finite algebraic extension K^{\prime} / K which is isomorphic to C over K^{\prime} and which has semistable reduction.
(It is easy to see this for an elliptic curve when $p \neq 2$: if all three roots are equivalent modulo \mathfrak{p} (additive reduction), this can be "fixed" by translating and scaling x.)

Semistable reduction

Definition

A curve over K is said to have semistable reduction if its reduction over R / \mathfrak{p} has (at worst) nodes as singularities.
Theorem (Deligne-Mumford, Artin-Winters)
For any curve C over a discrete valuation field K, there is a curve $C^{\text {ss }}$ over a finite algebraic extension K^{\prime} / K which is isomorphic to C over K^{\prime} and which has semistable reduction.
(It is easy to see this for an elliptic curve when $p \neq 2$: if all three roots are equivalent modulo \mathfrak{p} (additive reduction), this can be "fixed" by translating and scaling x.)
Theorem (Dokchitser-Dokchitser-Maistret-Morgan) When $p \neq 2$, the reduction type of $C^{\text {ss }}$ is determined entirely by how the roots "cluster".

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair		
$\bullet \bullet \bullet \bullet . ~$		

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair		
$\bullet \bullet$	\bullet.	
	\bullet	

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair		
$\bullet \bullet \bullet \bullet \bullet$		
two pairs		
$\bullet \bullet \bullet \bullet \bullet$	\bullet	

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair		
- •		
two pairs		
$\bullet \bullet \bullet$		
three of a kind		
-		
full house		
- - - -		
two pairs \& four of a kind		

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} 8$	
two pairs		
three of a kind \square -•		
full house \square		
two pairs \& four of a kind $\bullet \cdot \bullet \cdot$		

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} 8$	$\%$
two pairs		
three of a kind - ••••		
full house \square		
two pairs \& four of a kind		

Reductions of genus-2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} \%$	${ }^{2} \%$
two pairs	2	
three of a kind		
full house		
two pairs \& four of a kind		

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} 8$	${ }^{2} 8$
two pairs	2	2
three of a kind \square -•		
full house		
two pairs \& four of a kind $\bullet \cdot \bullet \cdot$		

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} 8$	${ }^{2} 8$
two pairs	2^{2}	2
three of a kind \square -•	$\sqrt[2]{2}$	
full house \square		
two pairs \& four of a kind		

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} \%$	$\%$
two pairs	2	2
three of a kind	$\sqrt[2]{2)}$	
full house		
two pairs \& four of a kind		

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} 8$	$\%$
two pairs	2	2^{2}
three of a kind	$\sqrt[2]{2)}$	
full house	$\sqrt[2]{2}$	
two pairs \& four of a kind $\bullet \cdot \bullet \cdot$		

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} 8$	${ }^{2} 8$
two pairs	2^{2}	2
three of a kind \square -- •	$\sqrt[2]{2}$	
full house	2^{2}	
two pairs \& four of a kind		

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster ricture	reduction type of C	reduction type of $\mathrm{C}^{\text {s }}$
pair \qquad - - -	${ }^{2} 8$	${ }^{2} 8$
two pairs $\bullet \bullet \bullet$	2^{2}	2^{2}
$\begin{gathered} \text { three of a kind } \\ \bigodot . . \end{gathered}$	$\stackrel{2}{2}$	
$\stackrel{\text { full house }}{\bullet} \cdot$.	χ^{2}	X_{1}
two pairs \& four of a kind $\because \cdot-$	$2{ }^{2}$	

Reductions of genus- 2 curves when $p \neq 2$

For genus $2, d=5$, and $p \neq 2$, here are the main possibilities:

cluster picture	reduction type of C	reduction type of $C^{\text {ss }}$
pair	${ }^{2} \%$	${ }^{2} \%$
two pairs	2	
three of a kind \square \cdot -•	$\sqrt[2]{2}$	
full house	2^{2}	
two pairs \& four of a kind $\bullet \cdot \bullet \cdot$	2	$\infty{ }_{0}^{0}$

Approach to finding semistable models when $p=2$

Approach to finding semistable models when $p=2$

1) We first make one or more substitutions of the form $x=\beta x_{1}+\alpha, y=\beta^{t} y_{1}$, with $0 \leq t \leq \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each such substitution we get an equation

$$
y_{1}^{2}=f_{1}\left(x_{1}\right) \in K[x] .
$$

Approach to finding semistable models when $p=2$

1) We first make one or more substitutions of the form $x=\beta x_{1}+\alpha, y=\beta^{t} y_{1}$, with $0 \leq t \leq \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each such substitution we get an equation

$$
y_{1}^{2}=f_{1}\left(x_{1}\right) \in K[x] .
$$

2) Find some $G_{1}(x), H_{1}(x) \in R[x]$ such that

$$
f_{1}(x)=\frac{1}{4} H_{1}\left(x_{1}\right)^{2}+G_{1}\left(x_{1}\right) .
$$

Approach to finding semistable models when $p=2$

1) We first make one or more substitutions of the form $x=\beta x_{1}+\alpha, y=\beta^{t} y_{1}$, with $0 \leq t \leq \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each such substitution we get an equation

$$
y_{1}^{2}=f_{1}\left(x_{1}\right) \in K[x] .
$$

2) Find some $G_{1}(x), H_{1}(x) \in R[x]$ such that

$$
f_{1}(x)=\frac{1}{4} H_{1}\left(x_{1}\right)^{2}+G_{1}\left(x_{1}\right) .
$$

3) Perform the variable change $y_{1}=y_{1}^{\prime}+\frac{1}{2} H_{1}\left(x_{1}\right)$ to get the equation

$$
\left(y_{1}^{\prime}\right)^{2}+H_{1}\left(x_{1}\right) y_{1}^{\prime}=G_{1}\left(x_{1}\right) .
$$

Approach to finding semistable models when $p=2$

1) We first make one or more substitutions of the form $x=\beta x_{1}+\alpha, y=\beta^{t} y_{1}$, with $0 \leq t \leq \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each such substitution we get an equation

$$
y_{1}^{2}=f_{1}\left(x_{1}\right) \in K[x]
$$

2) Find some $G_{1}(x), H_{1}(x) \in R[x]$ such that

$$
f_{1}(x)=\frac{1}{4} H_{1}\left(x_{1}\right)^{2}+G_{1}\left(x_{1}\right)
$$

3) Perform the variable change $y_{1}=y_{1}^{\prime}+\frac{1}{2} H_{1}\left(x_{1}\right)$ to get the equation

$$
\left(y_{1}^{\prime}\right)^{2}+H_{1}\left(x_{1}\right) y_{1}^{\prime}=G_{1}\left(x_{1}\right) .
$$

With clever enough choices of α, β for each such substitution, the above equation(s) together reduce to a semistable curve.

Semistable reduction types for elliptic curves $(p=2)$

Semistable reduction types for elliptic curves

 $(p=2)$As seen above, we can convert any elliptic curve to one with (at most) one cluster $\left\{a_{1}, a_{2}\right\}$. Let $v: K^{\times} \rightarrow \mathbb{Q}$ be the valuation on K normalized so that $v(2)=1$ and let $m=v\left(a_{2}-a_{1}\right) \geq 0$. There are two cases:

Semistable reduction types for elliptic curves

 $(p=2)$As seen above, we can convert any elliptic curve to one with (at most) one cluster $\left\{a_{1}, a_{2}\right\}$. Let $v: K^{\times} \rightarrow \mathbb{Q}$ be the valuation on K normalized so that $v(2)=1$ and let $m=v\left(a_{2}-a_{1}\right) \geq 0$. There are two cases:

- $0 \leq m \leq 4$: then we may perform a substitution using α and β as above, with $v(\beta)=\frac{m+2}{3}$ and $v(\alpha)=\frac{m}{2}$, and we get a smooth elliptic curve for the reduction

Semistable reduction types for elliptic curves

 $(p=2)$As seen above, we can convert any elliptic curve to one with (at most) one cluster $\left\{a_{1}, a_{2}\right\}$. Let $v: K^{\times} \rightarrow \mathbb{Q}$ be the valuation on K normalized so that $v(2)=1$ and let $m=v\left(a_{2}-a_{1}\right) \geq 0$. There are two cases:

- $0 \leq m \leq 4$: then we may perform a substitution using α and β as above, with $v(\beta)=\frac{m+2}{3}$ and $v(\alpha)=\frac{m}{2}$, and we get a smooth elliptic curve for the reduction
- $m>4$: then we may perform a substitution with α and β as above, with $2 \leq v(\alpha) \leq m-2$ and $v(\beta)=2$ and get a nodal curve for the reduction

Semistable reduction types for elliptic curves

 $(p=2)$As seen above, we can convert any elliptic curve to one with (at most) one cluster $\left\{a_{1}, a_{2}\right\}$. Let $v: K^{\times} \rightarrow \mathbb{Q}$ be the valuation on K normalized so that $v(2)=1$ and let $m=v\left(a_{2}-a_{1}\right) \geq 0$. There are two cases:

- $0 \leq m \leq 4$: then we may perform a substitution using α and β as above, with $v(\beta)=\frac{m+2}{3}$ and $v(\alpha)=\frac{m}{2}$, and we get a smooth elliptic curve for the reduction
- $m>4$: then we may perform a substitution with α and β as above, with $2 \leq v(\alpha) \leq m-2$ and $v(\beta)=2$ and get a nodal curve for the reduction

Corollary

In this setting, an elliptic curve has potentially good reduction iff $0 \leq m \leq 4$.

Semistable reduction types for genus $2(p=2)$

Semistable reduction types for genus $2(p=2)$

cluster picture	reduction type of $C^{\text {ss }}$
no cluster	(two cases) or
pair	
two pairs	

Semistable reduction types for genus $2(p=2)$

cluster picture	reduction type of $C^{\text {ss }}$
no cluster	2 (two cases) or
pair (m := valuation of difference between roots in pair)	$\begin{aligned} 0 \leq m & \leq \frac{8}{3} \\ \frac{8}{3}<m & \leq 4 \\ m & >4 \end{aligned}$
two pairs	

Semistable reduction types for genus $2(p=2)$

cluster picture	reduction type of $C^{\text {ss }}$
no cluster	
pair (m := valuation of difference between roots in pair)	
two pairs ($m_{1}, m_{2}:=$ valuations of differences between roots in each pair)	two curves C_{1}, C_{2}, each with a node iff $m_{i}>4$

Semistable reduction types of hyperelliptic curves of genus $2(p=2)$

cluster picture	reduction type of $\mathrm{C}^{\text {cs }}$
three of a kind $\ldots \cdot$	
$\stackrel{\text { full house }}{\odot}$	
two pairs and four of a kind \square	

Semistable reduction types of hyperelliptic curves of genus $2(p=2)$

cluster picture	reduction type of $\mathrm{C}^{\text {sex }}$
three of a kind \square - •	
$\stackrel{\text { full house }}{\bigodot}$.	
two pairs and four of a kind $\bigodot \odot \cdot$	

Semistable reduction types of hyperelliptic curves

 of genus $2(p=2)$| cluster picture | reduction type of C^{ss} |
| :--- | :--- |
| three of a kind | |
| full house | |

Semistable reduction types of hyperelliptic curves

 of genus $2(p=2)$| cluster picture | reduction type of C^{ss} |
| :--- | :--- |
| three of a kind | |
| full house | |

