Semistable models of hyperelliptic curves over residue characteristic 2

Jeff Yelton (Emory University) joint work with Leonardo Fiore

University of Connecticut (virtual) June 13th, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p} , and residue field R/\mathfrak{p} of characteristic $p \ge 0$.

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p} , and residue field R/\mathfrak{p} of characteristic $p \ge 0$.

We define a **hyperelliptic curve** C over K to be a smooth curve which can be given by an affine model of the form

$$y^2 = f(x) = \prod_{i=1}^d (x - a_i),$$

where $f(x) \in K[x]$ is a polynomial of degree $d \ge 3$ and roots $a_1, ..., a_d \in \overline{K}$. (If d = 3 then it is also an **elliptic curve**.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p} , and residue field R/\mathfrak{p} of characteristic $p \ge 0$.

We define a **hyperelliptic curve** C over K to be a smooth curve which can be given by an affine model of the form

$$y^2 = f(x) = \prod_{i=1}^d (x - a_i),$$

where $f(x) \in K[x]$ is a polynomial of degree $d \ge 3$ and roots $a_1, ..., a_d \in \overline{K}$. (If d = 3 then it is also an **elliptic curve**.) For simplicity, let's assume that $a_1, ..., a_d \in R$.

- ロ ト - 4 目 ト - 4 目 ト - 1 - 9 へ ()

In this talk, R is a discretely-valued local ring of characteristic 0 with fraction field K, maximal prime ideal \mathfrak{p} , and residue field R/\mathfrak{p} of characteristic $p \ge 0$.

We define a **hyperelliptic curve** C over K to be a smooth curve which can be given by an affine model of the form

$$y^2 = f(x) = \prod_{i=1}^d (x - a_i),$$

where $f(x) \in K[x]$ is a polynomial of degree $d \ge 3$ and roots $a_1, ..., a_d \in \overline{K}$. (If d = 3 then it is also an **elliptic curve**.) **For simplicity, let's assume that** $a_1, ..., a_d \in R$. Since the characteristic $\ne 2$ the singular points on C are of the form (a, 0) where f(a) = f'(a) = 0. Therefore, the *smoothness* property means that the roots a_i of f are all distinct.

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

We are interested in the *reduction* of our hyperelliptic curve $C: y^2 = f(x) = \prod_{i=1}^d (x - a_i)$, that is, the curve \overline{C} over the residue field R/\mathfrak{p} given by $y^2 = \prod_{i=1}^d (x - \overline{a_i})$, where each $\overline{a_i}$ is the reduction of $a_i \mod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \overline{C} might not be ("bad reduction")!

We are interested in the *reduction* of our hyperelliptic curve $C: y^2 = f(x) = \prod_{i=1}^d (x - a_i)$, that is, the curve \overline{C} over the residue field R/\mathfrak{p} given by $y^2 = \prod_{i=1}^d (x - \overline{a}_i)$, where each \overline{a}_i is the reduction of $a_i \mod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \overline{C} might not be ("bad reduction")!

When $p \neq 2$, there will be a singular point on \overline{C} corresponding to each subset (a **cluster**) of a_i 's which are equivalent mod \mathfrak{p} .

We are interested in the *reduction* of our hyperelliptic curve $C: y^2 = f(x) = \prod_{i=1}^d (x - a_i)$, that is, the curve \overline{C} over the residue field R/\mathfrak{p} given by $y^2 = \prod_{i=1}^d (x - \overline{a_i})$, where each $\overline{a_i}$ is the reduction of $a_i \mod \mathfrak{p}$. Although we have assumed C is smooth, its reduction \overline{C} might not be ("bad reduction")!

When $p \neq 2$, there will be a singular point on \overline{C} corresponding to each subset (a **cluster**) of a_i 's which are equivalent mod \mathfrak{p} . If $p \neq 2$, a cluster of 2 roots yields a **node** on \overline{C} .

We are interested in the *reduction* of our hyperelliptic curve $C: y^2 = f(x) = \prod_{i=1}^d (x - a_i)$, that is, the curve \overline{C} over the residue field R/\mathfrak{p} given by $y^2 = \prod_{i=1}^d (x - \bar{a}_i)$, where each \bar{a}_i is the reduction of $a_i \mod p$. Although we have assumed C is smooth, its reduction \overline{C} might not be ("bad reduction")!

When $p \neq 2$, there will be a singular point on \overline{C} corresponding to each subset (a **cluster**) of a_i 's which are equivalent mod \mathfrak{p} .

If $p \neq 2$, a cluster of 2 roots If $p \neq 2$, a cluster of > 3yields a **node** on C.

roots yields a **cusp** on \overline{C} .

We are interested in the *reduction* of our hyperelliptic curve $C: y^2 = f(x) = \prod_{i=1}^d (x - a_i)$, that is, the curve \overline{C} over the residue field R/\mathfrak{p} given by $y^2 = \prod_{i=1}^d (x - \bar{a}_i)$, where each \bar{a}_i is the reduction of $a_i \mod p$. Although we have assumed C is smooth, its reduction \overline{C} might not be ("bad reduction")! When $p \neq 2$, there will be a singular point on \overline{C} corresponding to each subset (a **cluster**) of a_i 's which are equivalent mod \mathfrak{p} .

If $p \neq 2$, a cluster of 2 roots If $p \neq 2$, a cluster of > 3yields a **node** on C.

roots yields a **cusp** on \overline{C} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 りへぐ

Definition

A curve over K is said to have semistable reduction if its reduction over R/p has (at worst) nodes as singularities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A curve over K is said to have semistable reduction if its reduction over R/p has (at worst) nodes as singularities.

Theorem (Deligne-Mumford, Artin-Winters)

For any curve C over a discrete valuation field K, there is a curve C^{ss} over a finite algebraic extension K'/K which is isomorphic to C over K' and which has semistable reduction.

Definition

A curve over K is said to have semistable reduction if its reduction over R/p has (at worst) nodes as singularities.

Theorem (Deligne-Mumford, Artin-Winters)

For any curve C over a discrete valuation field K, there is a curve C^{ss} over a finite algebraic extension K'/K which is isomorphic to C over K' and which has semistable reduction.

(It is easy to see this for an elliptic curve when $p \neq 2$: if all three roots are equivalent modulo \mathfrak{p} (additive reduction), this can be "fixed" by translating and scaling x.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

A curve over K is said to have semistable reduction if its reduction over R/p has (at worst) nodes as singularities.

Theorem (Deligne-Mumford, Artin-Winters)

For any curve C over a discrete valuation field K, there is a curve C^{ss} over a finite algebraic extension K'/K which is isomorphic to C over K' and which has semistable reduction.

(It is easy to see this for an elliptic curve when $p \neq 2$: if all three roots are equivalent modulo \mathfrak{p} (additive reduction), this can be "fixed" by translating and scaling x.)

Theorem (Dokchitser-Dokchitser-Maistret-Morgan) When $p \neq 2$, the reduction type of C^{ss} is determined entirely by how the roots "cluster".

cluster picture	reduction type of C	reduction type of $\mathcal{C}^{\mathrm{ss}}$

cluster picture	reduction type of C	reduction type of $\mathcal{C}^{\mathrm{ss}}$
pair		
••••		

cluster picture	reduction type of C	reduction type of $\mathcal{C}^{\mathrm{ss}}$
pair		
••••		
two pairs		
••••		

cluster picture	reduction type of C	reduction type of $\mathcal{C}^{\mathrm{ss}}$
pair		
••••		
two pairs		
•••••		
three of a kind		
•••		

cluster picture	reduction type of C	reduction type of $\mathcal{C}^{\mathrm{ss}}$
pair		
••••		
two pairs		
•••••		
three of a kind		
••••		
full house		

cluster picture	reduction type of C	reduction type of $\mathcal{C}^{\mathrm{ss}}$
pair		
••••		
two pairs		
••••		
three of a kind		
••••		
full house		
two pairs & four of a kind		

For genus 2, d = 5, and $p \neq 2$, here are the main possibilities:

For genus 2, d = 5, and $p \neq 2$, here are the main possibilities:

For genus 2, d = 5, and $p \neq 2$, here are the main possibilities:

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 …

For genus 2, d = 5, and $p \neq 2$, here are the main possibilities:

うくぐ

For genus 2, d = 5, and $p \neq 2$, here are the main possibilities:

つくぐ

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ● ● ● ●

1) We first make one or more substitutions of the form $x = \beta x_1 + \alpha$, $y = \beta^t y_1$, with $0 \le t \le \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each such substitution we get an equation

$$y_1^2 = f_1(x_1) \in K[x].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1) We first make one or more substitutions of the form $x = \beta x_1 + \alpha$, $y = \beta^t y_1$, with $0 \le t \le \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each substitution we get an equation

$$y_1^2 = f_1(x_1) \in K[x].$$

2) Find some $G_1(x), H_1(x) \in R[x]$ such that

$$f_1(x) = rac{1}{4}H_1(x_1)^2 + G_1(x_1).$$

1) We first make one or more substitutions of the form $x = \beta x_1 + \alpha$, $y = \beta^t y_1$, with $0 \le t \le \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each substitution we get an equation

$$y_1^2 = f_1(x_1) \in K[x].$$

2) Find some $G_1(x), H_1(x) \in R[x]$ such that

$$f_1(x) = rac{1}{4}H_1(x_1)^2 + G_1(x_1).$$

3) Perform the variable change $y_1 = y'_1 + \frac{1}{2}H_1(x_1)$ to get the equation

$$(y_1')^2 + H_1(x_1)y_1' = G_1(x_1).$$

1) We first make one or more substitutions of the form $x = \beta x_1 + \alpha$, $y = \beta^t y_1$, with $0 \le t \le \frac{d}{2}$ and $\beta \in \mathfrak{p}$. For each substitution we get an equation

$$y_1^2 = f_1(x_1) \in K[x].$$

2) Find some $G_1(x), H_1(x) \in R[x]$ such that

$$f_1(x) = \frac{1}{4}H_1(x_1)^2 + G_1(x_1).$$

3) Perform the variable change $y_1 = y'_1 + \frac{1}{2}H_1(x_1)$ to get the equation

$$(y_1')^2 + H_1(x_1)y_1' = G_1(x_1).$$

With clever enough choices of α , β for each such substitution, the above equation(s) together reduce to a semistable curve.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

As seen above, we can convert any elliptic curve to one with (at most) one cluster $\{a_1, a_2\}$. Let $v : K^{\times} \to \mathbb{Q}$ be the valuation on K normalized so that v(2) = 1 and let $m = v(a_2 - a_1) \ge 0$. There are two cases:

As seen above, we can convert any elliptic curve to one with (at most) one cluster $\{a_1, a_2\}$. Let $v : K^{\times} \to \mathbb{Q}$ be the valuation on K normalized so that v(2) = 1 and let $m = v(a_2 - a_1) \ge 0$. There are two cases:

▶ $0 \le m \le 4$: then we may perform a substitution using α and β as above, with $\nu(\beta) = \frac{m+2}{3}$ and $\nu(\alpha) = \frac{m}{2}$, and we get a smooth elliptic curve for the reduction

As seen above, we can convert any elliptic curve to one with (at most) one cluster $\{a_1, a_2\}$. Let $v : K^{\times} \to \mathbb{Q}$ be the valuation on K normalized so that v(2) = 1 and let $m = v(a_2 - a_1) \ge 0$. There are two cases:

- ▶ $0 \le m \le 4$: then we may perform a substitution using α and β as above, with $v(\beta) = \frac{m+2}{3}$ and $v(\alpha) = \frac{m}{2}$, and we get a smooth elliptic curve for the reduction
- m > 4: then we may perform a substitution with α and β as above, with 2 ≤ v(α) ≤ m − 2 and v(β) = 2 and get a nodal curve for the reduction

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

As seen above, we can convert any elliptic curve to one with (at most) one cluster $\{a_1, a_2\}$. Let $v : K^{\times} \to \mathbb{Q}$ be the valuation on K normalized so that v(2) = 1 and let $m = v(a_2 - a_1) \ge 0$. There are two cases:

- ▶ $0 \le m \le 4$: then we may perform a substitution using α and β as above, with $\nu(\beta) = \frac{m+2}{3}$ and $\nu(\alpha) = \frac{m}{2}$, and we get a smooth elliptic curve for the reduction
- m > 4: then we may perform a substitution with α and β as above, with 2 ≤ v(α) ≤ m − 2 and v(β) = 2 and get a nodal curve for the reduction

Corollary

In this setting, an elliptic curve has potentially good reduction iff $0 \le m \le 4$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

cluster picture	reduction type of $\mathcal{C}^{\mathrm{ss}}$	
no cluster	(two cases)	2 or 1
pair ••••••	$0 \le m \le \frac{8}{3}$	$\frac{2}{1}$ or $\frac{1}{1}$
(m := valuation of dif-ference between roots	$\frac{8}{3} < m \leq 4$	2/
in pair)	<i>m</i> > 4	or ¹
two pairs		
•••••		

cluster picture	reduction type of $C^{\rm ss}$
no cluster	(two cases) $2 / or \frac{1}{1 / 1}$
pair ••••••	$0 \le m \le \frac{8}{3}$ 2 or $\frac{1}{1}$
(m := valuation of dif-ference between roots in pair)	$\frac{8}{3} < m \leq 4$
	$m > 4$ χ or 1
two pairs	two curves C_1 , C_2 , each with a node iff $m_i > 4$
•••••••••••••••••••••••••••••••••••••	1 or 1 or 1 or 1

cluster picture	reduction type of $C^{\rm ss}$
three of a kind	
•••	
full house	
two pairs and four of a kind	

cluster picture	reduction type of $C^{\rm ss}$
three of a kind	\ /
full house	
two pairs and four of a kind	
•••••	

cluster picture	reduction type of $\mathcal{C}^{\mathrm{ss}}$
three of a kind	\ /
full house	$0 \le m \le 4$ 1
(m := valuation of difference between roots in pair)	m > 4 1 1
two pairs and four of a	
kind	

