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Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic
0 with fraction field K , maximal prime ideal p, and residue
field R/p of characteristic p ≥ 0.

We define a hyperelliptic curve C over K to be a smooth
curve which can be given by an affine model of the form

y 2 = f (x) =
d∏

i=1

(x − ai),

where f (x) ∈ K [x ] is a polynomial of degree d ≥ 3 and roots
a1, ..., ad ∈ K̄ . (If d = 3 then it is also an elliptic curve.)
For simplicity, let’s assume that a1, ..., ad ∈ R.
Since the characteristic 6= 2 the singular points on C are of the
form (a, 0) where f (a) = f ′(a) = 0. Therefore, the smoothness
property means that the roots ai of f are all distinct.
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Reductions of hyperelliptic curves

We are interested in the reduction of our hyperelliptic curve
C : y 2 = f (x) =

∏d
i=1(x − ai), that is, the curve C̄ over the

residue field R/p given by y 2 =
∏d

i=1(x − āi), where each āi is
the reduction of ai mod p. Although we have assumed C is
smooth, its reduction C̄ might not be (“ bad reduction”)!

When p 6= 2, there will be a singular point on C̄ corresponding
to each subset (a cluster) of ai ’s which are equivalent mod p.

If p 6= 2, a cluster of 2 roots
yields a node on C̄ .

If p 6= 2, a cluster of ≥ 3
roots yields a cusp on C̄ .

On the other hand, if p = 2, the reduced curve
C̄ : y 2 =

∏d
i=1(x − āi) always has a singular point and every

singular point is a cusp!
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Semistable reduction

Definition
A curve over K is said to have semistable reduction if its
reduction over R/p has (at worst) nodes as singularities.

Theorem (Deligne-Mumford, Artin-Winters)
For any curve C over a discrete valuation field K , there is a
curve C ss over a finite algebraic extension K ′/K which is
isomorphic to C over K ′ and which has semistable reduction.

(It is easy to see this for an elliptic curve when p 6= 2: if all
three roots are equivalent modulo p (additive reduction), this
can be “fixed” by translating and scaling x .)

Theorem (Dokchitser-Dokchitser-Maistret-Morgan)
When p 6= 2, the reduction type of C ss is determined entirely
by how the roots “cluster”.
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Reductions of genus-2 curves when p 6= 2
For genus 2, d = 5, and p 6= 2, here are the main possibilities:
cluster picture reduction type of C reduction type of C ss

pair

two pairs

three of a kind

full house

two pairs & four of a kind
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Approach to finding semistable models when p = 2

1) We first make one or more substitutions of the form
x = βx1 + α, y = βty1, with 0 ≤ t ≤ d

2
and β ∈ p. For each

such substitution we get an equation

y 2
1 = f1(x1) ∈ K [x ].

2) Find some G1(x),H1(x) ∈ R[x ] such that

f1(x) =
1

4
H1(x1)2 + G1(x1).

3) Perform the variable change y1 = y ′1 + 1
2
H1(x1) to get the

equation
(y ′1)2 + H1(x1)y ′1 = G1(x1).

With clever enough choices of α, β for each such substitution,
the above equation(s) together reduce to a semistable curve.
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Semistable reduction types for elliptic curves

(p = 2)

As seen above, we can convert any elliptic curve to one with
(at most) one cluster {a1, a2}. Let v : K× → Q be the
valuation on K normalized so that v(2) = 1 and let
m = v(a2 − a1) ≥ 0. There are two cases:

I 0 ≤ m ≤ 4: then we may perform a substitution using α
and β as above, with v(β) = m+2

3
and v(α) = m

2
, and we

get a smooth elliptic curve for the reduction

I m > 4: then we may perform a substitution with α and β
as above, with 2 ≤ v(α) ≤ m − 2 and v(β) = 2 and get
a nodal curve for the reduction

Corollary
In this setting, an elliptic curve has potentially good reduction
iff 0 ≤ m ≤ 4.
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Semistable reduction types for genus 2 (p = 2)
cluster picture reduction type of C ss

no cluster

(two cases)
or

pair

(m := valuation of dif-
ference between roots
in pair)

0 ≤ m ≤ 8
3

8
3
< m ≤ 4

m > 4

or

or

two pairs

(m1,m2 := valuations
of differences between
roots in each pair)

two curves C1, C2, each with a node iff mi > 4

or or
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of genus 2 (p = 2)
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between roots in pair)
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