Semistable models of hyperelliptic curves
over residue characteristic 2

Jeff Yelton (Emory University)
joint work with
Leonardo Fiore

University of Connecticut (virtual)
June 13th, 2020



Hyperelliptic curves over local fields



Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic
0 with fraction field K, maximal prime ideal p, and residue
field R/p of characteristic p > 0.



Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic
0 with fraction field K, maximal prime ideal p, and residue
field R/p of characteristic p > 0.

We define a hyperelliptic curve C over K to be a smooth
curve which can be given by an affine model of the form

where f(x) € K[x] is a polynomial of degree d > 3 and roots
a,...,aq € K. (If d = 3 then it is also an elliptic curve.)



Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic
0 with fraction field K, maximal prime ideal p, and residue
field R/p of characteristic p > 0.

We define a hyperelliptic curve C over K to be a smooth
curve which can be given by an affine model of the form

where f(x) € K[x] is a polynomial of degree d > 3 and roots
a,...,aq € K. (If d = 3 then it is also an elliptic curve.)
For simplicity, let’s assume that a;,...,a, € R.



Hyperelliptic curves over local fields

In this talk, R is a discretely-valued local ring of characteristic
0 with fraction field K, maximal prime ideal p, and residue
field R/p of characteristic p > 0.

We define a hyperelliptic curve C over K to be a smooth
curve which can be given by an affine model of the form

where f(x) € K[x] is a polynomial of degree d > 3 and roots
a,...,ag € K. (If d = 3 then it is also an elliptic curve.)

For simplicity, let’s assume that a;,...,a, € R.

Since the characteristic # 2 the singular points on C are of the
form (a,0) where f(a) = f’(a) = 0. Therefore, the smoothness
property means that the roots a; of f are all distinct.
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Reductions of hyperelliptic curves

We are interested in the reduction of our hyperelliptic curve
C:y®=f(x)=TI_,(x — a), that is, the curve C over the
residue field R/p given by y? = [[°_,(x — &), where each 3 is
the reduction of a; mod p. Although we have assumed C is

smooth, its reduction C might not be ( “bad reduction”)!

When p # 2, there will be a singular point on C corresponding
to each subset (a cluster) of a;'s which are equivalent mod p.

If p # 2, a cluster 9f 2 roots If p# 2, a cluster of > 3

yields a node on C. roots yields a cusp on C.

Qn the other hand, if p = 2, the reduced curve
C:y’= Hf’zl(x — 3;) always has a singular point and every
singular point is a cusp!
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Semistable reduction

Definition
A curve over K is said to have semistable reduction if its
reduction over R/p has (at worst) nodes as singularities.

Theorem (Deligne-Mumford, Artin-Winters)

For any curve C over a discrete valuation field K, there is a
curve C* over a finite algebraic extension K'/K which is
isomorphic to C over K' and which has semistable reduction.

(It is easy to see this for an elliptic curve when p # 2: if all
three roots are equivalent modulo p (additive reduction), this
can be “fixed” by translating and scaling x.)

Theorem (Dokchitser-Dokchitser-Maistret-Morgan)

When p # 2, the reduction type of C* is determined entirely
by how the roots “cluster”.
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Approach to finding semistable models when p = 2

1) We first make one or more substitutions of the form
x=fx1+a,y=p, with0<t<Zand g cp. For each
such substitution we get an equation

yi = fila) € K[x.

2) Find some Gi(x), Hi(x) € R[x] such that
1
fl(X) = ZHl(X1)2 + Gl(Xl).

3) Perform the variable change y; = y; + 2Hi(x) to get the
equation

(v1)? + Hi(xa)ys = Gi(x)-

With clever enough choices of «, § for each such substitution,
the above equation(s) together reduce to a semistable curve.
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Semistable reduction types for elliptic curves
(p=2)

As seen above, we can convert any elliptic curve to one with
(at most) one cluster {a;, a,}. Let v: K* — Q be the
valuation on K normalized so that v(2) =1 and let

m = v(a, — a;) > 0. There are two cases:

» 0 < m < 4: then we may perform a substitution using «

and 3 as above, with v(3) = 2 and v(a) = 2, and we

get a smooth elliptic curve for the reduction

» m > 4: then we may perform a substitution with o« and 3
as above, with 2 < v(a) < m — 2 and v() = 2 and get
a nodal curve for the reduction

Corollary

In this setting, an elliptic curve has potentially good reduction
iff0 < m<4.



Semistable reduction types for genus 2 (p = 2)

cluster picture reduction type of C5%
no cluster

pair

two pairs




Semistable reduction types for genus 2 (p = 2)

cluster picture reduction type of C5%
no cluster 2
ottt (two cases) / )4
1 1
or
pair
two pairs




cluster picture

reduction type of CS8

Semistable reduction types for genus 2 (p = 2)

no cluster )
st (two cases) / )4
1 1
or
air 2
) 0o<m<?é
ORI A
or
(m := valuation of dif- % <m<4
ference between roots 2
in pair) m> 4 . 1
or

two pairs

CEDICEDE




Semistable reduction types for genus 2 (p = 2)

cluster picture reduction type of C5%

no cluster 2
ottt (two cases) / )L
or
pair 8 2
@ . . ) 1 1
or

(m := valuation of dif- % <m<4

ference between roots 2

in pair) m> 4 . 1
or

two pairs two curves C;, G, each with a node iff m; > 4

(mq, my := valuations
’ 1
of differences between ) )
1 1 1
or or

roots in each pair)




Semistable reduction types of hyperelliptic curves
of genus 2 (p = 2)

cluster picture reduction type of C®%

three of a kind

RO

full house

C9C -9

two pairs and four of a
kind

-




Semistable reduction types of hyperelliptic curves
of genus 2 (p = 2)

cluster picture reduction type of C®%
three of a kind

(CERED IO 1 !
full house

two pairs and four of a
kind

GDIaDE




Semistable reduction types of hyperelliptic curves
of genus 2 (p = 2)

cluster picture reduction type of C®%

three of a kind

full house )4
0<m<4

C9C -9 -

(m := valuation of difference
between roots in pair) T
m>4 1

two pairs and four of a
kind

GDIaDE




Semistable reduction types of hyperelliptic curves
of genus 2 (p = 2)

cluster picture reduction type of C®%

three of a kind

full house )4
0<m<4

C9C -9 -

(m := valuation of difference
between roots in pair) T
m>4 1

two pairs and four of a
kind

o) XX

if evaluations of differences are >> 0




