Exercise for " p-adic functions on \mathbb{Z}_{p} "

There will be four sets of exercises/problems for the CTNT 2020 lectures on p-adic functions. Some partial answers/hints are at the end of the file.

Problem 1.1 (Periodic power series expansion).
(1) Solve $4 x=1$ in \mathbb{Z}_{7}, and write the solution as a "periodic" power series expression in powers of 7 .
(2) Use the fact that 5 divides $7^{4}-1$ but not smaller powers of 7 minus to show that $1 / 5$ in \mathbb{Z}_{7} admits a 7 -adic power series expansion in powers of 7 with period 4 .
(3) Recall that every number with a periodic decimal expansion is a rational number. Using the same argument to show that, a p-adic integer is a rational number if and only if it has a "periodic" power series expansion in powers of p.
Problem 1.2 (Proof of Hensel's lemma by example). Consider $f(x)=(x-1)(x-2)-5$ and let $p=5$. Then $f(x) \bmod 5$ has two simple zeros 1 and 2 . Take $\alpha=1$ as an example. Prove that there exists a unique $\tilde{\alpha} \in \mathbb{Z}_{5}$ such that $f(\tilde{\alpha})=0$ and $\tilde{\alpha} \equiv 1 \bmod 5$, as follows:
(1) First consider modulo 25 , setting $x=1+5 a$. Solve $f(1+5 a) \equiv 0 \bmod 25$.
(2) Now jump to the general case, suppose that we have solved $\alpha_{n} \bmod 5^{n}$ such that $f\left(\alpha_{n}\right) \equiv 0 \bmod 5^{n}$. We need to set $x=\alpha_{n}+5^{n} b$ and try to solve $f(x) \equiv 0 \bmod 5^{n+1}$.

Explain why there exists a solution to b modulo 5 ?
(3) Compute the formal derivative $f^{\prime}(x)$ of $f(x)$ (e.g. $\left(2 x^{2}\right)^{\prime}=2 \cdot 2 x=4 x$). Observe your computation for (2). What's the relation between the coefficient on b at your last step versus evaluation of $f^{\prime}(x)$ at $\alpha \bmod 5$?

Problem 2.1 (All triangles in \mathbb{Q}_{p} are isoceles). This is stated without proof. Show that given $x, y, z \in \mathbb{Q}_{p}$, at least two of the distances $|x-y|_{p},|y-z|_{p}$, and $|z-x|_{p}$ are the same.
Problem 2.2 (p-adic powers). Let $x \in p \mathbb{Z}_{p}$. Show that for every $n \in \mathbb{Z}_{p}$, the power $(1+x)^{n}$ makes sense.
(Method 1: viewing as a limit in n). Write out $n=a_{0}+a_{1} p+a_{2} p^{2}+\cdots$ and set $n_{0}=a_{0}$, $n_{1}=a_{0}+a_{1} p, n_{2}=a_{0}+a_{1} p+a_{2} p^{2}, \ldots$ Then we see that $n_{i} \equiv n_{i+1} \bmod p^{n}$.

Show that $(1+x)^{n_{i}} \equiv(1+x)^{n_{i+1}} \bmod p^{i+1}$.
(Method 2: Write out binomial expansion). Recall that when n is an integer, we have

$$
(1+x)^{n}=\sum_{i \geq 0}\binom{n}{i} x^{i}
$$

Show that this series makes sense as well when $n \in \mathbb{Z}_{p}$, where $\binom{n}{i}$ is interpreted as $\frac{n(n-1) \cdots(n-i+1)}{i!}$. Show that $\binom{n}{i}$ belongs to \mathbb{Z}_{p}, and therefore the formal binomial expansion above converges when $x \in p \mathbb{Z}_{p}$.
(3) Show that the two definitions of $(1+x)^{n}$ above give the same answer.

Problem 2.3 (Compute $\sqrt{2}$ in \mathbb{Z}_{7} in a much cooler way). We still need that $3^{2} \equiv 2 \bmod 7$. Next, we consider the following:

$$
\sqrt{2}=3 \cdot\left(\frac{2}{9}\right)^{1 / 2}=3 \cdot\left(1-7 \cdot \frac{1}{9}\right)^{1 / 2}
$$

We already know that $1 / 9$ exists in \mathbb{Z}_{7}. To show the square root exists, we recall the binomial expansion

$$
(1-x)^{n}=\sum_{i \geq 0}(-1)^{i}\binom{n}{i} x^{i} .
$$

"Plugging in $n=\frac{1}{2}$ and $x=7 \cdot \frac{1}{9}$ ", we have

$$
\begin{equation*}
\sqrt{2}=3 \cdot \sum_{i \geq 0}(-1)^{i}\binom{1 / 2}{i}\left(7 \cdot \frac{1}{9}\right)^{i} \tag{2.3.1}
\end{equation*}
$$

where $\binom{1 / 2}{i}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-i+1\right)}{i!}$ is the formal binomial number.
(1) Show that for every i, the formal binomial number $\binom{1 / 2}{i}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-i+1\right)}{i!}$ belongs to \mathbb{Z}_{7}.
(2) Show that (2.3.1) converges in \mathbb{Z}_{7}.
(3) Convince yourself that formally, if $x \in p \mathbb{Z}_{p}$ and $m, n \in \mathbb{Z}_{p}$,

$$
\left(\sum_{i \geq 0}(-1)^{i}\binom{n}{i} x^{i}\right) \cdot\left(\sum_{i \geq 0}(-1)^{i}\binom{m}{i} x^{i}\right)=\left(\sum_{i \geq 0}(-1)^{i}\binom{n+m}{i} x^{i}\right)
$$

Problem 3.1 (Finite dimensional Banach space). Let V be a finite dimensional vector space over \mathbb{Q}_{p}. Fix a basis e_{1}, \ldots, e_{n} of V. One can define a standard supnorm $\|\cdot\|$ by

$$
\left\|a_{1} e_{1}+\cdots+a_{n} e_{n}\right\|:=\max _{1 \leq i \leq n}\left\{\left|a_{i}\right|_{p}\right\}
$$

(1) Show that this standard supnorm is a Banach norm on V, that is, it satisfies (a) $\|a v\|=|a|_{p} \cdot\|v\|$ for $a \in \mathbb{Q}_{p}, v \in V ;(\mathrm{b})\|v+w\| \leq \max \{\|v\|,\|w\|\}$; and (c) $\|v\|=0$ if and only if $v=0$. Moreover, V is complete with respect to $\|\cdot\|$.
(2) Conversely, let $\|\cdot\|^{\prime}$ be a norm satisfying conditions (a)(b)(c), and moreover that the values of $\|\cdot\| \|^{\prime}$ belongs to $p^{\mathbb{Z}} \cup\{0\}$. Show that the subset $M:=\left\{v \in V ;\|v\|^{\prime} \leq 1\right\}$ is a \mathbb{Z}_{p}-submodule of V.
(3) Recall that $\mathbb{Q}_{p}=\mathbb{Z}_{p}\left[\frac{1}{p}\right]$. Show that $M \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}=V$.
(4) It is known that \mathbb{Z}_{p} is a PID. Show that there exists an integer N such that

$$
p^{N} \mathbb{Z}_{p} e_{1} \oplus \cdots \oplus p^{N} \mathbb{Z}_{p} e_{n} \subseteq M
$$

(5) Use that \mathbb{Z}_{p} and hence \mathbb{Z}_{p}^{n} is compact to show that there exists an integer N such that

$$
M \subseteq p^{-N} \mathbb{Z}_{p} e_{1} \oplus \cdots \oplus p^{-N} \mathbb{Z}_{p} e_{n}
$$

From this deduce that there exists $C>1$ such that, for every $v \in V$

$$
C^{-1} \cdot\|v\| \leq\|v\|^{\prime} \leq C \cdot\|v\| .
$$

(6) Let $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ denote a \mathbb{Z}_{p}-basis of M. Show that they form an orthonormal basis of V for the norm $\|\cdot\|^{\prime}$.
Problem 3.2 (Another orthonormal basis of $\mathcal{C}\left(\mathbb{Z}_{p} ; \mathbb{Q}_{p}\right)$). This problem comes out from my personal research. Consider the following sequence of (polynomial) functions:
$f_{0}(x)=x, \quad f_{1}(x)=\frac{x^{p}-x}{p}, \quad f_{2}(x)=\frac{\left(\frac{x^{p}-x}{p}\right)^{p}-\frac{x^{p}-x}{p}}{p}, \quad \ldots \quad f_{n+1}(x)=\frac{f_{n}(x)^{p}-f_{n}(x)}{p}, \ldots$ on \mathbb{Z}_{p}.
(1) Show that for every n and every $x \in \mathbb{Z}_{p}, f_{n}(x) \in \mathbb{Z}_{p}$.
(2) For an integer n, we write it as $n_{0}+n_{1} p+n_{2} p^{2}+\cdots+n_{r} p^{r}$ with $a_{i} \in\{0,1, \ldots, p-1\}$, we set

$$
\mathbf{e}_{n}(x):=f_{0}(x)^{n_{0}} f_{1}(x)^{n_{1}} \cdots f_{r}(x)^{n_{r}}
$$

again, as a (polynomial) function on \mathbb{Z}_{p}. Show that as a polynomial, $\mathbf{e}_{n}(x)$ has degree n, and if e_{n} denote the leading coefficient of $\mathbf{e}_{n}(x)$, then $v_{p}\left(e_{n}\right)=-v_{p}(n!)$.
(3) Show (in a completely abstract way) that if we write the Mahler expansion of $\mathbf{e}_{n}(x)$, all coefficients belong to \mathbb{Z}_{p}. And show (using (2)) that the Mahler coefficient on $\binom{x}{n}$ belongs to \mathbb{Z}_{p}^{\times}. From this, deduce that $\left\|\mathbf{e}_{n}(x)\right\|=1$.
(4) (Somehow using a completely abstract argument,) show that every $\binom{x}{n}$ is in turn a $\mathbb{Z}_{p^{-}}$(as opposed to $\mathbb{Q}_{p^{-}}$) linear combination of $\mathbf{e}_{0}(x), \ldots, \mathbf{e}_{n}(x)$. And use this to deduce that $\mathbf{e}_{0}(x), \mathbf{e}_{1}(x), \ldots$ also give an orthonormal basis of $\mathcal{C}\left(\mathbb{Z}_{p} ; \mathbb{Q}_{p}\right)$.

Problem 4.1 (Convolution product). Note that the set of formal power series $\mathbb{Z}_{p} \llbracket T \rrbracket$ is a ring. We now explain what the product structure corresponds to in terms of p-adic measures.

Let μ_{1} and μ_{2} denote two measures on \mathbb{Z}_{p} (with values in \mathbb{Q}_{p}). Then we can define a convolution measure $\mu_{1} \star \mu_{2}$ as follows: for every $f(z) \in \mathcal{C}\left(\mathbb{Z}_{p} ; \mathbb{Q}_{p}\right)$, we have

$$
\int_{\mathbb{Z}_{p}} f(z) \mu_{1} \star \mu_{2}(z):=\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}} f(x+y) \mu_{1}(x) \mu_{2}(y) .
$$

Show that under the Amice transform $A_{\mu_{1} \star \mu_{2}}(T) \in \mathbb{Z}_{p} \llbracket T \rrbracket$ is given by

$$
A_{\mu_{1} \star \mu_{2}}(T)=A_{\mu_{1}}(T) \cdot A_{\mu_{2}}(T) .
$$

Problem 4.2 (p-adic L-functions for Dirichlet L-functions). Let N be an integer relatively prime to p, and let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{Q}_{p}^{\times}$be a non-trivial character. Extend χ to a function on \mathbb{Z} so that

$$
\chi(n):= \begin{cases}\chi(n \bmod N) & \text { if } \operatorname{gcd}(n, N)=1 \\ 0 & \text { otherwise }\end{cases}
$$

The Dirichlet L-function is defined to be

$$
L(\chi, s):=\sum_{n \geq 1} \frac{\chi(n)}{n^{s}}
$$

Consider the measure $\mu_{\chi} \in \mathcal{D}\left(\mathbb{Z}_{p} ; \mathbb{Q}_{p}\right)$ whose Amice transform is

$$
A_{\mu_{\chi}}(T):=\sum_{i=0}^{N-1} \frac{\chi(i)(1+T)^{N-i}}{(1+T)^{N}-1}
$$

Show that $A_{\mu_{\chi}}(T)$ belongs to $\mathbb{Z}_{p} \llbracket T \rrbracket$.
Prove that we have

$$
\int_{\mathbb{Z}_{p}} x^{n} d \mu_{\chi}(x)=L(\chi,-n)
$$

Hint on Problem 1.1: (2) and (3). Let us explain the idea by examples. When we compute the decimal expansions of a rational number, we can recast the process as follows: (e.g. using $999=27 \times 37$)

$$
\frac{2}{37}=\frac{54}{999}=0.054054054054054 \cdots
$$

Let us elaborate on the last step further:

$$
\frac{54}{999}=\frac{54}{1000-1}=\frac{54 \cdot 10^{-3}}{1-10^{-3}}=54 \cdot 10^{-3}\left(1+10^{-3}+10^{-6}+\cdots\right)=0.054054054054054 \cdots
$$

The same argument works for p-adic numbers. For example, we consider $\frac{3}{13}$ in \mathbb{Z}_{5}. For a technical reason, it is more convenient to consider $\frac{3}{13}$ as $1-\frac{10}{13}$ instead (as we will see). Noting that $5^{4}-1=26 \times 24=13 \times 48$. Thus

$$
-\frac{10}{13}=\frac{-480}{5^{4}-1}=\frac{480}{1-5^{4}}=480+480 \times 5^{4}+480 \times 5^{8}+\cdots
$$

We know that $480=5+4 \cdot 5^{2}+3 \times 5^{3}$; so
$\frac{3}{13}=1-\frac{10}{13}=1+\left(5+4 \cdot 5^{2}+3 \times 5^{3}\right)+5^{4} \times\left(5+4 \cdot 5^{2}+3 \times 5^{3}\right)+5^{8} \times\left(5+4 \cdot 5^{2}+3 \times 5^{3}\right)+\cdots$
It is not hard to imitate this to solve (2). For (3), the only essential question is: say we have a rational number $\frac{a}{b}$ with $p \nmid b$, does there exist an integer N such that b divides $p^{N}-1$? The answer is yes, because we can turn the table and look at modulo b. The needed number N is precisely the order of the element $p \bmod b$ in the group $(\mathbb{Z} / b \mathbb{Z})^{\times}$.

Hint on Problem 1.2, (2) Plugging in $x=\alpha_{n}+5^{n} b$, we try to solve

$$
\begin{gathered}
\left(\alpha_{n}+5^{n} b-1\right)\left(\alpha_{n}+5^{n} b-2\right) \equiv 5 \bmod 5^{n+1} \\
\left(\alpha_{n}-1\right)\left(\alpha_{n}-2\right)+5^{n} b\left(\alpha_{n}-2+\alpha_{n}-1\right)+5^{2 n} b^{2} \equiv 5 \bmod 5^{n+1}
\end{gathered}
$$

As $5^{2 n}$ is divisible by 5^{n+1}, we can drop the b^{2}-term and get

$$
\left(\alpha_{n}-1\right)\left(\alpha_{n}-2\right)+5^{n} b\left(\alpha_{n}-2+\alpha_{n}-1\right) \equiv 5 \bmod 5^{n+1}
$$

By how α_{n} is taken, we know that $\left(\alpha_{n}-1\right)\left(\alpha_{n}-2\right)-5$ is divisible by 5^{n}. So we have

$$
\begin{equation*}
\frac{\left(\alpha_{n}-1\right)\left(\alpha_{n}-2\right)-5}{5^{n}}+b\left(\alpha_{n}-2+\alpha_{n}-1\right) \equiv 0 \bmod 5 \tag{4.2.1}
\end{equation*}
$$

The upshot is that $\alpha_{n} \equiv 1 \bmod 5$, so $\alpha_{n}-2+\alpha_{n}-1 \equiv-1 \bmod 5$. So we can always solve for a unique $b \bmod 5$.
(3) Note that $f^{\prime}(x)=(x-1)+(x-2)$. The coefficients on b in 4.2.1) is precisely $\left.f^{\prime}(x)\right|_{x=\alpha_{n}}$. As we always need α to be a simple zero in Hensel's lemma, $\left.f^{\prime}(x)\right|_{x=\alpha_{n}} \neq 0$ in \mathbb{F}_{p}. This is how Hensel's lemma is proved.

Hint on Problem 2.2, (1) One can, for example, prove inductively that $(1+x)^{p^{i}}-1$ is divisible by p^{i+1} when $x \in p \mathbb{Z}_{p}$.
(2) To see that $\binom{n}{i}$ belongs to \mathbb{Z}_{p}, one can observe that when $n \in \mathbb{N}$, this is true. As \mathbb{N} is dense in \mathbb{Z}_{p}, the same holds for $n \in \mathbb{Z}_{p}$.
(3) Again, one can first observe that this is true when $n \in \mathbb{N}$, and use that \mathbb{N} is dense in \mathbb{Z}_{p}.

Hint on Problem 2.3, (3) To show the equality, one can proceed as follows: we know that the equality $(1-x)^{n}(1-x)^{m}=(1-x)^{n+m}$ holds whenever $n, m \in \mathbb{N}$, and the same holds for the power series version, as the power series really converges. Now in general, for $m, n \in$ \mathbb{Z}_{p}, we can choose sequences of natural numbers m_{1}, m_{2}, \ldots and n_{1}, n_{2}, \ldots to converge to m and n in \mathbb{Z}_{p}, respectively. Taking limit (using the previous problem) of the equality $(1-x)^{n_{i}}(1-x)^{m_{i}}=(1-x)^{n_{i}+m_{i}}$ gives what we need.

Hint on Problem 3.1: (3) comes from that for every nonzero vector $v \in V$, there exists $a \in \mathbb{Q}_{p}^{\times}$such that $\|a v\|^{\prime} \leq 1$.
(4) Take N sufficiently large so that $\left\|e_{i}\right\|^{\prime} \leq p^{N}$ for every i.
(5) Suppose that such N does not exists. Then we have a sequence of integers $c_{1}, c_{2}, \cdots \rightarrow$ ∞ and vectors

$$
a_{1}^{(i)} e_{1}+\cdots+a_{n}^{(i)} e_{n}
$$

with $\max _{1 \leq j \leq n}\left|a_{j}^{(i)}\right|_{p}=p^{-c_{i}}$ and $\| \cdot| |^{\prime}$-norm 1 . Modify this by setting $b_{j}^{(i)}:=p^{c_{i}} a_{j}^{(i)}$. Then we have a sequence of vectors

$$
b_{1}^{(i)} e_{1}+\cdots+b_{n}^{(i)} e_{n} \in V
$$

with $\| \cdot| | '$-norm going to zero, yet $\max _{1 \leq j \leq n}\left|b_{j}^{(i)}\right|_{p}=1$.
As \mathbb{Z}_{p}^{n} is compact, the tuples $\left(b_{1}^{(i)}, \ldots, b_{n}^{(i)}\right)_{i \in \mathbb{N}}$ admits a converging subsequence, which limit $\left(b_{1}, \ldots, b_{n}\right)$. Now, on the one hand, as $\|\cdot\|^{\prime}$ is bounded by the $\|\cdot\|$, we must have $\| b_{1} e_{1}+\cdots+$ $\left.b_{n} e_{n}\right|^{\prime}=0$ through the limit. On the other hand, in the subsequence, $\max _{1 \leq j \leq n}\left|b_{j}^{(i)}\right|_{p}=1$ continues to hold, so $\max _{1 \leq j \leq n}\left|b_{j}\right|_{p}=1$; in particular not all b_{j} are zero. This gives a vector $v=b_{1} e_{1}+\cdots+b_{n} e_{n}$ whose $\|\cdot\| \|^{\prime}$-norm is zero, yet $v \neq 0$, contradicting condition (c).

Problem 4.1:
We directly apply the definition of Amice transform

$$
\begin{aligned}
A_{\mu_{1} \star \mu_{2}}(T) & =\int_{\mathbb{Z}_{p}}(1+T)^{z} \mu_{1} \star \mu_{2}(z) \\
& =\int_{\mathbb{Z}_{p}}(1+T)^{z} \mu_{1} \star \mu_{2}(z) \\
& =\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}}(1+T)^{x+y} \mu_{1}(x) \mu_{2}(y) \\
& =\left(\int_{\mathbb{Z}_{p}}(1+T)^{x} \mu_{1}(x)\right) \cdot\left(\int_{\mathbb{Z}_{p}}(1+T)^{y} \mu_{2}(y)\right) \\
& =A_{\mu_{1}}(T) \cdot A_{\mu_{2}}(T)
\end{aligned}
$$

Problem 4.2, Use exactly the same argument with new functions:

$$
f(t)=\frac{\sum_{i=1}^{N-1} \chi(i) e^{(N-i) t}}{e^{N t}-1}
$$

and

$$
A_{\mu_{\chi}}(T)=\frac{\sum_{i=1}^{N-1} \chi(i)(1+T)^{N-i}}{(1+T)^{N}-1}
$$

