
Exercise for “p-adic functions on Zp”
There will be four sets of exercises/problems for the CTNT 2020 lectures on p-adic func-

tions. Some partial answers/hints are at the end of the file.

Problem 1.1 (Periodic power series expansion).

(1) Solve 4x = 1 in Z7, and write the solution as a “periodic” power series expression in
powers of 7.

(2) Use the fact that 5 divides 74− 1 but not smaller powers of 7 minus to show that 1/5
in Z7 admits a 7-adic power series expansion in powers of 7 with period 4.

(3) Recall that every number with a periodic decimal expansion is a rational number.
Using the same argument to show that, a p-adic integer is a rational number if and
only if it has a “periodic” power series expansion in powers of p.

Problem 1.2 (Proof of Hensel’s lemma by example). Consider f(x) = (x − 1)(x − 2) − 5
and let p = 5. Then f(x) mod 5 has two simple zeros 1 and 2. Take α = 1 as an example.
Prove that there exists a unique α̃ ∈ Z5 such that f(α̃) = 0 and α̃ ≡ 1 mod 5, as follows:

(1) First consider modulo 25, setting x = 1 + 5a. Solve f(1 + 5a) ≡ 0 mod 25.
(2) Now jump to the general case, suppose that we have solved αn mod 5n such that

f(αn) ≡ 0 mod 5n. We need to set x = αn + 5nb and try to solve f(x) ≡ 0 mod 5n+1.
Explain why there exists a solution to b modulo 5?
(3) Compute the formal derivative f ′(x) of f(x) (e.g. (2x2)′ = 2 · 2x = 4x). Observe your

computation for (2). What’s the relation between the coefficient on b at your last step versus
evaluation of f ′(x) at α mod 5?
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Problem 2.1 (All triangles in Qp are isoceles). This is stated without proof. Show that
given x, y, z ∈ Qp, at least two of the distances |x− y|p, |y − z|p, and |z − x|p are the same.

Problem 2.2 (p-adic powers). Let x ∈ pZp. Show that for every n ∈ Zp, the power (1 + x)n

makes sense.
(Method 1: viewing as a limit in n). Write out n = a0 + a1p+ a2p

2 + · · · and set n0 = a0,
n1 = a0 + a1p, n2 = a0 + a1p+ a2p

2, . . . . Then we see that ni ≡ ni+1 mod pn.
Show that (1 + x)ni ≡ (1 + x)ni+1 mod pi+1.
(Method 2: Write out binomial expansion). Recall that when n is an integer, we have

(1 + x)n =
∑
i≥0

(
n

i

)
xi.

Show that this series makes sense as well when n ∈ Zp, where
(
n
i

)
is interpreted as n(n−1)···(n−i+1)

i!
.

Show that
(
n
i

)
belongs to Zp, and therefore the formal binomial expansion above converges

when x ∈ pZp.
(3) Show that the two definitions of (1 + x)n above give the same answer.

Problem 2.3 (Compute
√

2 in Z7 in a much cooler way). We still need that 32 ≡ 2 mod 7.
Next, we consider the following:

√
2 = 3 ·

(2

9

)1/2
= 3 ·

(
1− 7 · 1

9

)1/2
.

We already know that 1/9 exists in Z7. To show the square root exists, we recall the binomial
expansion

(1− x)n =
∑
i≥0

(−1)i
(
n

i

)
xi.

“Plugging in n = 1
2

and x = 7 · 1
9
,” we have

(2.3.1)
√

2 = 3 ·
∑
i≥0

(−1)i
(

1/2

i

)(
7 · 1

9

)i
,

where

(
1/2

i

)
=

1
2
(1
2
− 1) · · · (1

2
− i+ 1)

i!
is the formal binomial number.

(1) Show that for every i, the formal binomial number

(
1/2

i

)
=

1
2
(1
2
− 1) · · · (1

2
− i+ 1)

i!
belongs to Z7.

(2) Show that (2.3.1) converges in Z7.
(3) Convince yourself that formally, if x ∈ pZp and m,n ∈ Zp,(∑

i≥0

(−1)i
(
n

i

)
xi
)
·
(∑
i≥0

(−1)i
(
m

i

)
xi
)

=
(∑
i≥0

(−1)i
(
n+m

i

)
xi
)
.
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Problem 3.1 (Finite dimensional Banach space). Let V be a finite dimensional vector space
over Qp. Fix a basis e1, . . . , en of V . One can define a standard supnorm || · || by

||a1e1 + · · ·+ anen|| := max
1≤i≤n

{
|ai|p

}
.

(1) Show that this standard supnorm is a Banach norm on V , that is, it satisfies (a)
||av|| = |a|p · ||v|| for a ∈ Qp, v ∈ V ; (b) ||v + w|| ≤ max{||v||, ||w||}; and (c) ||v|| = 0 if and
only if v = 0. Moreover, V is complete with respect to || · ||.

(2) Conversely, let || · ||′ be a norm satisfying conditions (a)(b)(c), and moreover that the
values of || · ||′ belongs to pZ ∪ {0}. Show that the subset M :=

{
v ∈ V ; ||v||′ ≤ 1

}
is a

Zp-submodule of V .
(3) Recall that Qp = Zp[1p ]. Show that M ⊗Zp Qp = V .

(4) It is known that Zp is a PID. Show that there exists an integer N such that

pNZpe1 ⊕ · · · ⊕ pNZpen ⊆M.

(5) Use that Zp and hence Znp is compact to show that there exists an integer N such that

M ⊆ p−NZpe1 ⊕ · · · ⊕ p−NZpen.
From this deduce that there exists C > 1 such that, for every v ∈ V

C−1 · ||v|| ≤ ||v||′ ≤ C · ||v||.
(6) Let f1, . . . , fn denote a Zp-basis of M . Show that they form an orthonormal basis of V

for the norm || · ||′.

Problem 3.2 (Another orthonormal basis of C(Zp;Qp)). This problem comes out from my
personal research. Consider the following sequence of (polynomial) functions:

f0(x) = x, f1(x) =
xp − x
p

, f2(x) =

(
xp−x
p

)p − xp−x
p

p
, . . . fn+1(x) =

fn(x)p − fn(x)

p
, . . .

on Zp.
(1) Show that for every n and every x ∈ Zp, fn(x) ∈ Zp.
(2) For an integer n, we write it as n0 + n1p+ n2p

2 + · · ·+ nrp
r with ai ∈ {0, 1, . . . , p− 1},

we set
en(x) := f0(x)n0f1(x)n1 · · · fr(x)nr ,

again, as a (polynomial) function on Zp. Show that as a polynomial, en(x) has degree n, and
if en denote the leading coefficient of en(x), then vp(en) = −vp(n!).

(3) Show (in a completely abstract way) that if we write the Mahler expansion of en(x),
all coefficients belong to Zp. And show (using (2)) that the Mahler coefficient on

(
x
n

)
belongs

to Z×p . From this, deduce that ||en(x)|| = 1.

(4) (Somehow using a completely abstract argument,) show that every
(
x
n

)
is in turn a

Zp- (as opposed to Qp-) linear combination of e0(x), . . . , en(x). And use this to deduce that
e0(x), e1(x), . . . also give an orthonormal basis of C(Zp;Qp).
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Problem 4.1 (Convolution product). Note that the set of formal power series ZpJT K is a
ring. We now explain what the product structure corresponds to in terms of p-adic measures.

Let µ1 and µ2 denote two measures on Zp (with values in Qp). Then we can define a
convolution measure µ1 ? µ2 as follows: for every f(z) ∈ C(Zp;Qp), we have∫

Zp
f(z)µ1 ? µ2(z) :=

∫
Zp×Zp

f(x+ y)µ1(x)µ2(y).

Show that under the Amice transform Aµ1?µ2(T ) ∈ ZpJT K is given by

Aµ1?µ2(T ) = Aµ1(T ) · Aµ2(T ).

Problem 4.2 (p-adic L-functions for Dirichlet L-functions). Let N be an integer relatively
prime to p, and let χ : (Z/NZ)× → Q×p be a non-trivial character. Extend χ to a function
on Z so that

χ(n) :=

{
χ(n mod N) if gcd(n,N) = 1

0 otherwise.

The Dirichlet L-function is defined to be

L(χ, s) :=
∑
n≥1

χ(n)

ns
.

Consider the measure µχ ∈ D(Zp;Qp) whose Amice transform is

Aµχ(T ) :=
N−1∑
i=0

χ(i)(1 + T )N−i

(1 + T )N − 1

Show that Aµχ(T ) belongs to ZpJT K.
Prove that we have ∫

Zp
xndµχ(x) = L(χ,−n).
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Hint on Problem 1.1: (2) and (3). Let us explain the idea by examples. When we compute
the decimal expansions of a rational number, we can recast the process as follows: (e.g. using
999 = 27× 37)

2

37
=

54

999
= 0.054054054054054 · · ·

Let us elaborate on the last step further:

54

999
=

54

1000− 1
=

54 · 10−3

1− 10−3
= 54 · 10−3

(
1 + 10−3 + 10−6 + · · ·

)
= 0.054054054054054 · · ·

The same argument works for p-adic numbers. For example, we consider 3
13

in Z5. For

a technical reason, it is more convenient to consider 3
13

as 1 − 10
13

instead (as we will see).
Noting that 54 − 1 = 26× 24 = 13× 48. Thus

−10

13
=
−480

54 − 1
=

480

1− 54
= 480 + 480× 54 + 480× 58 + · · ·

We know that 480 = 5 + 4 · 52 + 3× 53; so

3

13
= 1− 10

13
= 1+

(
5+4 ·52 +3×53

)
+54×

(
5+4 ·52 +3×53

)
+58×

(
5+4 ·52 +3×53

)
+ · · ·

It is not hard to imitate this to solve (2). For (3), the only essential question is: say we
have a rational number a

b
with p - b, does there exist an integer N such that b divides pN −1?

The answer is yes, because we can turn the table and look at modulo b. The needed number
N is precisely the order of the element p mod b in the group (Z/bZ)×.

Hint on Problem 1.2: (2) Plugging in x = αn + 5nb, we try to solve

(αn + 5nb− 1)(αn + 5nb− 2) ≡ 5 mod 5n+1

(αn − 1)(αn − 2) + 5nb
(
αn − 2 + αn − 1

)
+ 52nb2 ≡ 5 mod 5n+1

As 52n is divisible by 5n+1, we can drop the b2-term and get

(αn − 1)(αn − 2) + 5nb
(
αn − 2 + αn − 1

)
≡ 5 mod 5n+1

By how αn is taken, we know that (αn − 1)(αn − 2)− 5 is divisible by 5n. So we have

(4.2.1)
(αn − 1)(αn − 2)− 5

5n
+ b
(
αn − 2 + αn − 1

)
≡ 0 mod 5.

The upshot is that αn ≡ 1 mod 5, so αn − 2 + αn − 1 ≡ −1 mod 5. So we can always solve
for a unique b mod 5.

(3) Note that f ′(x) = (x−1)+(x−2). The coefficients on b in (4.2.1) is precisely f ′(x)|x=αn .
As we always need α to be a simple zero in Hensel’s lemma, f ′(x)|x=αn 6= 0 in Fp. This is
how Hensel’s lemma is proved.
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Hint on Problem 2.2: (1) One can, for example, prove inductively that (1 + x)p
i − 1 is

divisible by pi+1 when x ∈ pZp.
(2) To see that

(
n
i

)
belongs to Zp, one can observe that when n ∈ N, this is true. As N is

dense in Zp, the same holds for n ∈ Zp.
(3) Again, one can first observe that this is true when n ∈ N, and use that N is dense in

Zp.

Hint on Problem 2.3: (3) To show the equality, one can proceed as follows: we know that
the equality (1 − x)n(1 − x)m = (1 − x)n+m holds whenever n,m ∈ N, and the same holds
for the power series version, as the power series really converges. Now in general, for m,n ∈
Zp, we can choose sequences of natural numbers m1,m2, . . . and n1, n2, . . . to converge to
m and n in Zp, respectively. Taking limit (using the previous problem) of the equality
(1− x)ni(1− x)mi = (1− x)ni+mi gives what we need.
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Hint on Problem 3.1: (3) comes from that for every nonzero vector v ∈ V , there exists
a ∈ Q×p such that ||av||′ ≤ 1.

(4) Take N sufficiently large so that ||ei||′ ≤ pN for every i.
(5) Suppose that such N does not exists. Then we have a sequence of integers c1, c2, · · · →
∞ and vectors

a
(i)
1 e1 + · · ·+ a(i)n en

with max1≤j≤n |a(i)j |p = p−ci and || · ||′-norm 1. Modify this by setting b
(i)
j := pcia

(i)
j . Then we

have a sequence of vectors

b
(i)
1 e1 + · · ·+ b(i)n en ∈ V

with || · ||′-norm going to zero, yet max1≤j≤n |b(i)j |p = 1.

As Znp is compact, the tuples (b
(i)
1 , . . . , b

(i)
n )i∈N admits a converging subsequence, which limit

(b1, . . . , bn). Now, on the one hand, as || · ||′ is bounded by the || · ||, we must have ||b1e1+ · · ·+
bnen||′ = 0 through the limit. On the other hand, in the subsequence, max1≤j≤n |b(i)j |p = 1
continues to hold, so max1≤j≤n |bj|p = 1; in particular not all bj are zero. This gives a vector
v = b1e1 + · · ·+ bnen whose || · ||′-norm is zero, yet v 6= 0, contradicting condition (c).
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Problem 4.1:
We directly apply the definition of Amice transform

Aµ1?µ2(T ) =

∫
Zp

(1 + T )zµ1 ? µ2(z)

=

∫
Zp

(1 + T )zµ1 ? µ2(z)

=

∫
Zp×Zp

(1 + T )x+yµ1(x)µ2(y)

=
(∫

Zp
(1 + T )xµ1(x)

)
·
(∫

Zp
(1 + T )yµ2(y)

)
= Aµ1(T ) · Aµ2(T ).

Problem 4.2: Use exactly the same argument with new functions:

f(t) =

∑N−1
i=1 χ(i)e(N−i)t

eNt − 1

and

Aµχ(T ) =

∑N−1
i=1 χ(i)(1 + T )N−i

(1 + T )N − 1
.


