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CM Theory

Let us begin with the observation, o�en a�ributed to Ramanujan, that

eπ
√

163 = 262537412640768743.99999999999925 . . .

Why is this so close to an integer? Answer comes from the theory of
complex multiplication, by looking at the j-function

j(q) = q−1 + 744 + 196884q + 21493760q2 + . . . q = e2πiz

This function satisfies

j
(
az + b
cz + d

)
= j(z), for all

(
a b
c d

)
∈ SL2(Z).

The values of this function at z ∈ K quadratic imaginary are called
singular moduli. They are always algebraic integers, e.g

j(
√
−1) = 1728

j(
√
−5) = 26 · 5 · (884

√
5 + 1975)

j(
√
−14) = 23

(
323 + 228

√
2 + (231 + 161

√
2)

√
2
√

2− 1
)3
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CM Theory

Let us explore the isogeny volcano
(Cfr. Pete Clark/Drew Sutherland)

j(
√
−5) generates Q(

√
5),

j(2
√
−5) generates Q(

√
1+
√

5
2 ),

…

Theorem (Complex multiplication)
All finite abelian extensions of K are (essentially) generated by

j(z) z ∈ K , exp(πiz) z ∈ Q .

Understand the K(j(τ)) (= ring class fields) and the Galois action on the
set of j(τ). Has many applications, e.g. proof of Euler’s conjecture:

p = x2 + 27y2 ⇐⇒
{

p ≡ 1 (mod 3) and
t3 − 2 ∈ Fp[t] has a root.
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CM Theory

A singular modulus is an integer if and only if argument generates an
order of class number one. There is a finite list! The maximal ones are:

Field EQ with CM by maximal order j(E)

Q(
√
−1) y2 = x3 + x 26 · 33

Q(
√
−2) y2 = x3 + x 26 · 53

Q(
√
−3) y2 + xy = x3 − x2 − 2x − 1 0

Q(
√
−7) y2 = x3 + 4x2 + 2x −33 · 53

Q(
√
−11) y2 + y = x3 − x2 − 7x + 10 −215

Q(
√
−19) y2 + y = x3 − 38x + 90 −215 · 33

Q(
√
−43) y2 + y = x3 − 860x + 9707 −218 · 33 · 53

Q(
√
−67) y2 + y = x3 − 7370x + 243528 −215 · 33 · 53 · 113

Q(
√
−163) y2 + y = x3 − 2174420x + 1234136692 −218 · 33 · 53 · 233 · 293

This explains the observation on our first slide!

−262537412640768000 = j
(

1 +
√
−163

2

)
= −eπ

√
163 + 744 + (very small).
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CM theory was believed to have reached satisfactory conclusion in early
20th century. Until Gross–Zagier got their hands on it! Observe

j
(

1 +
√
−67

2

)
− j
(

1 +
√
−163

2

)
= −215 · 33 · 53 · 113 + 218 · 33 · 53 · 233 · 293

= 215 · 37 · 53 · 72 · 13 · 139 · 331

Di�erences are very smooth! But wait… doesn’t ABC say this must be
rare? Luckily, there are only finitely many class number one orders!

Remark 1. This is the class number one problem, solved by Heegner by
finding all integral points on X+

ns(24). Amusing: Can also use X+
ns(13),

solved in Balakrishnan–Dogra–Müller–Tuitman–V. using p-adic heights.

Remark 2. Note that according to Gauß, real quadratic fields K/Q should
have class number one very o�en! Keep that in mind in what follows.
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CM Theory

Let τ1, τ2 be two CM points inH∞ = {z ∈ C : Im(z) > 0}.
Gross and Zagier (1985) find explicit formula for

Nm (j(τ1)− j(τ2)) ∈ Z

Algebraic proof: Uses CM elliptic curves! Its q-adic valuation is
given in terms of arithmetic intersection of embeddings

Q(τ1),Q(τ2) ↪→ B∞q = �at alg conductor∞q

Analytic proof: Fourier coe�icients of Hecke’s real analytic
Eisenstein series over F , a�ached to the character χ:

Q(τ1, τ2)

F

Q

Q(τ2)Q(τ1)

χ
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CM Theory

Real analytic Hilbert Eisenstein series Es(z1, z2) defined by Hecke:

∑
[a]∈Cl(∆1∆2)

χ(a)Nm(a)1+2s
′∑

(m,n)∈a2/U

y s
1y

s
2

(mz1 + n)(m′z2 + n′)|mz1 + n|2s|m′z2 + n′|2s

Gross–Zagier consider its diagonal restriction Es(z, z) and show

When s = 0, have Es(z, z) = 0,

The holomorphic projection of the first derivative(
∂

∂s
Es(z, z)

)∣∣∣∣hol
s=0

has Fourier coe�icients related to logNm (j(τ1)− j(τ2)).

The holomorphic projection must vanish!
⇒ formula for Nm (j(τ1)− j(τ2)).

Remark: Does not use CM elliptic curves!
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Linking numbers of knots

The work of Duke–Imamoḡlu–Tóth
Inspiration comes from work of Duke–Imamoḡlu–Tóth on linking numbers
of modular geodesics.

If γ ∈ SL2(Z) is hyperbolic, get associated knot

Kn(γ) ↪→ SL2(Z)\ SL2(R)

t 7→ SL2(Z)g
(

et

e−t

)
, where g−1γg = diagonal

Linking Kn(γ) and trefoil↔ Dedekind–Rademacher cocycle (Ghys)

Linking Kn(γ1) and Kn(γ2)↔ Knopp cocycle (DIT)
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I. The Dedekind–Rademacher cocycle

Consider E2, the Eisenstein series of weight 2, defined by

πi
6
E2(z) =

∑
m∈Z

∑
n∈Z

′ 1
(mz + n)2 .

It is nearly invariant under SL2(Z), in the sense that

(cz + d)−2E2

(
az + b
cz + d

)
= E2(z)− 12c

cz + d

The abstract map γ 7→ 12c/(cz + d) is a weight 2 cocycle for SL2(Z):

f : SL2(Z)→ O2, f (γ1γ2) = f (γ1)γ2 f (γ2)

These are classified up to equivalence by H1(SL2(Z),O2).
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Linking numbers of knots

I. The Dedekind–Rademacher cocycle
It li�s uniquely to a weight 0 cocycle:

0−→H1(SL2(Z),O)
d−→ H1(SL2(Z),O2)−→ 0

The Dedekind–Rademacher symbol Φ(γ) ∈ Z is defined by

log ∆(γz)− log ∆(z) = 6 log(−(cz + d)2) + 2πiΦ(γ).

since dlog∆(z) = E2(z), the unique li� is given by the right hand side!
When applied to a hyperbolic matrix γ with fixed point τ , we get

6 log(−(cz + d)2) + 2πiΦ(γ)

z = τ

y yz = i∞ (+ homog.)

12 log(fundamental unit) Link(Kn(γ), trefoil)
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II. The Knopp cocycle
The Knopp cocycle in Z 1(SL2(Z),O2) a�ached to an RM point τ is

γ 7−→
∑

w ∈ SL2(Z)τ

{∞ → γ∞} ∩ {w → w ′}
z − w

where the exponent is the intersection number of the geodesic from w ′ to
w with the geodesic from∞ to γ∞, and hence ±1 or 0.

In similar way, Duke–Imamoḡlu–Tóth extract linking Kn(γ1) and Kn(γ2).

Remark. An analogue of E2(z) for the Knopp cocycle was constructed in a
di�erent article of Duke–Imamoglu–Toth (2011). It’s a deep object.
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RM Theory

∞ versus p
Cannot evaluate j(z) at arguments in a real quadratic field K .

Naive issue:∞ is split in K .
Naive solution: Plenty of finite primes p are not split in K .

points? H∞ H2 H3 H5 H7 H11

Q(i) yes yes yes no yes yes
Q(
√

5) no yes yes yes yes no

Work over p-adic numbers (cfr. Liang Xiao’s course), where p is inert in K .
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With Henri Darmon, we upgrade linking number ideas to se�ing

Γ = SL2(Z[1/p])
M = Meromorphic functions on Hp = P1(Cp) \P1(Qp)

The dichotomy Dedekind–Rademacher / Knopp cocycle becomes:

(Darmon–Dasgupta 2006) Constructed p-adic invariants

JDR(τ) ∈ Cp .

Give p-units in ring class field of τ . E.g. p = 7 and τ = −17+
√

321
4 gives

74x6−20976x5−270624x4+526859689x3−649768224x2−120922465776x+716

Independent proofs by Darmon–Pozzi–V. /Dasgupta–Kakde (forthcoming).
Also purely archimedean variant by Charollois–Darmon, no proof.

(Darmon–V. 2020) Constructed p-adic invariants

Jp(τ1, τ2) ∈ Cp

for pair of RM points τ1, τ2 which appear to be good analogues of the
quantity J∞(τ1, τ2) = j(τ1)− j(τ2) appearing in Gross–Zagier.
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Let ∆1 = 13, then for below choices of p and τ consider the quantity

Jp

(
1 +
√

13
2

, τ

)
.

Can compute these numerically (this is not a proof!) and seem to get:

τ p = 11 p = 19 p = 59

2
√

2 3−4
√
−1

5
3−4
√
−1

5 1

3
√

2 11+21
√
−3

2·19
5−4
√
−6

11 1

4
√

2 57−176
√
−1

5·37
5−12
√
−1

13
3+4
√
−1

5

7
√

2 118393−8328
√
−14

52·59·83
93+95

√
−7

22·67
37+9
√
−7

22·11

8
√

2 1312−1425
√
−1

13·149
43+924

√
−1

52·37
3+4
√
−1

5

9
√

2 11387+12320
√
−3

192·67
43+4100

√
−6

112·83 1

Observe that for any pair of primes p, q there seems to be some relation

“ordp”(q-adic invariant) = “ordq”(p-adic invariant).
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(Gross–Zagier) Let τ1, τ2 be CM points, consider

J∞(τ1, τ2) = j(τ1)− j(τ2) ∈ Q

Related to real analytic Eisenstein family.

ordq J∞(τ1, τ2) = Intersection multiplicities

Q(τ1),Q(τ2) ↪→ B∞q.

(Darmon–V.) Let τ1, τ2 be RM points, construct

Jp(τ1, τ2)
?
∈ Q

Related to p-adic analytic families.

ordq Jp(τ1, τ2)
?
= Intersection multiplicities

Q(τ1),Q(τ2) ↪→ Bpq.
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Towards a proof?
Can relate real quadratic singular moduli to derivatives of p-adic families
of modular forms. Then have big (and exclusively p-adic) advantage:

p-Adic families of modular forms

l
Deformations of Galois representations

(Cfr. Jeremy Booher / David Savi�)

(With Darmon and Pozzi) Proof that ΘDR[τ ] ∈ OH[1/p]×.
Use deformation of Eisenstein series in weight (1, 1).

(With Darmon and Li) Proof that p-adic family through a certain
modular form of weight 3/2 is closely related to

Jp(τ1,D) =
∏

disc(τ2)=D

Jp(τ1, τ2)

Implies certain algebraicity results (in progress).
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And finally…

… a huge thanks to the organisers: Jennifer Balakrishnan, Keith

Conrad, Álvaro Lozano-Robledo, Christelle Vincent

as well as the lovely people at UConn

for a fantastic CTNT! Let us give them a huge round of applause‼
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