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FaltingsOs Theorem (O83)

Let C be a nice algebraic curve over | .
Then C(K) is inPnite only if genus (C) " 1.

C(k) = {P# C(k) : P = [x],wherex # k}
={P# C: k(P) = k}
What about {P# C: [k(P):! |" d}??
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Let C be a nice algebraic curve over | .

The curve C has inbnitely many degree O points
onlyif¢ 2777

| et's consider double covers of  $1.
Y2 = X(X %1)[X %2)(Xx %3)[X %4)(x %5)! (x %29 %1)
genus g( 2

Faltings's theorem &
C has Pnitely many k points ( k number Peld)

However, C has inbnitely many deg. 2 points!
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A degree Opoint X# C(1 )is B'-parametrized if there
isadegree Omap f: C) $*suchthat f(x)# $*(! ).

Otherwise. Kis [ -isolated .
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Depnition*: Let C be a nice algebraic curve over | .

A degree Opoint X# C(T )is 6'-parametrized if there
isadegree Omap f: C) $*suchthat f(x)# $*(! ).

Otherwise, kis b isolated .

X : Bl-parametrized
® : 5'-isolated
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Hilbert Irreducibility Theorem:

A degree Omap f: C) $? gives inpnitely
many degree 0, HSJ-parametrized points.

@O
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Are maps to B the only way we get
iInPnitely many degree d points?

Can run a similar argument with a map to a
genus 1 curve with inPnitely many I -points!




Debnition*: Let C be a nice algebraic curve over ! .

A degree Opoint X# C(! )is AV-parametrized if
X Is parametrized by a positive rank abelian variety.

Otherwise, kis AV-isolated .




Precise Debnition:  Let C be a nice algebraic curve/ ! .

A degree Opoint X # Cis AV-parametrized if
there Is a positive rank abelian variety

A* PicPCsuchthat [X] + A* WY(C).
Otherwise, Xk is AV-isolated .




A point X # Cis parametrized ifitis
B! OR AV-parametrized.

It Is Isolated If itis NOT parametrized,
.e., itis B AND AV-isolated.
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Let C be a nice algebraic curve over ! . The
curve C has inbnitely many degree O points
If and only If

there is a degree d pointthatis B or AV-
parametrized.

Can make a geometric "only if* statement using
"geometric shadows"
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FaltingsOs Theorem (0O91) # ! (BELOV)

Let C be a nice algebraic curve over ! . The
curve C has bnitely many degree O points
If and only If

every degree O point is isolated.

Probably the strongest statement that holds
without assumptions on the curve
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Often arise In towers. .

X4(13) °
/KO .- Ky(112)




How do isolated points behave In towers?

K,(18) '
NK(©Q e Ky(112)

Ky (11)
Ky(13)
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Let T: C ) D be a morphism of curves.
Let X # C be s.t.

degXx) = ded 1) +ded 1(X)).
Then

y $1%isolated& f(x) $1%isolated_
{ AV %isolated { AV %isolated



... Then

$1 Y%isolated o f(x) $1 %isolated

K |
{ AV %isolated { AV %isolated

X,(18) )
*. ‘/ ™ X:(9) XX X,(112)

L
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Theorem (BELOV)

Let T: C) D be a morphism of curves/ | .
Let X # C be s.t.
dedgXx) = ded 1) +ded 1(X)).

Then
» $1%isolated& f(x) $1%isolated_
{ AV %isolated { AV %isolated

Consequence: The presence of isolated
points can likely be detected low In the tower!
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pointson X,(n) ! Iso0. classes of
pairs (E,P), where Pisapointoforder Lon E

X,(11%)

X,(11)
- X,(13)
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Merel's Uniform Boundedness Theorem
(after Mazur, Kamienny)

Fix a positive integer 0. There exists a
constant B(d) s.t. for all number pPelds K/!
of degree O and all elliptic curves E/K,

HE(K)iors  B(d)
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Merel's Uniform Boundedness Theorem
(after Mazur, Kamienny)

Fix a positive integer 0. There exists a
constant C(d) such that for all n( C(d)

K# Xq(n) IsOlated& degx) > d

Upshot: isolated points in the tower are
computationally harder to detect



Theorem (BELOV)

Let T: C) D be a morphism of curves/ | .
Let X # C be s.t.
dedgXx) = ded 1) +ded 1(X)).

Then
» $1%isolated& f(x) $1%isolated_
{ AV %isolated { AV %isolated

Consequence: The presence of isolated
points can likely be detected low In the tower!
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