Isolated points on curves

Bianca Viray
University of Washington

I acknowledge that I live and work on the traditional territories of the Duwamish and Coast Salish peoples.

Isolated points on curves

Bianca Viray
University of Washington

Joint with A. Bourdon, Ö. Ejder, Y. Liu, F. Odumodu BELOV

Isolated points on curves

Bianca Viray
University of Washington

Joint with A. Bourdon, Ö. Ejder, Y. Liu, F. Odumodu BELOV

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}.
The curve C has infinitely many \mathbb{Q}-points only if genus $(C) \leq 1$.

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}.
The curve C has infinitely many \mathbb{Q}-points only if genus $(C) \leq 1$.

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}.
The curve C has infinitely many \mathbb{Q}-points only if genus $(C) \leq 1$.

Faltings's Theorem ('83)

Let C be a nice algebraic curve over a number field k. The curve C has infinitely many k-points only if genus $(C) \leq 1$.
"Geometry controls arithmetic"

Faltings's Theorem ('83)

Let C be a nice algebraic curve over a number field k. The curve C has infinitely many k-points only if genus $(C) \leq 1$.

Faltings's Theorem ('83)

Let C be a nice algebraic curve over a number field k. The curve C has infinitely many k-points only if genus $(C) \leq 1$.
$C(k)=\left\{P \in C(\bar{k}): P=\left[x_{i}\right]_{i=0}^{n}\right.$ where $\left.x_{i} \in k\right\}$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over a number field k. Then $C(k)$ is infinite only if genus $(C) \leq 1$.
$C(k)=\left\{P \in C(\bar{k}): P=\left[x_{i}\right]_{i=0}^{n}\right.$ where $\left.x_{i} \in k\right\}$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}. Then $C(k)$ is infinite only if genus $(C) \leq 1$.

$$
C(k)=\left\{P \in C(\bar{k}): P=\left[x_{i}\right]_{i=0}^{n} \text { where } x_{i} \in k\right\}
$$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}. Then $C(k)$ is infinite only if genus $(C) \leq 1$.

$$
\begin{aligned}
C(k) & =\left\{P \in C(\bar{k}): P=\left[x_{i}\right]_{i=0}^{n} \text { where } x_{i} \in k\right\} \\
& =\{P \in C: \mathbf{k}(P)=k\}
\end{aligned}
$$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}. Then $C(k)$ is infinite only if genus $(C) \leq 1$.

$$
\begin{aligned}
C(k) & =\left\{P \in C(\bar{k}): P=\left[x_{i}\right]_{i=0}^{n} \text { where } x_{i} \in k\right\} \\
& =\{P \in C: \mathbf{k}(P)=k\}
\end{aligned}
$$

What about $\{P \in C:[\mathbf{k}(P): \mathbb{Q}] \leq d\} ? ?$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}. Then $C(k)$ is infinite only if genus $(C) \leq 1$.

Definition: Let C be a nice curve over \mathbb{Q}. The set of degree d points on C is

$$
\{P \in C:[\mathbf{k}(P): \mathbb{Q}] \leq d\}
$$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}. Then $C(l)$ is infinite only if genus $(C) \leq 1$.

Definition: Let C be a nice curve over \mathbb{Q}. The set of degree d points on C is

$$
\{P \in C:[\mathbf{k}(P): \mathbb{Q}] \leq d\}
$$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}.
Then $C(l)$ is infinite only if genus $(C) \leq 1$. the set of degree d points on C

Definition: Let C be a nice curve over \mathbb{Q}. The set of degree d points on C is

$$
\{P \in C:[\mathbf{k}(P): \mathbb{Q}] \leq d\}
$$

Faltings's Theorem ('83)

Let C be a nice algebraic curve over \mathbb{Q}.
Then $C\left(\frac{l}{n}\right)$ is infinite only if ??? the set of degree d points on C

Definition: Let C be a nice curve over \mathbb{Q}. The set of degree d points on C is

$$
\{P \in C:[\mathbf{k}(P): \mathbb{Q}] \leq d\}
$$

Let C be a nice algebraic curve over \mathbb{Q}.

 The curve C has infinitely many degree d pointsonly if ????

Let C be a nice algebraic curve over \mathbb{Q}.

The curve C has infinitely many degree d points
only if ????

Let's consider double covers of \mathbb{P}^{1}.

Let C be a nice algebraic curve over \mathbb{Q}.

 The curve C has infinitely many degree d pointsonly if ????

Let's consider double covers of \mathbb{P}^{1}.

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5)
$$

genus 2

Let C be a nice algebraic curve over \mathbb{Q}.

 The curve C has infinitely many degree d pointsonly if ????

Let's consider double covers of \mathbb{P}^{1}.

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5)
$$

genus 2
Faltings's theorem \Rightarrow
C has finitely many \mathbb{Q} points

Let C be a nice algebraic curve over \mathbb{Q}.

 The curve C has infinitely many degree d pointsonly if ????

Let's consider double covers of \mathbb{P}^{1}.
$y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5)$
genus 2
Faltings's theorem \Rightarrow
C has finitely many k points (k number field)

Let C be a nice algebraic curve over \mathbb{Q}.

 The curve C has infinitely many degree d pointsonly if ????

Let's consider double covers of \mathbb{P}^{1}.
$y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5)$
genus 2
Faltings's theorem \Rightarrow
C has finitely many k points (k number field)
However, C has infinitely many deg. 2 points!

Let C be a nice algebraic curve over \mathbb{Q}.

 The curve C has infinitely many degree d pointsonly if ????

Let's consider double covers of \mathbb{P}^{1}.
$y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)$
genus $g \geq 2$
Faltings's theorem \Rightarrow
C has finitely many k points (k number field)
However, C has infinitely many deg. 2 points!

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

\downarrow

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

\downarrow

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

\downarrow

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

$$
\downarrow
$$

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

$$
y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5) \cdots(x-2 g-1)
$$

Definition*: Let C be a nice algebraic curve over \mathbb{Q}.
A degree d point $x \in C(\overline{\mathbb{Q}})$ is \mathbb{P}^{1}-parametrized if there is a degree d map $f: C \rightarrow \mathbb{P}^{1}$ such that $f(x) \in \mathbb{P}^{1}(\mathbb{Q})$. Otherwise, x is \mathbb{P}^{1}-isolated.

Definition*: Let C be a nice algebraic curve over \mathbb{Q}.
A degree d point $x \in C(\overline{\mathbb{Q}})$ is \mathbb{P}^{1}-parametrized if there is a degree d map $f: C \rightarrow \mathbb{P}^{1}$ such that $f(x) \in \mathbb{P}^{1}(\mathbb{Q})$. Otherwise, x is \mathbb{P}^{1}-isolated.
$\boldsymbol{X}: \mathbb{P}^{1}$-parametrized

Definition*: Let C be a nice algebraic curve over \mathbb{Q}.
A degree d point $x \in C(\overline{\mathbb{Q}})$ is \mathbb{P}^{1}-parametrized if there is a degree d map $f: C \rightarrow \mathbb{P}^{1}$ such that $f(x) \in \mathbb{P}^{1}(\mathbb{Q})$.
Otherwise, x is \mathbb{P}^{1}-isolated.
$\boldsymbol{X}: \mathbb{P}^{1}$-parametrized

- : \mathbb{P}^{1}-isolated

Hilbert Irreducibility Theorem:

A degree $d \operatorname{map} f: C \rightarrow \mathbb{P}^{1}$ gives infinitely many degree d, \mathbb{P}^{1}-parametrized points.

Are maps to \mathbb{P}^{1} the only way we get infinitely many degree d points?

Are maps to \mathbb{P}^{1} the only way we get infinitely many degree d points?

We only used that we have infinitely many rational points!

Are maps to \mathbb{P}^{1} the only way we get infinitely many degree d points?

Can run a similar argument with a map to a genus 1 curve with infinitely many \mathbb{Q}-points!

Definition*: Let C be a nice algebraic curve over \mathbb{Q}.
A degree d point $x \in C(\overline{\mathbb{Q}})$ is $A V$-parametrized if x is parametrized by a positive rank abelian variety. Otherwise, x is $A V$-isolated.

Precise Definition: Let C be a nice algebraic curve/ \mathbb{Q}.
A degree d point $x \in C$ is $A V$-parametrized if there is a positive rank abelian variety $A \subset \operatorname{Pic}^{0} C$ such that $[x]+A \subset W^{d}(C)$. Otherwise, x is $A V$-isolated.

A point $x \in C$ is parametrized if it is \mathbb{P}^{1} - OR $A V$-parametrized.

It is isolated if it is NOT parametrized, i.e., it is \mathbb{P}^{1} - AND $A V$-isolated.

Parametrized vs. Isolated

Parametrized vs. Isolated

Parametrized points are "better understood". They cast shadows that can be detected by geometric techniques.

Parametrized vs. Isolated

Parametrized points are "better understood". They cast shadows that can be detected by geometric techniques.

Isolated points

Parametrized vs. Isolated

Parametrized points are "better understood". They cast shadows that can be detected by geometric techniques.

Isolated points

Parametrized vs. Isolated

Parametrized points are "better understood". They cast shadows that can be detected by geometric techniques.

Isolated points

- There are only finitely many of them.

Parametrized vs. Isolated

Parametrized points are "better understood". They cast shadows that can be detected by geometric techniques.

Isolated points

- There are only finitely many of them.
- Guess: "Most" curves don't have any.

Parametrized vs. Isolated

Parametrized points are "better understood". They cast shadows that can be detected by geometric techniques.

Isolated points

- There are only finitely many of them.
- Guess: "Most" curves don't have any.

Faltings's Theorem ('91) $+\epsilon$ (BELOV)

Let C be a nice algebraic curve over \mathbb{Q}. The curve C has infinitely many degree d points if and only if
there is a degree d point that is \mathbb{P}^{1} - or $A V-$ parametrized.

Faltings's Theorem ('91) $+\epsilon$ (BELOV)

Let C be a nice algebraic curve over \mathbb{Q}. The curve C has infinitely many degree d points if and only if
there is a degree d point that is \mathbb{P}^{1} - or $A V-$ parametrized.

Faltings's Theorem ('91) $+\epsilon$ (BELOV)

Let C be a nice algebraic curve over \mathbb{Q}. The curve C has infinitely many degree d points if and only if
there is a degree d point that is \mathbb{P}^{1} - or $A V-$ parametrized.

Can make a geometric "only if" statement using "geometric shadows"

Faltings's Theorem ('91) $+\epsilon$ (BELOV)

Let C be a nice algebraic curve over \mathbb{Q}. The curve C has finitely many degree d points if and only if
every degree d point is isolated.

Faltings's Theorem ('91) $+\epsilon$ (BELOV)

Let C be a nice algebraic curve over \mathbb{Q}. The curve C has finitely many degree d points if and only if
every degree d point is isolated.

Probably the strongest statement that holds without assumptions on the curve

Let's focus on moduli spaces!

Let's focus on moduli spaces!

Often arise in towers.

How do isolated points behave in towers?

Let $f: C \rightarrow D$ be a morphism of curves.

Theorem (BELOV)

Let $f: C \rightarrow D$ be a morphism of curves.

Theorem (BELOV)

Let $f: C \rightarrow D$ be a morphism of curves.
Let $x \in C$ be s.t.

$$
\operatorname{deg}(x)=\operatorname{deg}(f) \cdot \operatorname{deg}(f(x))
$$

Theorem (BELOV)

Let $f: C \rightarrow D$ be a morphism of curves. Let $x \in C$ be s.t.

$$
\operatorname{deg}(x)=\operatorname{deg}(f) \cdot \operatorname{deg}(f(x))
$$

Then
$x\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array} \Rightarrow f(x)\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array}\right.\right.$.
... Then
$x\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array} \Rightarrow f(x)\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array}\right.\right.$.

Theorem (BELOV)

Let $f: C \rightarrow D$ be a morphism of curves $/ \mathbb{Q}$. Let $x \in C$ be s.t.

$$
\operatorname{deg}(x)=\operatorname{deg}(f) \cdot \operatorname{deg}(f(x))
$$

Then
$x\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array} \Rightarrow f(x)\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array}\right.\right.$.
Consequence: The presence of isolated points can likely be detected low in the tower!

(noncuspidal) points on $X_{1}(n) \leftrightarrow \rightarrow$ iso. classes of pairs (E, P), where P is a point of order n on E

Merel's Uniform Boundedness Theorem (after Mazur, Kamienny)

Fix a positive integer d. There exists a constant $B(d)$ s.t. for all number fields k / \mathbb{Q} of degree d and all elliptic curves E / k,

$$
\# E(k)_{\mathrm{tors}} \leq B(d)
$$

Consequence of
Merel's Uniform Boundedness Theorem (after Mazur, Kamienny)

Fix a positive integer d. There exists a constant $C(d)$ such that for all $n \geq C(d)$

$$
x \in X_{1}(n) \text { isolated } \Rightarrow \operatorname{deg}(x)>d
$$

Consequence of

Merel's Uniform Boundedness Theorem (after Mazur, Kamienny)

Fix a positive integer d. There exists a constant $C(d)$ such that for all $n \geq C(d)$

$$
x \in X_{1}(n) \text { isolated } \Rightarrow \operatorname{deg}(x)>d
$$

Upshot: isolated points in the tower are computationally harder to detect

Theorem (BELOV)

Let $f: C \rightarrow D$ be a morphism of curves $/ \mathbb{Q}$. Let $x \in C$ be s.t.

$$
\operatorname{deg}(x)=\operatorname{deg}(f) \cdot \operatorname{deg}(f(x))
$$

Then
$x\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array} \Rightarrow f(x)\left\{\begin{array}{l}\mathbb{P}^{1}-\text { isolated } \\ A V-\text { isolated }\end{array}\right.\right.$.
Consequence: The presence of isolated points can likely be detected low in the tower!

Consequences for $\left\{X_{1}(n)\right\}$

Consequences for $\left\{X_{1}(n)\right\}$

Non-CM isolated points on $\left\{X_{1}\left(2^{a} 3^{b} \cdots p^{n}\right)\right\}$ that correspond to elliptic

- curves over \mathbb{Q}

Theorem (BELOV): Non-CM isolated points on $\left\{X_{1}\left(2^{a} 3^{b} \cdots p^{n}\right)\right\}$ that correspond to elliptic

- curves over \mathbb{Q} can be detected below

Theorem (BELOV): Non-CM isolated points on $\left\{X_{1}\left(2^{a} 3^{b} \cdots p^{n}\right)\right\}$ that correspond to elliptic

- curves over \mathbb{Q} can be detected below
-

Theorem (BELOV): Non-CM isolated points on $\left\{X_{1}\left(2^{a} 3^{b} \cdots p^{n}\right)\right\}$ that correspond to elliptic

- curves over \mathbb{Q} can be detected below

