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Hilbert Irreducibility Theorem: 
A degree �  map �  gives infinitely 
many degree � , � -parametrized points.

d f : C → ℙ1
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Precise Definition: Let �  be a nice algebraic curve/� .   

A degree �  point �  is � -parametrized if 
there is a positive rank abelian variety 
�  such that � .

Otherwise, �  is � -isolated.
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A ⊂ Pic0 C [x] + A ⊂ Wd(C)
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A point �  is parametrized if it is 
� - OR � -parametrized.

It is isolated if it is NOT parametrized, 
i.e., it is � - AND � -isolated.

x ∈ C
ℙ1 AV

ℙ1 AV
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Faltings’s Theorem (’91) �  (BELOV)+ϵ

Can make a geometric "only if" statement using 
"geometric shadows"
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Faltings’s Theorem (’91) �  (BELOV)+ϵ

Let �  be a nice algebraic curve over � . The 
curve �  has finitely many degree �  points

if and only if
every degree �  point is isolated.

C ℚ
C d

d

Probably the strongest statement that holds 
without assumptions on the curve 
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X1(n) ↭
(E, P) P n E
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