3-adic images of Galois for elliptic curves over \mathbb{Q}

Jeremy Rouse

CTNT 2020 Conference University of Connecticut June 14, 2020

Acknowledgements

- The work I'm going to speak about is joint with Andrew Sutherland and David Zureick-Brown.

Definitions

- Let E / \mathbb{Q} be an elliptic curve and $E[N]=\{P \in E(\mathbb{C}): N P=0\}$.

Definitions

- Let E / \mathbb{Q} be an elliptic curve and $E[N]=\{P \in E(\mathbb{C}): N P=0\}$.
- Suppose now that K / \mathbb{Q} is a Galois extension, and $E[N] \subseteq E(K)$.

Definitions

- Let E / \mathbb{Q} be an elliptic curve and $E[N]=\{P \in E(\mathbb{C}): N P=0\}$.
- Suppose now that K / \mathbb{Q} is a Galois extension, and $E[N] \subseteq E(K)$.
- For each $\sigma \in \operatorname{Gal}(K / \mathbb{Q}),\left.\sigma\right|_{E[N]}$ is an automorphism of $E[N]$.

Definitions

- Let E / \mathbb{Q} be an elliptic curve and $E[N]=\{P \in E(\mathbb{C}): N P=0\}$.
- Suppose now that K / \mathbb{Q} is a Galois extension, and $E[N] \subseteq E(K)$.
- For each $\sigma \in \operatorname{Gal}(K / \mathbb{Q}),\left.\sigma\right|_{E[N]}$ is an automorphism of $E[N]$.
- Since $\operatorname{Aut}(E[N]) \cong \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, this gives a map

$$
\rho_{E, N}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

given by $\rho_{E, N}(\sigma)=\left.\sigma\right|_{E[N]}$.

Galois representations

- The properties of these Galois representations play a key role in many problems:

Galois representations

- The properties of these Galois representations play a key role in many problems:
- Proving the modularity of elliptic curves.

Galois representations

- The properties of these Galois representations play a key role in many problems:
- Proving the modularity of elliptic curves.
- The "modular method" for solving Diophantine equations.

Galois representations

- The properties of these Galois representations play a key role in many problems:
- Proving the modularity of elliptic curves.
- The "modular method" for solving Diophantine equations.
- The inverse Galois problem for $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$.

Properties of Galois representations

- If $\rho_{E, N}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, then

Properties of Galois representations

- If $\rho_{E, N}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, then
(i) $\operatorname{det} \circ \rho_{E, N}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$is surjective, and

Properties of Galois representations

- If $\rho_{E, N}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, then
(i) $\operatorname{det} \circ \rho_{E, N}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$is surjective, and
(ii) there is a matrix M in the image of $\rho_{E, N}$ that is conjugate in $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ to either $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ or $\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$.

Mazur's "Program B"

- Given a number field K and a subgroup $H \subseteq G_{2}(\mathbb{Z} / N \mathbb{Z})$, classify all elliptic curves E / K for which im $\rho_{E, N} \subseteq H$.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

- If p is a prime number, and $\rho_{E, p}$ is not surjective, then $\operatorname{im} \rho_{E, p}$ is contained in a maximal subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. The options are:

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

- If p is a prime number, and $\rho_{E, p}$ is not surjective, then $\operatorname{im} \rho_{E, p}$ is contained in a maximal subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. The options are:
(i) Borel subgroups, those of the shape $\left\{\left[\begin{array}{ll}* & * \\ 0 & *\end{array}\right]\right\}$,

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

- If p is a prime number, and $\rho_{E, p}$ is not surjective, then $\operatorname{im} \rho_{E, p}$ is contained in a maximal subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. The options are:
(i) Borel subgroups, those of the shape $\left\{\left[\begin{array}{cc}* & * \\ 0 & *\end{array}\right]\right\}$,
(ii) Normalizers of Cartan subgroups. Cartan subgroups are subgroups isomorphic to $\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}$(split) or $\mathbb{F}_{p^{2}}^{\times}($non-split $)$.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$

- If p is a prime number, and $\rho_{E, p}$ is not surjective, then im $\rho_{E, p}$ is contained in a maximal subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. The options are:
(i) Borel subgroups, those of the shape $\left\{\left[\begin{array}{ll}* & * \\ 0 & *\end{array}\right]\right\}$,
(ii) Normalizers of Cartan subgroups. Cartan subgroups are subgroups isomorphic to $\mathbb{F}_{p}^{\times} \times \mathbb{F}_{p}^{\times}$(split) or $\mathbb{F}_{p^{2}}^{\times}$(non-split).
(iii) Exceptional subgroups (groups whose image in $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ mod scalars is isomorphic to A_{4}, S_{4} or A_{5}).

Results

Theorem (Serre, 1972)

If $p \geq 17$ is prime, the image of $\rho_{E, p}$ cannot be contained in an exceptional subgroup.

Results

Theorem (Serre, 1972)

If $p \geq 17$ is prime, the image of $\rho_{E, p}$ cannot be contained in an exceptional subgroup.

Theorem (Mazur, 1978)

If E is a non-CM elliptic curve over \mathbb{Q}, the largest prime p for which $\rho_{E, p}$ lands in a Borel subgroup is 37.

Results

Theorem (Serre, 1972)

If $p \geq 17$ is prime, the image of $\rho_{E, p}$ cannot be contained in an exceptional subgroup.

Theorem (Mazur, 1978)

If E is a non-CM elliptic curve over \mathbb{Q}, the largest prime p for which $\rho_{E, p}$ lands in a Borel subgroup is 37.

Theorem (Bilu-Parent-Rebolledo, 2011, 2013)

If $p \geq 17$ and E is non-CM, the image cannot be contained in the normalizer of a split Cartan subgroup.

Serre's uniformity conjecture

Conjecture

If E / \mathbb{Q} is a non-CM elliptic curve and $p>37$, then $\rho_{E, p}$ is surjective.

p-adic representations

- Fix a prime p and an elliptic curve E. For each $n \geq 1$, we have a representation $\rho_{E, p^{n}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$.

p-adic representations

- Fix a prime p and an elliptic curve E. For each $n \geq 1$, we have a representation $\rho_{E, p^{n}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$.
- These representations are compatible, and can be packaged as a single $\rho_{E, p^{\infty}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{GL}_{2}\left(\mathbb{Z}_{p}\right)$.

p-adic representations

- Fix a prime p and an elliptic curve E. For each $n \geq 1$, we have a representation $\rho_{E, p^{n}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$.
- These representations are compatible, and can be packaged as a single $\rho_{E, p^{\infty}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$.
- Here $\mathbb{Z}_{p}=\lim \mathbb{Z} / p^{n} \mathbb{Z}$ is the ring of p-adic integers.

Goal

- Fix a (small) prime p, and determine all possibilities for $\operatorname{im} \rho_{E, p^{\infty}}$ for elliptic curves E / \mathbb{Q}.

Goal

- Fix a (small) prime p, and determine all possibilities for $\operatorname{im} \rho_{E, p^{\infty}}$ for elliptic curves E / \mathbb{Q}.

Theorem (R, Zureick-Brown, 2015)

If E / \mathbb{Q} is a non-CM elliptic curve, there are 1208 possibilities for the image of $\rho_{E, 2^{\infty}}$ in $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ (up to conjugacy). The index can be at most 96 and the image always contains all $M \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (mod 32).

Goal

- Fix a (small) prime p, and determine all possibilities for $\operatorname{im} \rho_{E, p^{\infty}}$ for elliptic curves E / \mathbb{Q}.

Theorem (R, Zureick-Brown, 2015)

If E / \mathbb{Q} is a non-CM elliptic curve, there are 1208 possibilities for the image of $\rho_{E, 2^{\infty}}$ in $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ (up to conjugacy). The index can be at most 96 and the image always contains all $M \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ $(\bmod 32)$.

- Álvaro Lozano-Robledo has handled the CM case (for all primes p and not just over \mathbb{Q}).

$p=3$

Theorem (R , Sutherland, Zureick-Brown)
If E / \mathbb{Q} is a non-CM elliptic curve, then

$p=3$

Theorem (R, Sutherland, Zureick-Brown)

If E / \mathbb{Q} is a non-CM elliptic curve, then

- im $\rho_{E, 3^{\infty}}$ is one of 47 subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ of level at most 27 and index at most 72, or

Theorem (R, Sutherland, Zureick-Brown)

If E / \mathbb{Q} is a non-CM elliptic curve, then

- im $\rho_{E, 3^{\infty}}$ is one of 47 subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ of level at most 27 and index at most 72, or
- the image of $\rho_{E, 3^{\infty}}$ is contained in the normalizer of the non-split Cartan modulo 27.

$p=3$

Theorem (R, Sutherland, Zureick-Brown)

If E / \mathbb{Q} is a non-CM elliptic curve, then

- im $\rho_{E, 3^{\infty}}$ is one of 47 subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ of level at most 27 and index at most 72, or
- the image of $\rho_{E, 3^{\infty}}$ is contained in the normalizer of the non-split Cartan modulo 27.
- The index of the image is either $1,2,3,4,6,8,9,12,18,24$, $27,36,72$, or a multiple of 243 .

Applications

- Torsion growth of elliptic curves E / \mathbb{Q} over number fields of degree $d \leq 23$ (by González-Jiménez and Najman).

Applications

- Torsion growth of elliptic curves E / \mathbb{Q} over number fields of degree $d \leq 23$ (by González-Jiménez and Najman).
- Classification of non-CM isolated points of odd degree with rational j-invariant on $X_{1}(n)$ (joint work with Bourdon, Gill, and Watson).

Applications

- Torsion growth of elliptic curves E / \mathbb{Q} over number fields of degree $d \leq 23$ (by González-Jiménez and Najman).
- Classification of non-CM isolated points of odd degree with rational j-invariant on $X_{1}(n)$ (joint work with Bourdon, Gill, and Watson).
- ℓ-adic Kummer theory for elliptic curves over \mathbb{Q} (work in progress with Cerchia, Lombardo, and Tronto).

The j-invariant

- If $E: y^{2}=x^{3}+A x+B$, define $j(E)=\frac{6912 A^{3}}{4 A^{3}+27 B^{2}}$.

The j-invariant

- If $E: y^{2}=x^{3}+A x+B$, define $j(E)=\frac{6912 A^{3}}{4 A^{3}+27 B^{2}}$.
- If E and E^{\prime} are isomorphic, then $j(E)=j\left(E^{\prime}\right)$.

The j-invariant

- If $E: y^{2}=x^{3}+A x+B$, define $j(E)=\frac{6912 A^{3}}{4 A^{3}+27 B^{2}}$.
- If E and E^{\prime} are isomorphic, then $j(E)=j\left(E^{\prime}\right)$.
- If E and E^{\prime} are elliptic curves over K and $j(E)=j\left(E^{\prime}\right)$, then E and E^{\prime} are isomorphic over some extension of K.

Background about modular curves

- Suppose that H is subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ that contains $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. Then there is a modular curve Y_{H}.

Background about modular curves

- Suppose that H is subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ that contains $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. Then there is a modular curve Y_{H}.
- If K is a number field, the elements of $Y_{H}(K)$ are in bijection with pairs $\left(E,[\iota]_{H}\right)$ where $[\iota]_{H}$ is an H-orbit of isomorphisms $\iota: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$.

Background about modular curves

- Suppose that H is subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ that contains $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. Then there is a modular curve Y_{H}.
- If K is a number field, the elements of $Y_{H}(K)$ are in bijection with pairs $\left(E,[\iota]_{H}\right)$ where $[\iota]_{H}$ is an H-orbit of isomorphisms $\iota: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$.
- The curve X_{H} is a projective curve obtained by adding finitely many "cusps" to Y_{H}.

Properties of modular curves

- The curve X_{H} is geometrically connected if det: $H \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$ is surjective.

Properties of modular curves

- The curve X_{H} is geometrically connected if det: $H \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$ is surjective.
- If E is an elliptic curve over a number field K with $j(E) \neq 0,1728$, then there is a point $\left(E,[\iota]_{H}\right) \in X_{H}(K)$ if and only if im $\rho_{E, N}$ is conjugate to a subgroup of H.

Properties of modular curves

- The curve X_{H} is geometrically connected if det: $H \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$ is surjective.
- If E is an elliptic curve over a number field K with $j(E) \neq 0,1728$, then there is a point $\left(E,[\iota]_{H}\right) \in X_{H}(K)$ if and only if im $\rho_{E, N}$ is conjugate to a subgroup of H.
- If $H_{1} \subseteq H_{2}$ are two subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, then there is a natural morphism $X_{H_{1}} \rightarrow X_{H_{2}}$.

Properties of modular curves

- The curve X_{H} is geometrically connected if det: $H \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$ is surjective.
- If E is an elliptic curve over a number field K with $j(E) \neq 0,1728$, then there is a point $\left(E,[\iota]_{H}\right) \in X_{H}(K)$ if and only if im $\rho_{E, N}$ is conjugate to a subgroup of H.
- If $H_{1} \subseteq H_{2}$ are two subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, then there is a natural morphism $X_{H_{1}} \rightarrow X_{H_{2}}$.
- We will often use the map $j: X_{H} \rightarrow X_{\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})} \cong \mathbb{P}^{1}$ taking a point $\left(E,[\iota]_{H}\right)$ to $j(E)$.

Example 1

- The modular curve $X_{0}(N)$ parametrizes elliptic curves with a cyclic N-isogeny. If $N=2$, this is the same as having a rational point of order 2.

Example 1

- The modular curve $X_{0}(N)$ parametrizes elliptic curves with a cyclic N-isogeny. If $N=2$, this is the same as having a rational point of order 2.
- The map $j: X_{0}(2) \rightarrow \mathbb{P}^{1}$ is given by $j=\frac{t^{3}}{t+16}$. The points $t=\infty$ and $t=-16$ are cusps.

Example 1

- The modular curve $X_{0}(N)$ parametrizes elliptic curves with a cyclic N-isogeny. If $N=2$, this is the same as having a rational point of order 2.
- The map $j: X_{0}(2) \rightarrow \mathbb{P}^{1}$ is given by $j=\frac{t^{3}}{t+16}$. The points $t=\infty$ and $t=-16$ are cusps.
- An elliptic curve E / \mathbb{Q} with $j(E) \neq 0,1728$ has a rational point of order 2 if and only if $j(E)=\frac{t^{3}}{t+16}$ for some $t \in \mathbb{Q}$ with $t \neq-16$.

Example 2

- The modular curve $X_{0}(11)$ is the elliptic curve

$$
y^{2}+y=x^{3}-x^{2}-10 x-20
$$

Example 2

- The modular curve $X_{0}(11)$ is the elliptic curve

$$
y^{2}+y=x^{3}-x^{2}-10 x-20
$$

- This curve has precisely 5 rational points. The point at infinity and ($16: 60: 1$) are cusps.

Example 2

- The modular curve $X_{0}(11)$ is the elliptic curve

$$
y^{2}+y=x^{3}-x^{2}-10 x-20
$$

- This curve has precisely 5 rational points. The point at infinity and ($16: 60: 1$) are cusps.
- The point (5:-6:1) maps to $j=-32768$, $(5: 5: 1)$ maps to $j=-24729001$ and $(16:-61: 1)$ maps to $j=-121$.

Examples 3 and 4

- The curve $X_{0}(27)$ is isomorphic to $x^{3}+y^{3}=z^{3}$.

Examples 3 and 4

- The curve $X_{0}(27)$ is isomorphic to $x^{3}+y^{3}=z^{3}$.
- The curve $X_{0}(64)$ is isomorphic to $x^{4}+y^{4}=z^{4}$.

Examples 3 and 4

- The curve $X_{0}(27)$ is isomorphic to $x^{3}+y^{3}=z^{3}$.
- The curve $X_{0}(64)$ is isomorphic to $x^{4}+y^{4}=z^{4}$.
- Aigner proved in 1934 that $x^{4}+y^{4}=z^{4}$ only has one non-trivial point in a quadratic field: $(1+\sqrt{-7})^{4}+(1-\sqrt{-7})^{4}=2^{4}$.

Examples 3 and 4

- The curve $X_{0}(27)$ is isomorphic to $x^{3}+y^{3}=z^{3}$.
- The curve $X_{0}(64)$ is isomorphic to $x^{4}+y^{4}=z^{4}$.
- Aigner proved in 1934 that $x^{4}+y^{4}=z^{4}$ only has one non-trivial point in a quadratic field: $(1+\sqrt{-7})^{4}+(1-\sqrt{-7})^{4}=2^{4}$.
- This point corresponds to an elliptic curve with CM by $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ that has an endomorphism of degree 2 .

Faltings's theorem

Theorem (Faltings, 1983)

If X / \mathbb{Q} is a curve with genus $g \geq 2$, then there are only finitely many rational points on X.

Faltings's theorem

Theorem (Faltings, 1983)

If X / \mathbb{Q} is a curve with genus $g \geq 2$, then there are only finitely many rational points on X.

- For $H \subseteq \mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$, the genus of X_{H} tends to infinity with the index of H in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.

Outline

- As a consequence, if the index of H in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ is high enough, then $X_{H}(\mathbb{Q})$ will be finite.

Outline

- As a consequence, if the index of H in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ is high enough, then $X_{H}(\mathbb{Q})$ will be finite.
(1) We enumerate subgroups of H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.

Outline

- As a consequence, if the index of H in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ is high enough, then $X_{H}(\mathbb{Q})$ will be finite.
(1) We enumerate subgroups of H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.
(2) We compute models for the modular curves X_{H}.

Outline

- As a consequence, if the index of H in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ is high enough, then $X_{H}(\mathbb{Q})$ will be finite.
(1) We enumerate subgroups of H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.
(2) We compute models for the modular curves X_{H}.
(3) We (try to) provably find all the rational points on the curves X_{H}.

Step 1 - Subgroups

- We start by finding all subgroups H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ with the following properties:

Step 1 - Subgroups

- We start by finding all subgroups H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ with the following properties:
- det : $H \rightarrow \mathbb{Z}_{3}^{\times}$is surjective,

Step 1 - Subgroups

- We start by finding all subgroups H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ with the following properties:
- det : $H \rightarrow \mathbb{Z}_{3}^{\times}$is surjective,
- H contains an element conjugate to $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Step 1 - Subgroups

- We start by finding all subgroups H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ with the following properties:
- det : $H \rightarrow \mathbb{Z}_{3}^{\times}$is surjective,
- H contains an element conjugate to $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- H contains $-I$,

Step 1 - Subgroups

- We start by finding all subgroups H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ with the following properties:
- det : $H \rightarrow \mathbb{Z}_{3}^{\times}$is surjective,
- H contains an element conjugate to $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- H contains $-l$,
- There is no subgroup K with $H \subseteq K$ so that X_{K} has genus ≥ 2.

Step 1 - Subgroups

- We start by finding all subgroups H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ with the following properties:
- det : $H \rightarrow \mathbb{Z}_{3}^{\times}$is surjective,
- H contains an element conjugate to $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- H contains $-I$,
- There is no subgroup K with $H \subseteq K$ so that X_{K} has genus ≥ 2.
- There are 80 conjugacy classes of such subgroups and the index can be as large as 729 .

Step 2 - Computing equations for X_{H}

- We start with $X_{1}=X_{0}(1)$. The map $j: X_{0}(1) \rightarrow \mathbb{P}^{1}$ is an isomorphism.

Step 2 - Computing equations for X_{H}

- We start with $X_{1}=X_{0}(1)$. The map $j: X_{0}(1) \rightarrow \mathbb{P}^{1}$ is an isomorphism.
- In most cases, if H is one of the subgroups in our list, we construct X_{H} as a cover of $X_{\tilde{H}}$ for a subgroup $H \subseteq \tilde{H}$ so $[\tilde{H}: H]$ is minimal.

Step 2 - The function field

- The function field $\mathbb{Q}(X(N)) / \mathbb{Q}(j)$ is a Galois extension with Galois group $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\{ \pm I\}$.

Step 2 - The function field

- The function field $\mathbb{Q}(X(N)) / \mathbb{Q}(j)$ is a Galois extension with Galois group $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\{ \pm I\}$.
- The elements of this function field can be identified with modular functions: functions $f:\{z \in \mathbb{C}: \Im z>0\} \rightarrow \mathbb{C}$ that satisfy

$$
f\left(\frac{a z+b}{c z+d}\right)=f(z) \text { for all } z \text { with } \Im z>0 \text { and }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma(N)
$$

Step 2 - Generators

- We wish to construct an element $h \in \mathbb{Q}(X(N)) / \mathbb{Q}(j)$ that is fixed by H.

Step 2 - Generators

- We wish to construct an element $h \in \mathbb{Q}(X(N)) / \mathbb{Q}(j)$ that is fixed by H.
- If $\vec{a}=(c, d) \in(\mathbb{Z} / N \mathbb{Z})^{2}$ is a vector, and $\operatorname{gcd}(c, d, N)=1$, then

$$
g_{\vec{a}}(z)=\frac{9}{\pi^{2}} \wp_{z}\left(\frac{c z+d}{N}\right)
$$

is a weight 2 modular form for $\Gamma(N)$ and ratios of these give modular functions.

Step 2 - The model

- We take linear combinations and products of the $g_{\vec{a}}(z)$ to obtain a modular form f for the subgroup H.

Step 2 - The model

- We take linear combinations and products of the $g_{\vec{a}}(z)$ to obtain a modular form f for the subgroup H.
- We also keep track of the images $f \mid M$ where M runs over coset representatives of H in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.

Step 2 - The model

- We take linear combinations and products of the $g_{\vec{a}}(z)$ to obtain a modular form f for the subgroup H.
- We also keep track of the images $f \mid M$ where M runs over coset representatives of H in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.
- We divide by some standard modular form to get a modular function h, and we compute the minimal polynomial of h over $\mathbb{Q}\left(X_{\tilde{H}}\right)$ to get a model of X_{H}.

Step 2 - Higher genus cases

- In higher genus cases, we use a variety of "modular forms tricks" to construct Fourier expansions of weight 2 cusp forms in $S_{2}\left(\Gamma(N), \mathbb{Q}\left(\zeta_{N}\right)\right)$ that are fixed by the action of H.

Step 2 - Higher genus cases

- In higher genus cases, we use a variety of "modular forms tricks" to construct Fourier expansions of weight 2 cusp forms in $S_{2}\left(\Gamma(N), \mathbb{Q}\left(\zeta_{N}\right)\right)$ that are fixed by the action of H.
- Eran Assaf and David Zywina have recently done some work about using modular symbols to compute bases for these spaces.

Step 2 - Higher genus cases

- In higher genus cases, we use a variety of "modular forms tricks" to construct Fourier expansions of weight 2 cusp forms in $S_{2}\left(\Gamma(N), \mathbb{Q}\left(\zeta_{N}\right)\right)$ that are fixed by the action of H.
- Eran Assaf and David Zywina have recently done some work about using modular symbols to compute bases for these spaces.
- These correspond to holomorphic differentials on X_{H} and from these, one can compute the canonical model of X_{H}.

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},
- 5 genus 1 curves (all with finitely many points),

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},
- 5 genus 1 curves (all with finitely many points),
- 4 genus two curves,

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},
- 5 genus 1 curves (all with finitely many points),
- 4 genus two curves,
- 3 genus three curves,

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},
- 5 genus 1 curves (all with finitely many points),
- 4 genus two curves,
- 3 genus three curves,
- 4 genus four curves,

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},
- 5 genus 1 curves (all with finitely many points),
- 4 genus two curves,
- 3 genus three curves,
- 4 genus four curves,
- 1 genus six curve,

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},
- 5 genus 1 curves (all with finitely many points),
- 4 genus two curves,
- 3 genus three curves,
- 4 genus four curves,
- 1 genus six curve,
- 1 genus 12 curve,

Step 2 - Data

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_{H} that cover it.
- In the end, we find
- 22 genus zero curves isomorphic to \mathbb{P}^{1},
- 5 genus 1 curves (all with finitely many points),
- 4 genus two curves,
- 3 genus three curves,
- 4 genus four curves,
- 1 genus six curve,
- 1 genus 12 curve,
- and 1 genus 43 curve.

Step 3 - Finding the rational points

- One method we use to provably find all the rational points on these curves is the theory of étale descent.

Step 3 - Finding the rational points

- One method we use to provably find all the rational points on these curves is the theory of étale descent.
- Given a curve C of genus g, we search for an étale triple cover $\phi: X \rightarrow C$. (Here X will have genus $3 g-2$.)

Step 3 - Finding the rational points

- One method we use to provably find all the rational points on these curves is the theory of étale descent.
- Given a curve C of genus g, we search for an étale triple cover $\phi: X \rightarrow C$. (Here X will have genus $3 g-2$.)
- There will be a finite collection of twists $\phi_{d}: X_{d} \rightarrow C$ so that

$$
\bigcup_{d} \phi_{d}\left(X_{d}(\mathbb{Q})\right)=C(\mathbb{Q})
$$

Step 3 - Example (1/3)

- The genus 6 curve is a Picard curve with model

$$
y^{3}=\frac{x\left(x^{3}-6 x^{2}+3 x+1\right)}{x^{3}+3 x^{2}-6 x+1}
$$

Step 3 - Example (1/3)

- The genus 6 curve is a Picard curve with model

$$
y^{3}=\frac{x\left(x^{3}-6 x^{2}+3 x+1\right)}{x^{3}+3 x^{2}-6 x+1}
$$

- We get a family of étale covers by taking $d \in\{1,3,9\}$ and letting X_{d} be the curve defined by

$$
\begin{aligned}
d y_{1}^{3} & =x\left(x^{3}-6 x^{2}+3 x+1\right) \\
d y_{2}^{3} & =x^{3}+3 x^{2}-6 x+1
\end{aligned}
$$

Step 3 - Example ($1 / 3$)

- The genus 6 curve is a Picard curve with model

$$
y^{3}=\frac{x\left(x^{3}-6 x^{2}+3 x+1\right)}{x^{3}+3 x^{2}-6 x+1}
$$

- We get a family of étale covers by taking $d \in\{1,3,9\}$ and letting X_{d} be the curve defined by

$$
\begin{aligned}
& d y_{1}^{3}=x\left(x^{3}-6 x^{2}+3 x+1\right) \\
& d y_{2}^{3}=x^{3}+3 x^{2}-6 x+1
\end{aligned}
$$

- For $d=3$, the second equation has no 3 -adic points.

Step 3 - Example (1/3)

- The genus 6 curve is a Picard curve with model

$$
y^{3}=\frac{x\left(x^{3}-6 x^{2}+3 x+1\right)}{x^{3}+3 x^{2}-6 x+1}
$$

- We get a family of étale covers by taking $d \in\{1,3,9\}$ and letting X_{d} be the curve defined by

$$
\begin{aligned}
d y_{1}^{3} & =x\left(x^{3}-6 x^{2}+3 x+1\right) \\
d y_{2}^{3} & =x^{3}+3 x^{2}-6 x+1
\end{aligned}
$$

- For $d=3$, the second equation has no 3 -adic points.
- For $d=9$, the first equation defines a genus 3 curve whose Jacobian has rank zero. This allows us to find the points on X_{9}.

Step 3 - Example (2/3)

- The $d=1$ case remains. We can construct étale covers of $y_{1}^{3}=x\left(x^{3}-6 x^{2}+3 x+1\right)$ of the form

$$
\begin{aligned}
e y_{2}^{3} & =x \\
e^{2} y_{2}^{3} & =x^{3}-6 x^{2}+3 x+1
\end{aligned}
$$

Step 3 - Example (2/3)

- The $d=1$ case remains. We can construct étale covers of $y_{1}^{3}=x\left(x^{3}-6 x^{2}+3 x+1\right)$ of the form

$$
\begin{aligned}
e y_{2}^{3} & =x \\
e^{2} y_{2}^{3} & =x^{3}-6 x^{2}+3 x+1
\end{aligned}
$$

- If $e=1$, the second equation defines a rank zero elliptic curve, while if $e=3$ the second equation has no 3 -adic points.

Step 3 - Example (2/3)

- The $d=1$ case remains. We can construct étale covers of $y_{1}^{3}=x\left(x^{3}-6 x^{2}+3 x+1\right)$ of the form

$$
\begin{aligned}
e y_{2}^{3} & =x \\
e^{2} y_{2}^{3} & =x^{3}-6 x^{2}+3 x+1
\end{aligned}
$$

- If $e=1$, the second equation defines a rank zero elliptic curve, while if $e=3$ the second equation has no 3 -adic points.
- So $e=9$. This means that $x^{3}-6 x^{2}+3 x+1$ is 3 times a cube $x^{3}+3 x^{2}-6 x+1$ is a cube. So we have a rational point on $y^{3}=9\left(x^{3}-6 x^{2}+3 x+1\right)\left(x^{3}+3 x^{2}-6 x+1\right)$.

Step 3 - Example (3/3)

- This curve $Y: y^{3}=9\left(x^{3}-6 x^{2}+3 x+1\right)\left(x^{3}+3 x^{2}-6 x+1\right)$ has genus 4 and its automorphism group is isomorphic to S_{3}.

Step 3 - Example (3/3)

- This curve $Y: y^{3}=9\left(x^{3}-6 x^{2}+3 x+1\right)\left(x^{3}+3 x^{2}-6 x+1\right)$ has genus 4 and its automorphism group is isomorphic to S_{3}.
- The quotient by the subgroup of order 3 is
$Z: y^{2}=x^{6}-2 x^{3}-3$. This genus 2 curve has Jacobian of rank zero and only three rational points.

Step 3 - Example (3/3)

- This curve $Y: y^{3}=9\left(x^{3}-6 x^{2}+3 x+1\right)\left(x^{3}+3 x^{2}-6 x+1\right)$ has genus 4 and its automorphism group is isomorphic to S_{3}.
- The quotient by the subgroup of order 3 is
$Z: y^{2}=x^{6}-2 x^{3}-3$. This genus 2 curve has Jacobian of rank zero and only three rational points.
- Pulling these back to the original curve allows us to find all of its rational points.

Hard case 1 - The genus 43 curve

- In 2006, Elkies computed a modular curve X_{H} parametrizing elliptic curves where $\rho_{E, 3}$ was surjective but $\rho_{E, 9}$ was not. This curve X_{H} is a degree 27 cover of the j-line and is isomorphic to \mathbb{P}^{1}.

Hard case 1 - The genus 43 curve

- In 2006, Elkies computed a modular curve X_{H} parametrizing elliptic curves where $\rho_{E, 3}$ was surjective but $\rho_{E, 9}$ was not. This curve X_{H} is a degree 27 cover of the j-line and is isomorphic to \mathbb{P}^{1}.
- There is a maximal subgroup $M \subseteq H$ of index 27 . If x is a rational point on X_{M}, then the elliptic curve corresponding to x must have $\rho_{E, 3}$ surjective, and $\mathbb{Q}(E[27])=\mathbb{Q}\left(E[3], \zeta_{27}\right)$.

Hard case 1 - The genus 43 curve

- In 2006, Elkies computed a modular curve X_{H} parametrizing elliptic curves where $\rho_{E, 3}$ was surjective but $\rho_{E, 9}$ was not. This curve X_{H} is a degree 27 cover of the j-line and is isomorphic to \mathbb{P}^{1}.
- There is a maximal subgroup $M \subseteq H$ of index 27 . If x is a rational point on X_{M}, then the elliptic curve corresponding to x must have $\rho_{E, 3}$ surjective, and $\mathbb{Q}(E[27])=\mathbb{Q}\left(E[3], \zeta_{27}\right)$.
- This is really weird, and suggests that the modular curve X_{M} might not have local points.

Hard case 1 - The model

- We compute the canonical model of this curve in \mathbb{P}^{42}. It's the vanishing set of 820 quadratic polynomials in 43 variables.

Hard case 1 - The model

- We compute the canonical model of this curve in \mathbb{P}^{42}. It's the vanishing set of 820 quadratic polynomials in 43 variables.
- The reduction mod 3 of this model has 19 points.

Hard case 1 - The model

- We compute the canonical model of this curve in \mathbb{P}^{42}. It's the vanishing set of 820 quadratic polynomials in 43 variables.
- The reduction mod 3 of this model has 19 points.
- If $P=\left(x_{1}: x_{2}: \cdots: x_{43}\right)$ is a point on X_{M} modulo 3 , then for every lift $\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}, \tilde{x}_{4}\right) \in(\mathbb{Z} / 9 \mathbb{Z})^{4}$ of $\left(x_{1}, \ldots, x_{4}\right)$, we create an ideal in the polynomial ring in 43 variables over \mathbb{Z} generated by the quadratic polynomials evaluated at $\tilde{x}_{1}, \ldots, \tilde{x}_{4}$, and 9 .

Hard case 1 - No local points

- We check to see if 3 is contained in that ideal. If it is, then there is no point on $X_{M}(\mathbb{Z} / 9 \mathbb{Z})$ whose first four coordinates are $\tilde{x}_{1}, \ldots, \tilde{x}_{4}$.

Hard case 1 - No local points

- We check to see if 3 is contained in that ideal. If it is, then there is no point on $X_{M}(\mathbb{Z} / 9 \mathbb{Z})$ whose first four coordinates are $\tilde{x}_{1}, \ldots, \tilde{x}_{4}$.
- In this way, we show that $X_{M}(\mathbb{Z} / 9 \mathbb{Z})$ is empty.

Hard case $2-X_{\text {ns }}^{+}(27)$

- The curve $X_{\mathrm{ns}}^{+}(27)$ is the modular curve corresponding to the normalizer of the non-split Cartan modulo 27. It has genus 12, at least 8 rational points, and the analytic rank of its Jacobian is 12.

Hard case $2-X_{\text {ns }}^{+}(27)$

- The curve $X_{\mathrm{ns}}^{+}(27)$ is the modular curve corresponding to the normalizer of the non-split Cartan modulo 27. It has genus 12, at least 8 rational points, and the analytic rank of its Jacobian is 12.
- Provably finding all the rational points on it would give an independent solution of the class number 1 problem.

Hard case $2-X_{\text {ns }}^{+}(27)$

- The curve $X_{\mathrm{ns}}^{+}(27)$ is the modular curve corresponding to the normalizer of the non-split Cartan modulo 27. It has genus 12, at least 8 rational points, and the analytic rank of its Jacobian is 12.
- Provably finding all the rational points on it would give an independent solution of the class number 1 problem.
- There is a map from $X_{\text {ns }}^{+}(27)$ to a modular curve X_{K} of genus 3, but it's not defined over \mathbb{Q}.

Hard case 2 - Genus 3 curve

- Let $\zeta=e^{2 \pi i / 3}$ and $L=\mathbb{Q}(\zeta)$. This curve is

$$
\begin{aligned}
& X_{K}: a^{4}+(\zeta-1) a^{3} b+(3 \zeta+2) a^{3} c-3 a^{2} c^{2}+(2 \zeta+2) a b^{3}-3 \zeta a b^{2} c \\
& +3 \zeta a b c^{2}-2 \zeta a c^{3}-\zeta b^{3} c+3 \zeta b^{2} c^{2}+(-\zeta+1) b c^{3}+(\zeta+1) c^{4}=0
\end{aligned}
$$

Hard case 2 - Genus 3 curve

- Let $\zeta=e^{2 \pi i / 3}$ and $L=\mathbb{Q}(\zeta)$. This curve is

$$
\begin{aligned}
& X_{K}: a^{4}+(\zeta-1) a^{3} b+(3 \zeta+2) a^{3} c-3 a^{2} c^{2}+(2 \zeta+2) a b^{3}-3 \zeta a b^{2} c \\
& +3 \zeta a b c^{2}-2 \zeta a c^{3}-\zeta b^{3} c+3 \zeta b^{2} c^{2}+(-\zeta+1) b c^{3}+(\zeta+1) c^{4}=0
\end{aligned}
$$

- The Jacobian of X_{K} has rank 6 over L and $X_{K}(L)$ has size at least 13. One of these points is non-CM.

Hard case 2 - Genus 3 curve

- Let $\zeta=e^{2 \pi i / 3}$ and $L=\mathbb{Q}(\zeta)$. This curve is $X_{K}: a^{4}+(\zeta-1) a^{3} b+(3 \zeta+2) a^{3} c-3 a^{2} c^{2}+(2 \zeta+2) a b^{3}-3 \zeta a b^{2} c$ $+3 \zeta a b c^{2}-2 \zeta a c^{3}-\zeta b^{3} c+3 \zeta b^{2} c^{2}+(-\zeta+1) b c^{3}+(\zeta+1) c^{4}=0$.
- The Jacobian of X_{K} has rank 6 over L and $X_{K}(L)$ has size at least 13. One of these points is non-CM.
- By looking at differences of L-rational points, we are able to find a point of order 3 in $\operatorname{Jac}\left(X_{K}\right)(L)$.

Hard case 2 - étale descent

- Using this, we can construct a family of étale triple covers $\left\{Y_{d}\right\}$ of X_{k}. Here $d=3^{a} \zeta^{b}$ for $0 \leq a, b \leq 2$.

Hard case 2 - étale descent

- Using this, we can construct a family of étale triple covers $\left\{Y_{d}\right\}$ of X_{K}. Here $d=3^{a} \zeta^{b}$ for $0 \leq a, b \leq 2$.
- Counting points on these étale triple covers strongly suggests that these genus 7 curves map to elliptic curves. In 8 of the 9 cases, the elliptic curve they map to has rank 0 or 1 .

Hard case 2 - étale descent

- Using this, we can construct a family of étale triple covers $\left\{Y_{d}\right\}$ of X_{K}. Here $d=3^{a} \zeta^{b}$ for $0 \leq a, b \leq 2$.
- Counting points on these étale triple covers strongly suggests that these genus 7 curves map to elliptic curves. In 8 of the 9 cases, the elliptic curve they map to has rank 0 or 1 .
- In the final case (which gets a lot of the L-points on X_{K}), the elliptic curve is $E: y^{2}=x^{3}-48$, and $E(L)$ has rank 2 .

Hard case 2 - Map to an elliptic curve

- By computing with this genus 7 curve over \mathbb{F}_{7}, we are able to find the map to the elliptic curve.

Hard case 2 - Map to an elliptic curve

- By computing with this genus 7 curve over \mathbb{F}_{7}, we are able to find the map to the elliptic curve.
- We write down the scheme Z that parametrizes maps from $Y \rightarrow E$, write down the mod 7 point on this scheme and use Hensel's lemma.

Hard case 2 - Map to an elliptic curve

- By computing with this genus 7 curve over \mathbb{F}_{7}, we are able to find the map to the elliptic curve.
- We write down the scheme Z that parametrizes maps from $Y \rightarrow E$, write down the mod 7 point on this scheme and use Hensel's lemma.
- We are able to "guess" a point in $Z(L)$ and in this way construct the map $\phi: Y \rightarrow E$.

Hard case 2 - One more étale cover

- Since E has $C M$, there is a 3-isogeny $\psi: E \rightarrow E$. Using this, we can compute the fiber product

Hard case 2 - One more étale cover

- Since E has $C M$, there is a 3-isogeny $\psi: E \rightarrow E$. Using this, we can compute the fiber product

- This is an étale triple cover of Y, which has genus 19. Our last hope was that this étale triple cover might map to an elliptic curve with rank ≤ 1.

Hard case 2 - One more étale cover

- Since E has $C M$, there is a 3-isogeny $\psi: E \rightarrow E$. Using this, we can compute the fiber product

- This is an étale triple cover of Y, which has genus 19. Our last hope was that this étale triple cover might map to an elliptic curve with rank ≤ 1.
- It doesn't. We computed the numerator of the zeta function of $Y \times_{E} E$ over \mathbb{F}_{4}, and the "new part" is irreducible.

Summary

- We (almost) classify the image of the 3-adic Galois representation $\rho_{E, 3^{\infty}}$ for non-CM elliptic curves E / \mathbb{Q}.

Summary

- We (almost) classify the image of the 3-adic Galois representation $\rho_{E, 3^{\infty}}$ for non-CM elliptic curves E / \mathbb{Q}.
- We write down the possible images $H \subseteq \mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ and compute equations for the modular curves X_{H}.

Summary

- We (almost) classify the image of the 3-adic Galois representation $\rho_{E, 3^{\infty}}$ for non-CM elliptic curves E / \mathbb{Q}.
- We write down the possible images $H \subseteq \mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ and compute equations for the modular curves X_{H}.
- We find the rational points on all of these modular curves, except $X_{\text {ns }}^{+}(27)$.

