3-adic images of Galois for elliptic curves over ${\mathbb Q}$

Jeremy Rouse

CTNT 2020 Conference University of Connecticut June 14, 2020

Acknowledgements

• The work I'm going to speak about is joint with Andrew Sutherland and David Zureick-Brown.

• Let E/\mathbb{Q} be an elliptic curve and $E[N] = \{P \in E(\mathbb{C}) : NP = 0\}.$

- Let E/\mathbb{Q} be an elliptic curve and $E[N] = \{P \in E(\mathbb{C}) : NP = 0\}.$
- Suppose now that K/\mathbb{Q} is a Galois extension, and $E[N] \subseteq E(K)$.

- Let E/\mathbb{Q} be an elliptic curve and $E[N] = \{P \in E(\mathbb{C}) : NP = 0\}.$
- Suppose now that K/\mathbb{Q} is a Galois extension, and $E[N] \subseteq E(K)$.
- For each $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$, $\sigma|_{E[N]}$ is an automorphism of E[N].

イロト イポト イヨト イヨト 二日

- Let E/\mathbb{Q} be an elliptic curve and $E[N] = \{P \in E(\mathbb{C}) : NP = 0\}.$
- Suppose now that K/\mathbb{Q} is a Galois extension, and $E[N] \subseteq E(K)$.
- For each $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$, $\sigma|_{E[N]}$ is an automorphism of E[N].
- Since $\operatorname{Aut}(E[N]) \cong \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, this gives a map

 $\rho_{E,N} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$

given by $\rho_{E,N}(\sigma) = \sigma|_{E[N]}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

• The properties of these Galois representations play a key role in many problems:

- The properties of these Galois representations play a key role in many problems:
 - Proving the modularity of elliptic curves.

- The properties of these Galois representations play a key role in many problems:
 - Proving the modularity of elliptic curves.
 - The "modular method" for solving Diophantine equations.

- The properties of these Galois representations play a key role in many problems:
 - Proving the modularity of elliptic curves.
 - The "modular method" for solving Diophantine equations.
 - The inverse Galois problem for $PSL_2(\mathbb{F}_p)$.

Properties of Galois representations

• If $\rho_{E,N}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, then

Properties of Galois representations

• If $\rho_{E,N} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, then

(i) det $\circ \rho_{E,N}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective, and

Properties of Galois representations

- If $\rho_{E,N}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, then
- (i) det $\circ \rho_{E,N} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective, and

(ii) there is a matrix M in the image of $\rho_{E,N}$ that is conjugate in $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ to either $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

Mazur's "Program B"

• Given a number field K and a subgroup $H \subseteq \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, classify all elliptic curves E/K for which im $\rho_{E,N} \subseteq H$.

• If p is a prime number, and $\rho_{E,p}$ is not surjective, then im $\rho_{E,p}$ is contained in a maximal subgroup of $GL_2(\mathbb{F}_p)$. The options are:

- If p is a prime number, and $\rho_{E,p}$ is not surjective, then im $\rho_{E,p}$ is contained in a maximal subgroup of $GL_2(\mathbb{F}_p)$. The options are:
- (i) Borel subgroups, those of the shape $\left\{ \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \right\}$,

• If p is a prime number, and $\rho_{E,p}$ is not surjective, then im $\rho_{E,p}$ is contained in a maximal subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$. The options are:

(i) Borel subgroups, those of the shape
$$\left\{ \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \right\}$$
,

(ii) Normalizers of Cartan subgroups. Cartan subgroups are subgroups isomorphic to $\mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$ (split) or $\mathbb{F}_{p^2}^{\times}$ (non-split).

• If p is a prime number, and $\rho_{E,p}$ is not surjective, then im $\rho_{E,p}$ is contained in a maximal subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$. The options are:

(i) Borel subgroups, those of the shape
$$\left\{ \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \right\}$$
,

(ii) Normalizers of Cartan subgroups. Cartan subgroups are subgroups isomorphic to $\mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$ (split) or $\mathbb{F}_{p^2}^{\times}$ (non-split).

(iii) Exceptional subgroups (groups whose image in $GL_2(\mathbb{F}_p)$ mod scalars is isomorphic to A_4 , S_4 or A_5).

(日本) (日本) (日本)

Results

Theorem (Serre, 1972)

If $p \ge 17$ is prime, the image of $\rho_{E,p}$ cannot be contained in an exceptional subgroup.

イロン 不良 とくほど 不良 とう

E

Results

Theorem (Serre, 1972)

If $p \ge 17$ is prime, the image of $\rho_{E,p}$ cannot be contained in an exceptional subgroup.

Theorem (Mazur, 1978)

If E is a non-CM elliptic curve over \mathbb{Q} , the largest prime p for which $\rho_{E,p}$ lands in a Borel subgroup is 37.

Results

Theorem (Serre, 1972)

If $p \ge 17$ is prime, the image of $\rho_{E,p}$ cannot be contained in an exceptional subgroup.

Theorem (Mazur, 1978)

If E is a non-CM elliptic curve over \mathbb{Q} , the largest prime p for which $\rho_{E,p}$ lands in a Borel subgroup is 37.

Theorem (Bilu-Parent-Rebolledo, 2011, 2013)

If $p \ge 17$ and E is non-CM, the image cannot be contained in the normalizer of a split Cartan subgroup.

イロト イポト イヨト イヨト

Introduction Modular curves

Serre's uniformity conjecture

Conjecture

If E/\mathbb{Q} is a non-CM elliptic curve and p > 37, then $\rho_{E,p}$ is surjective.

イロト イポト イヨト イヨト

p-adic representations

• Fix a prime p and an elliptic curve E. For each $n \ge 1$, we have a representation $\rho_{E,p^n} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$

p-adic representations

- Fix a prime p and an elliptic curve E. For each $n \ge 1$, we have a representation $\rho_{E,p^n} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$
- These representations are compatible, and can be packaged as a single $\rho_{E,p^{\infty}}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}_p)$.

p-adic representations

- Fix a prime p and an elliptic curve E. For each $n \ge 1$, we have a representation $\rho_{E,p^n} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$
- These representations are compatible, and can be packaged as a single $\rho_{E,p^{\infty}}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}_p)$.
- Here $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \mathbb{Z}$ is the ring of *p*-adic integers.

• Fix a (small) prime p, and determine all possibilities for im $\rho_{E,p^{\infty}}$ for elliptic curves E/\mathbb{Q} .

イロト イヨト イヨト イヨト

• Fix a (small) prime p, and determine all possibilities for $\operatorname{im} \rho_{E,p^{\infty}}$ for elliptic curves E/\mathbb{Q} .

Theorem (R, Zureick-Brown, 2015)

If E/\mathbb{Q} is a non-CM elliptic curve, there are 1208 possibilities for the image of $\rho_{E,2^{\infty}}$ in $\operatorname{GL}_2(\mathbb{Z}_2)$ (up to conjugacy). The index can be at most 96 and the image always contains all $M \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (mod 32).

• Fix a (small) prime p, and determine all possibilities for $\operatorname{im} \rho_{E,p^{\infty}}$ for elliptic curves E/\mathbb{Q} .

Theorem (R, Zureick-Brown, 2015)

If E/\mathbb{Q} is a non-CM elliptic curve, there are 1208 possibilities for the image of $\rho_{E,2^{\infty}}$ in $\operatorname{GL}_2(\mathbb{Z}_2)$ (up to conjugacy). The index can be at most 96 and the image always contains all $M \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (mod 32).

• Álvaro Lozano-Robledo has handled the CM case (for all primes p and not just over \mathbb{Q}).

不得下 イヨト イヨト

If E/\mathbb{Q} is a non-CM elliptic curve, then

イロト イヨト イヨト イヨト

If E/\mathbb{Q} is a non-CM elliptic curve, then

• im $\rho_{E,3^{\infty}}$ is one of 47 subgroups of $GL_2(\mathbb{Z}_3)$ of level at most 27 and index at most 72, or

If E/\mathbb{Q} is a non-CM elliptic curve, then

- im $\rho_{E,3^{\infty}}$ is one of 47 subgroups of $GL_2(\mathbb{Z}_3)$ of level at most 27 and index at most 72, or
- the image of ρ_{E,3∞} is contained in the normalizer of the non-split Cartan modulo 27.

If E/\mathbb{Q} is a non-CM elliptic curve, then

- im $\rho_{E,3^{\infty}}$ is one of 47 subgroups of $GL_2(\mathbb{Z}_3)$ of level at most 27 and index at most 72, or
- the image of ρ_{E,3∞} is contained in the normalizer of the non-split Cartan modulo 27.

• The index of the image is either 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 72, or a multiple of 243.

Applications

• Torsion growth of elliptic curves E/\mathbb{Q} over number fields of degree $d \leq 23$ (by González-Jiménez and Najman).

イロト イヨト イヨト

Applications

• Torsion growth of elliptic curves E/\mathbb{Q} over number fields of degree $d \leq 23$ (by González-Jiménez and Najman).

• Classification of non-CM isolated points of odd degree with rational *j*-invariant on $X_1(n)$ (joint work with Bourdon, Gill, and Watson).

Applications

• Torsion growth of elliptic curves E/\mathbb{Q} over number fields of degree $d \leq 23$ (by González-Jiménez and Najman).

• Classification of non-CM isolated points of odd degree with rational *j*-invariant on $X_1(n)$ (joint work with Bourdon, Gill, and Watson).

• ℓ -adic Kummer theory for elliptic curves over \mathbb{Q} (work in progress with Cerchia, Lombardo, and Tronto).

The *j*-invariant

• If
$$E: y^2 = x^3 + Ax + B$$
, define $j(E) = \frac{6912A^3}{4A^3 + 27B^2}$.

イロト イロト イヨト イヨト

æ
The *j*-invariant

• If
$$E: y^2 = x^3 + Ax + B$$
, define $j(E) = \frac{6912A^3}{4A^3 + 27B^2}$.

• If E and E' are isomorphic, then j(E) = j(E').

イロト イヨト イヨト イヨト

The *j*-invariant

• If
$$E: y^2 = x^3 + Ax + B$$
, define $j(E) = \frac{6912A^3}{4A^3 + 27B^2}$.

- If E and E' are isomorphic, then j(E) = j(E').
- If E and E' are elliptic curves over K and j(E) = j(E'), then E and E' are isomorphic over some extension of K.

Background about modular curves

• Suppose that H is subgroup of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ that contains $\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$. Then there is a modular curve Y_H .

Background about modular curves

- Suppose that *H* is subgroup of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ that contains $\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$. Then there is a modular curve Y_H .
- If K is a number field, the elements of $Y_H(K)$ are in bijection with pairs $(E, [\iota]_H)$ where $[\iota]_H$ is an H-orbit of isomorphisms $\iota : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2$.

(日) (日) (日) (日)

Background about modular curves

- Suppose that H is subgroup of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ that contains $\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$. Then there is a modular curve Y_H .
- If K is a number field, the elements of $Y_H(K)$ are in bijection with pairs $(E, [\iota]_H)$ where $[\iota]_H$ is an H-orbit of isomorphisms $\iota : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2$.
- The curve X_H is a projective curve obtained by adding finitely many "cusps" to Y_H .

(本部) (本語) (本語) (二語

• The curve X_H is geometrically connected if det : $H \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective.

(1日) (1日) (日)

• The curve X_H is geometrically connected if det : $H \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective.

• If *E* is an elliptic curve over a number field *K* with $j(E) \neq 0,1728$, then there is a point $(E, [\iota]_H) \in X_H(K)$ if and only if im $\rho_{E,N}$ is conjugate to a subgroup of *H*.

• The curve X_H is geometrically connected if det : $H \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective.

• If *E* is an elliptic curve over a number field *K* with $j(E) \neq 0,1728$, then there is a point $(E, [\iota]_H) \in X_H(K)$ if and only if im $\rho_{E,N}$ is conjugate to a subgroup of *H*.

• If $H_1 \subseteq H_2$ are two subgroups of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, then there is a natural morphism $X_{H_1} \to X_{H_2}$.

• The curve X_H is geometrically connected if det : $H \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective.

• If *E* is an elliptic curve over a number field *K* with $j(E) \neq 0,1728$, then there is a point $(E, [\iota]_H) \in X_H(K)$ if and only if im $\rho_{E,N}$ is conjugate to a subgroup of *H*.

• If $H_1 \subseteq H_2$ are two subgroups of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, then there is a natural morphism $X_{H_1} \to X_{H_2}$.

• We will often use the map $j: X_H \to X_{\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})} \cong \mathbb{P}^1$ taking a point $(E, [\iota]_H)$ to j(E).

• The modular curve $X_0(N)$ parametrizes elliptic curves with a cyclic *N*-isogeny. If N = 2, this is the same as having a rational point of order 2.

- The modular curve $X_0(N)$ parametrizes elliptic curves with a cyclic *N*-isogeny. If N = 2, this is the same as having a rational point of order 2.
- The map $j: X_0(2) \to \mathbb{P}^1$ is given by $j = \frac{t^3}{t+16}$. The points $t = \infty$ and t = -16 are cusps.

- The modular curve $X_0(N)$ parametrizes elliptic curves with a cyclic *N*-isogeny. If N = 2, this is the same as having a rational point of order 2.
- The map $j: X_0(2) \to \mathbb{P}^1$ is given by $j = \frac{t^3}{t+16}$. The points $t = \infty$ and t = -16 are cusps.
- An elliptic curve E/\mathbb{Q} with $j(E) \neq 0,1728$ has a rational point of order 2 if and only if $j(E) = \frac{t^3}{t+16}$ for some $t \in \mathbb{Q}$ with $t \neq -16$.

(日本) (日本) (日本)

• The modular curve $X_0(11)$ is the elliptic curve

$$y^2 + y = x^3 - x^2 - 10x - 20$$

イロト イヨト イヨト イヨト

• The modular curve $X_0(11)$ is the elliptic curve

$$y^2 + y = x^3 - x^2 - 10x - 20.$$

• This curve has precisely 5 rational points. The point at infinity and (16:60:1) are cusps.

• The modular curve $X_0(11)$ is the elliptic curve

$$y^2 + y = x^3 - x^2 - 10x - 20.$$

• This curve has precisely 5 rational points. The point at infinity and (16:60:1) are cusps.

• The point (5:-6:1) maps to j = -32768, (5:5:1) maps to j = -24729001 and (16:-61:1) maps to j = -121.

• The curve $X_0(27)$ is isomorphic to $x^3 + y^3 = z^3$.

・ロト ・回ト ・ヨト ・ヨト

E

- The curve $X_0(27)$ is isomorphic to $x^3 + y^3 = z^3$.
- The curve $X_0(64)$ is isomorphic to $x^4 + y^4 = z^4$.

イロト イヨト イヨト イヨト

- The curve $X_0(27)$ is isomorphic to $x^3 + y^3 = z^3$.
- The curve $X_0(64)$ is isomorphic to $x^4 + y^4 = z^4$.
- Aigner proved in 1934 that $x^4 + y^4 = z^4$ only has one non-trivial point in a quadratic field: $(1 + \sqrt{-7})^4 + (1 \sqrt{-7})^4 = 2^4$.

- The curve $X_0(27)$ is isomorphic to $x^3 + y^3 = z^3$.
- The curve $X_0(64)$ is isomorphic to $x^4 + y^4 = z^4$.
- Aigner proved in 1934 that $x^4 + y^4 = z^4$ only has one non-trivial point in a quadratic field: $(1 + \sqrt{-7})^4 + (1 \sqrt{-7})^4 = 2^4$.
- This point corresponds to an elliptic curve with CM by $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ that has an endomorphism of degree 2.

Faltings's theorem

Theorem (Faltings, 1983)

If X/\mathbb{Q} is a curve with genus $g \ge 2$, then there are only finitely many rational points on X.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Faltings's theorem

Theorem (Faltings, 1983)

If X/\mathbb{Q} is a curve with genus $g \ge 2$, then there are only finitely many rational points on X.

• For $H \subseteq \operatorname{GL}_2(\mathbb{Z}_3)$, the genus of X_H tends to infinity with the index of H in $\operatorname{GL}_2(\mathbb{Z}_3)$.

• As a consequence, if the index of H in $GL_2(\mathbb{Z}_3)$ is high enough, then $X_H(\mathbb{Q})$ will be finite.

・ロト ・回ト ・ヨト ・ヨト

E

• As a consequence, if the index of H in $GL_2(\mathbb{Z}_3)$ is high enough, then $X_H(\mathbb{Q})$ will be finite.

• We enumerate subgroups of H of $GL_2(\mathbb{Z}_3)$.

(1日) (日) (日)

• As a consequence, if the index of H in $GL_2(\mathbb{Z}_3)$ is high enough, then $X_H(\mathbb{Q})$ will be finite.

- We enumerate subgroups of H of $GL_2(\mathbb{Z}_3)$.
- **2** We compute models for the modular curves X_H .

• As a consequence, if the index of H in $GL_2(\mathbb{Z}_3)$ is high enough, then $X_H(\mathbb{Q})$ will be finite.

- We enumerate subgroups of H of $GL_2(\mathbb{Z}_3)$.
- **2** We compute models for the modular curves X_H .
- We (try to) provably find all the rational points on the curves X_{H} .

• We start by finding all subgroups H of $\operatorname{GL}_2(\mathbb{Z}_3)$ with the following properties:

イロン 不良 とくほど 不良 とう

E

• We start by finding all subgroups H of $\operatorname{GL}_2(\mathbb{Z}_3)$ with the following properties:

• det : $H \to \mathbb{Z}_3^{\times}$ is surjective,

イロン 不良 とくほど 不良 とう

E

• We start by finding all subgroups H of $\mathrm{GL}_2(\mathbb{Z}_3)$ with the following properties:

• det : $H \to \mathbb{Z}_3^{\times}$ is surjective,

• *H* contains an element conjugate to

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• We start by finding all subgroups H of $\mathrm{GL}_2(\mathbb{Z}_3)$ with the following properties:

- det : $H \to \mathbb{Z}_3^{\times}$ is surjective,
- *H* contains an element conjugate to $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$

• We start by finding all subgroups H of $\mathrm{GL}_2(\mathbb{Z}_3)$ with the following properties:

- det : $H \to \mathbb{Z}_3^{\times}$ is surjective,
- *H* contains an element conjugate to $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$
- → H contains −I,
- There is no subgroup K with $H \subseteq K$ so that X_K has genus ≥ 2 .

• We start by finding all subgroups H of $\operatorname{GL}_2(\mathbb{Z}_3)$ with the following properties:

• det : $H \to \mathbb{Z}_3^{\times}$ is surjective,

• *H* contains an element conjugate to $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$

 → H contains −I,

• There is no subgroup K with
$$H \subseteq K$$
 so that X_K has genus ≥ 2 .

• There are 80 conjugacy classes of such subgroups and the index can be as large as 729.

(日本) (日本) (日本)

Step 2 - Computing equations for X_H

• We start with $X_1 = X_0(1)$. The map $j : X_0(1) \to \mathbb{P}^1$ is an isomorphism.

イロン 不得 とくほど 不良 とうほ

Step 2 - Computing equations for X_H

- We start with $X_1 = X_0(1)$. The map $j : X_0(1) \to \mathbb{P}^1$ is an isomorphism.
- In most cases, if H is one of the subgroups in our list, we construct X_H as a cover of $X_{\tilde{H}}$ for a subgroup $H \subseteq \tilde{H}$ so $[\tilde{H} : H]$ is minimal.

Step 2 - The function field

• The function field $\mathbb{Q}(X(N))/\mathbb{Q}(j)$ is a Galois extension with Galois group $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm I\}$.

イロン 不良 とくほど 不良 とう

Step 2 - The function field

- The function field $\mathbb{Q}(X(N))/\mathbb{Q}(j)$ is a Galois extension with Galois group $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm I\}$.
- The elements of this function field can be identified with modular functions: functions $f : \{z \in \mathbb{C} : \Im z > 0\} \rightarrow \mathbb{C}$ that satisfy

$$f\left(rac{az+b}{cz+d}
ight)=f(z) ext{ for all } z ext{ with } \Im z>0 ext{ and } \begin{bmatrix} a & b \\ c & d \end{bmatrix}\in \Gamma(N).$$

Step 2 - Generators

• We wish to construct an element $h \in \mathbb{Q}(X(N))/\mathbb{Q}(j)$ that is fixed by H.

・ロト ・回ト ・ヨト ・ヨト

Э
Step 2 - Generators

- We wish to construct an element $h \in \mathbb{Q}(X(N))/\mathbb{Q}(j)$ that is fixed by H.
- If $\vec{a} = (c, d) \in (\mathbb{Z}/N\mathbb{Z})^2$ is a vector, and $\gcd(c, d, N) = 1$, then

$$g_{\vec{a}}(z) = \frac{9}{\pi^2} \wp_z \left(\frac{cz+d}{N}\right)$$

is a weight 2 modular form for $\Gamma(N)$ and ratios of these give modular functions.

Step 2 - The model

• We take linear combinations and products of the $g_{\vec{a}}(z)$ to obtain a modular form f for the subgroup H.

Step 2 - The model

- We take linear combinations and products of the $g_{\vec{a}}(z)$ to obtain a modular form f for the subgroup H.
- We also keep track of the images f|M where M runs over coset representatives of H in $GL_2(\mathbb{Z}_3)$.

Step 2 - The model

- We take linear combinations and products of the $g_{\vec{a}}(z)$ to obtain a modular form f for the subgroup H.
- We also keep track of the images f|M where M runs over coset representatives of H in $GL_2(\mathbb{Z}_3)$.
- We divide by some standard modular form to get a modular function h, and we compute the minimal polynomial of h over $\mathbb{Q}(X_{\tilde{H}})$ to get a model of X_{H} .

Step 2 - Higher genus cases

• In higher genus cases, we use a variety of "modular forms tricks" to construct Fourier expansions of weight 2 cusp forms in $S_2(\Gamma(N), \mathbb{Q}(\zeta_N))$ that are fixed by the action of H.

Step 2 - Higher genus cases

- In higher genus cases, we use a variety of "modular forms tricks" to construct Fourier expansions of weight 2 cusp forms in $S_2(\Gamma(N), \mathbb{Q}(\zeta_N))$ that are fixed by the action of H.
- Eran Assaf and David Zywina have recently done some work about using modular symbols to compute bases for these spaces.

Step 2 - Higher genus cases

- In higher genus cases, we use a variety of "modular forms tricks" to construct Fourier expansions of weight 2 cusp forms in $S_2(\Gamma(N), \mathbb{Q}(\zeta_N))$ that are fixed by the action of H.
- Eran Assaf and David Zywina have recently done some work about using modular symbols to compute bases for these spaces.
- These correspond to holomorphic differentials on X_H and from these, one can compute the canonical model of X_H .

• If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,
 - 5 genus 1 curves (all with finitely many points),

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,
 - 5 genus 1 curves (all with finitely many points),
 - 4 genus two curves,

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,
 - 5 genus 1 curves (all with finitely many points),
 - 4 genus two curves,
 - 3 genus three curves,

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,
 - 5 genus 1 curves (all with finitely many points),
 - 4 genus two curves,
 - 3 genus three curves,
 - 4 genus four curves,

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,
 - 5 genus 1 curves (all with finitely many points),
 - 4 genus two curves,
 - 3 genus three curves,
 - 4 genus four curves,
 - 1 genus six curve,

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,
 - 5 genus 1 curves (all with finitely many points),
 - 4 genus two curves,
 - 3 genus three curves,
 - 4 genus four curves,
 - 1 genus six curve,
 - 1 genus 12 curve,

- If we find a curve $X_{\tilde{H}}$ that has genus 1 and only finitely many rational points, we don't need to consider any curves X_H that cover it.
- In the end, we find
 - 22 genus zero curves isomorphic to \mathbb{P}^1 ,
 - 5 genus 1 curves (all with finitely many points),
 - 4 genus two curves,
 - 3 genus three curves,
 - 4 genus four curves,
 - 1 genus six curve,
 - 1 genus 12 curve,
 - and 1 genus 43 curve.

Step 3 - Finding the rational points

• One method we use to provably find all the rational points on these curves is the theory of étale descent.

Step 3 - Finding the rational points

• One method we use to provably find all the rational points on these curves is the theory of étale descent.

• Given a curve C of genus g, we search for an étale triple cover $\phi: X \to C$. (Here X will have genus 3g - 2.)

Step 3 - Finding the rational points

• One method we use to provably find all the rational points on these curves is the theory of étale descent.

• Given a curve C of genus g, we search for an étale triple cover $\phi: X \to C$. (Here X will have genus 3g - 2.)

• There will be a finite collection of twists $\phi_d: X_d \to C$ so that

$$\bigcup_d \phi_d(X_d(\mathbb{Q})) = C(\mathbb{Q}).$$

• The genus 6 curve is a Picard curve with model

$$y^{3} = \frac{x(x^{3} - 6x^{2} + 3x + 1)}{x^{3} + 3x^{2} - 6x + 1}.$$

イロン 不良 とくほど 不良 とう

E

• The genus 6 curve is a Picard curve with model

$$y^{3} = \frac{x(x^{3} - 6x^{2} + 3x + 1)}{x^{3} + 3x^{2} - 6x + 1}.$$

• We get a family of étale covers by taking $d \in \{1, 3, 9\}$ and letting X_d be the curve defined by

$$dy_1^3 = x(x^3 - 6x^2 + 3x + 1)$$

$$dy_2^3 = x^3 + 3x^2 - 6x + 1.$$

(日本) (日本) (日本)

• The genus 6 curve is a Picard curve with model

$$y^{3} = \frac{x(x^{3} - 6x^{2} + 3x + 1)}{x^{3} + 3x^{2} - 6x + 1}.$$

• We get a family of étale covers by taking $d \in \{1, 3, 9\}$ and letting X_d be the curve defined by

$$dy_1^3 = x(x^3 - 6x^2 + 3x + 1)$$

$$dy_2^3 = x^3 + 3x^2 - 6x + 1.$$

• For d = 3, the second equation has no 3-adic points.

• The genus 6 curve is a Picard curve with model

$$y^{3} = \frac{x(x^{3} - 6x^{2} + 3x + 1)}{x^{3} + 3x^{2} - 6x + 1}.$$

• We get a family of étale covers by taking $d \in \{1, 3, 9\}$ and letting X_d be the curve defined by

$$dy_1^3 = x(x^3 - 6x^2 + 3x + 1)$$

$$dy_2^3 = x^3 + 3x^2 - 6x + 1.$$

- For d = 3, the second equation has no 3-adic points.
- For d = 9, the first equation defines a genus 3 curve whose Jacobian has rank zero. This allows us to find the points on X_9 .

• The d = 1 case remains. We can construct étale covers of $y_1^3 = x(x^3 - 6x^2 + 3x + 1)$ of the form

$$ey_2^3 = x$$

 $e^2y_2^3 = x^3 - 6x^2 + 3x + 1.$

イロン 不得 とくほど 不良 とうほ

• The d = 1 case remains. We can construct étale covers of $y_1^3 = x(x^3 - 6x^2 + 3x + 1)$ of the form

$$ey_2^3 = x$$

 $e^2y_2^3 = x^3 - 6x^2 + 3x + 1.$

• If e = 1, the second equation defines a rank zero elliptic curve, while if e = 3 the second equation has no 3-adic points.

マロト イヨト イヨト 二日

• The d = 1 case remains. We can construct étale covers of $y_1^3 = x(x^3 - 6x^2 + 3x + 1)$ of the form

$$ey_2^3 = x$$

 $e^2y_2^3 = x^3 - 6x^2 + 3x + 1.$

• If e = 1, the second equation defines a rank zero elliptic curve, while if e = 3 the second equation has no 3-adic points.

• So e = 9. This means that $x^3 - 6x^2 + 3x + 1$ is 3 times a cube $x^3 + 3x^2 - 6x + 1$ is a cube. So we have a rational point on $y^3 = 9(x^3 - 6x^2 + 3x + 1)(x^3 + 3x^2 - 6x + 1)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• This curve $Y: y^3 = 9(x^3 - 6x^2 + 3x + 1)(x^3 + 3x^2 - 6x + 1)$ has genus 4 and its automorphism group is isomorphic to S_3 .

イロト イポト イヨト イヨト

- This curve $Y: y^3 = 9(x^3 6x^2 + 3x + 1)(x^3 + 3x^2 6x + 1)$ has genus 4 and its automorphism group is isomorphic to S_3 .
- The quotient by the subgroup of order 3 is $Z: y^2 = x^6 2x^3 3$. This genus 2 curve has Jacobian of rank zero and only three rational points.

• This curve $Y: y^3 = 9(x^3 - 6x^2 + 3x + 1)(x^3 + 3x^2 - 6x + 1)$ has genus 4 and its automorphism group is isomorphic to S_3 .

• The quotient by the subgroup of order 3 is $Z: y^2 = x^6 - 2x^3 - 3$. This genus 2 curve has Jacobian of rank zero and only three rational points.

• Pulling these back to the original curve allows us to find all of its rational points.

(日本) (日本) (日本)

Hard case 1 - The genus 43 curve

• In 2006, Elkies computed a modular curve X_H parametrizing elliptic curves where $\rho_{E,3}$ was surjective but $\rho_{E,9}$ was not. This curve X_H is a degree 27 cover of the *j*-line and is isomorphic to \mathbb{P}^1 .

Hard case 1 - The genus 43 curve

- In 2006, Elkies computed a modular curve X_H parametrizing elliptic curves where $\rho_{E,3}$ was surjective but $\rho_{E,9}$ was not. This curve X_H is a degree 27 cover of the *j*-line and is isomorphic to \mathbb{P}^1 .
- There is a maximal subgroup $M \subseteq H$ of index 27. If x is a rational point on X_M , then the elliptic curve corresponding to x must have $\rho_{E,3}$ surjective, and $\mathbb{Q}(E[27]) = \mathbb{Q}(E[3], \zeta_{27})$.

Hard case 1 - The genus 43 curve

- In 2006, Elkies computed a modular curve X_H parametrizing elliptic curves where $\rho_{E,3}$ was surjective but $\rho_{E,9}$ was not. This curve X_H is a degree 27 cover of the *j*-line and is isomorphic to \mathbb{P}^1 .
- There is a maximal subgroup $M \subseteq H$ of index 27. If x is a rational point on X_M , then the elliptic curve corresponding to x must have $\rho_{E,3}$ surjective, and $\mathbb{Q}(E[27]) = \mathbb{Q}(E[3], \zeta_{27})$.
- This is really weird, and suggests that the modular curve X_M might not have local points.

Hard case 1 - The model

• We compute the canonical model of this curve in \mathbb{P}^{42} . It's the vanishing set of 820 quadratic polynomials in 43 variables.

Hard case 1 - The model

- We compute the canonical model of this curve in $\mathbb{P}^{42}.$ It's the vanishing set of 820 quadratic polynomials in 43 variables.
- The reduction mod 3 of this model has 19 points.

Hard case 1 - The model

- We compute the canonical model of this curve in \mathbb{P}^{42} . It's the vanishing set of 820 quadratic polynomials in 43 variables.
- The reduction mod 3 of this model has 19 points.

• If $P = (x_1 : x_2 : \cdots : x_{43})$ is a point on X_M modulo 3, then for every lift $(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \tilde{x}_4) \in (\mathbb{Z}/9\mathbb{Z})^4$ of (x_1, \ldots, x_4) , we create an ideal in the polynomial ring in 43 variables over \mathbb{Z} generated by the quadratic polynomials evaluated at $\tilde{x}_1, \ldots, \tilde{x}_4$, and 9.
Hard case 1 - No local points

• We check to see if 3 is contained in that ideal. If it is, then there is no point on $X_M(\mathbb{Z}/9\mathbb{Z})$ whose first four coordinates are $\tilde{x}_1, \ldots, \tilde{x}_4$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Hard case 1 - No local points

• We check to see if 3 is contained in that ideal. If it is, then there is no point on $X_M(\mathbb{Z}/9\mathbb{Z})$ whose first four coordinates are $\tilde{x}_1, \ldots, \tilde{x}_4$.

• In this way, we show that $X_M(\mathbb{Z}/9\mathbb{Z})$ is empty.

・回・ ・ヨト ・ヨト

Hard case 2 - $X_{\rm ns}^+(27)$

• The curve $X_{\rm ns}^+(27)$ is the modular curve corresponding to the normalizer of the non-split Cartan modulo 27. It has genus 12, at least 8 rational points, and the analytic rank of its Jacobian is 12.

Hard case 2 - $X_{\rm ns}^+(27)$

• The curve $X_{\rm ns}^+(27)$ is the modular curve corresponding to the normalizer of the non-split Cartan modulo 27. It has genus 12, at least 8 rational points, and the analytic rank of its Jacobian is 12.

• Provably finding all the rational points on it would give an independent solution of the class number 1 problem.

Hard case 2 - $X_{\rm ns}^+(27)$

• The curve $X_{\rm ns}^+(27)$ is the modular curve corresponding to the normalizer of the non-split Cartan modulo 27. It has genus 12, at least 8 rational points, and the analytic rank of its Jacobian is 12.

• Provably finding all the rational points on it would give an independent solution of the class number 1 problem.

• There is a map from $X_{ns}^+(27)$ to a modular curve X_K of genus 3, but it's not defined over \mathbb{Q} .

Hard case 2 - Genus 3 curve

• Let
$$\zeta = e^{2\pi i/3}$$
 and $L = \mathbb{Q}(\zeta)$. This curve is

$$\begin{split} X_{\mathcal{K}} &: a^4 + (\zeta - 1)a^3b + (3\zeta + 2)a^3c - 3a^2c^2 + (2\zeta + 2)ab^3 - 3\zeta ab^2c \\ &+ 3\zeta abc^2 - 2\zeta ac^3 - \zeta b^3c + 3\zeta b^2c^2 + (-\zeta + 1)bc^3 + (\zeta + 1)c^4 = 0. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Э

Hard case 2 - Genus 3 curve

• Let
$$\zeta = e^{2\pi i/3}$$
 and $L = \mathbb{Q}(\zeta)$. This curve is

$$\begin{aligned} X_{\mathcal{K}} &: a^{4} + (\zeta - 1)a^{3}b + (3\zeta + 2)a^{3}c - 3a^{2}c^{2} + (2\zeta + 2)ab^{3} - 3\zeta ab^{2}c \\ &+ 3\zeta abc^{2} - 2\zeta ac^{3} - \zeta b^{3}c + 3\zeta b^{2}c^{2} + (-\zeta + 1)bc^{3} + (\zeta + 1)c^{4} = 0. \end{aligned}$$

• The Jacobian of X_K has rank 6 over L and $X_K(L)$ has size at least 13. One of these points is non-CM.

Hard case 2 - Genus 3 curve

• Let
$$\zeta = e^{2\pi i/3}$$
 and $L = \mathbb{Q}(\zeta)$. This curve is

$$\begin{aligned} X_{K}: a^{4} + (\zeta - 1)a^{3}b + (3\zeta + 2)a^{3}c - 3a^{2}c^{2} + (2\zeta + 2)ab^{3} - 3\zeta ab^{2}c \\ + 3\zeta abc^{2} - 2\zeta ac^{3} - \zeta b^{3}c + 3\zeta b^{2}c^{2} + (-\zeta + 1)bc^{3} + (\zeta + 1)c^{4} = 0. \end{aligned}$$

- The Jacobian of X_K has rank 6 over L and $X_K(L)$ has size at least 13. One of these points is non-CM.
- By looking at differences of *L*-rational points, we are able to find a point of order 3 in $Jac(X_K)(L)$.

Hard case 2 - étale descent

• Using this, we can construct a family of étale triple covers $\{Y_d\}$ of $X_{\mathcal{K}}$. Here $d = 3^a \zeta^b$ for $0 \le a, b \le 2$.

Hard case 2 - étale descent

• Using this, we can construct a family of étale triple covers $\{Y_d\}$ of $X_{\mathcal{K}}$. Here $d = 3^a \zeta^b$ for $0 \le a, b \le 2$.

• Counting points on these étale triple covers strongly suggests that these genus 7 curves map to elliptic curves. In 8 of the 9 cases, the elliptic curve they map to has rank 0 or 1.

Hard case 2 - étale descent

• Using this, we can construct a family of étale triple covers $\{Y_d\}$ of $X_{\mathcal{K}}$. Here $d = 3^a \zeta^b$ for $0 \le a, b \le 2$.

• Counting points on these étale triple covers strongly suggests that these genus 7 curves map to elliptic curves. In 8 of the 9 cases, the elliptic curve they map to has rank 0 or 1.

• In the final case (which gets a lot of the *L*-points on X_K), the elliptic curve is $E: y^2 = x^3 - 48$, and E(L) has rank 2.

Hard case 2 - Map to an elliptic curve

• By computing with this genus 7 curve over \mathbb{F}_7 , we are able to find the map to the elliptic curve.

Hard case 2 - Map to an elliptic curve

• By computing with this genus 7 curve over $\mathbb{F}_7,$ we are able to find the map to the elliptic curve.

• We write down the scheme Z that parametrizes maps from $Y \rightarrow E$, write down the mod 7 point on this scheme and use Hensel's lemma.

Hard case 2 - Map to an elliptic curve

 \bullet By computing with this genus 7 curve over $\mathbb{F}_7,$ we are able to find the map to the elliptic curve.

• We write down the scheme Z that parametrizes maps from $Y \rightarrow E$, write down the mod 7 point on this scheme and use Hensel's lemma.

• We are able to "guess" a point in Z(L) and in this way construct the map $\phi: Y \to E$.

Hard case 2 - One more étale cover

• Since E has CM, there is a 3-isogeny $\psi: E \to E.$ Using this, we can compute the fiber product

Hard case 2 - One more étale cover

• Since E has CM, there is a 3-isogeny $\psi: E \to E.$ Using this, we can compute the fiber product

• This is an étale triple cover of Y, which has genus 19. Our last hope was that this étale triple cover might map to an elliptic curve with rank ≤ 1 .

Hard case 2 - One more étale cover

• Since E has CM, there is a 3-isogeny $\psi: E \to E.$ Using this, we can compute the fiber product

• This is an étale triple cover of Y, which has genus 19. Our last hope was that this étale triple cover might map to an elliptic curve with rank ≤ 1 .

• It doesn't. We computed the numerator of the zeta function of $Y \times_E E$ over \mathbb{F}_4 , and the "new part" is irreducible.

Summary

• We (almost) classify the image of the 3-adic Galois representation $\rho_{E,3^{\infty}}$ for non-CM elliptic curves E/\mathbb{Q} .

Summary

- We (almost) classify the image of the 3-adic Galois representation $\rho_{E,3^{\infty}}$ for non-CM elliptic curves E/\mathbb{Q} .
- We write down the possible images $H \subseteq GL_2(\mathbb{Z}_3)$ and compute equations for the modular curves X_H .

Summary

- We (almost) classify the image of the 3-adic Galois representation $\rho_{E,3^{\infty}}$ for non-CM elliptic curves E/\mathbb{Q} .
- We write down the possible images $H \subseteq GL_2(\mathbb{Z}_3)$ and compute equations for the modular curves X_H .
- We find the rational points on all of these modular curves, except $X_{\rm ns}^+(27)$.