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Definitions

• Let E/Q be an elliptic curve and E [N] = {P ∈ E (C) : NP = 0}.

• Suppose now that K/Q is a Galois extension, and E [N] ⊆ E (K ).

• For each σ ∈ Gal(K/Q), σ|E [N] is an automorphism of E [N].

• Since Aut(E [N]) ∼= GL2(Z/NZ), this gives a map

ρE ,N : Gal(Q/Q)→ GL2(Z/NZ)

given by ρE ,N(σ) = σ|E [N].
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Galois representations

• The properties of these Galois representations play a key role in
many problems:

Proving the modularity of elliptic curves.

The “modular method” for solving Diophantine equations.

The inverse Galois problem for PSL2(Fp).
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Properties of Galois representations

• If ρE ,N : Gal(Q/Q)→ GL2(Z/NZ), then

(i) det ◦ρE ,N : Gal(Q/Q)→ (Z/NZ)× is surjective, and

(ii) there is a matrix M in the image of ρE ,N that is conjugate in

GL2(Z/NZ) to either

[
1 0
0 −1

]
or

[
1 1
0 −1

]
.
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Mazur’s “Program B”

• Given a number field K and a subgroup H ⊆ GL2(Z/NZ),
classify all elliptic curves E/K for which im ρE ,N ⊆ H.
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Subgroups of GL2(Fp)

• If p is a prime number, and ρE ,p is not surjective, then im ρE ,p is
contained in a maximal subgroup of GL2(Fp). The options are:

(i) Borel subgroups, those of the shape

{[
∗ ∗
0 ∗

]}
,

(ii) Normalizers of Cartan subgroups. Cartan subgroups are
subgroups isomorphic to F×p × F×p (split) or F×

p2
(non-split).

(iii) Exceptional subgroups (groups whose image in GL2(Fp) mod
scalars is isomorphic to A4, S4 or A5).
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Results

Theorem (Serre, 1972)

If p ≥ 17 is prime, the image of ρE ,p cannot be contained in an
exceptional subgroup.

Theorem (Mazur, 1978)

If E is a non-CM elliptic curve over Q, the largest prime p for
which ρE ,p lands in a Borel subgroup is 37.

Theorem (Bilu-Parent-Rebolledo, 2011, 2013)

If p ≥ 17 and E is non-CM, the image cannot be contained in the
normalizer of a split Cartan subgroup.
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Serre’s uniformity conjecture

Conjecture

If E/Q is a non-CM elliptic curve and p > 37, then ρE ,p is
surjective.
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p-adic representations

• Fix a prime p and an elliptic curve E . For each n ≥ 1, we have a
representation ρE ,pn : Gal(Q/Q)→ GL2(Z/pnZ).

• These representations are compatible, and can be packaged as a
single ρE ,p∞ : Gal(Q/Q)→ GL2(Zp).

• Here Zp = lim←−Z/pnZ is the ring of p-adic integers.
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Goal

• Fix a (small) prime p, and determine all possibilities for
im ρE ,p∞ for elliptic curves E/Q.

Theorem (R, Zureick-Brown, 2015)

If E/Q is a non-CM elliptic curve, there are 1208 possibilities for
the image of ρE ,2∞ in GL2(Z2) (up to conjugacy). The index can

be at most 96 and the image always contains all M ≡
[

1 0
0 1

]
(mod 32).

• Álvaro Lozano-Robledo has handled the CM case (for all primes
p and not just over Q).
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p = 3

Theorem (R, Sutherland, Zureick-Brown)

If E/Q is a non-CM elliptic curve, then

im ρE ,3∞ is one of 47 subgroups of GL2(Z3) of level at most
27 and index at most 72, or

the image of ρE ,3∞ is contained in the normalizer of the
non-split Cartan modulo 27.

• The index of the image is either 1, 2, 3, 4, 6, 8, 9, 12, 18, 24,
27, 36, 72, or a multiple of 243.
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Applications

• Torsion growth of elliptic curves E/Q over number fields of
degree d ≤ 23 (by González-Jiménez and Najman).

• Classification of non-CM isolated points of odd degree with
rational j-invariant on X1(n) (joint work with Bourdon, Gill, and
Watson).

• `-adic Kummer theory for elliptic curves over Q (work in progress
with Cerchia, Lombardo, and Tronto).
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The j-invariant

• If E : y2 = x3 + Ax + B, define j(E ) = 6912A3

4A3+27B2 .

• If E and E ′ are isomorphic, then j(E ) = j(E ′).

• If E and E ′ are elliptic curves over K and j(E ) = j(E ′), then E
and E ′ are isomorphic over some extension of K .

Jeremy Rouse 3-adic images of Galois 14/41



Introduction
Modular curves

The j-invariant

• If E : y2 = x3 + Ax + B, define j(E ) = 6912A3

4A3+27B2 .

• If E and E ′ are isomorphic, then j(E ) = j(E ′).

• If E and E ′ are elliptic curves over K and j(E ) = j(E ′), then E
and E ′ are isomorphic over some extension of K .

Jeremy Rouse 3-adic images of Galois 14/41



Introduction
Modular curves

The j-invariant

• If E : y2 = x3 + Ax + B, define j(E ) = 6912A3

4A3+27B2 .

• If E and E ′ are isomorphic, then j(E ) = j(E ′).

• If E and E ′ are elliptic curves over K and j(E ) = j(E ′), then E
and E ′ are isomorphic over some extension of K .

Jeremy Rouse 3-adic images of Galois 14/41



Introduction
Modular curves

Background about modular curves

• Suppose that H is subgroup of GL2(Z/NZ) that contains[
−1 0
0 −1

]
. Then there is a modular curve YH .

• If K is a number field, the elements of YH(K ) are in bijection
with pairs (E , [ι]H) where [ι]H is an H-orbit of isomorphisms
ι : E [N]→ (Z/NZ)2.

• The curve XH is a projective curve obtained by adding finitely
many “cusps” to YH .
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Properties of modular curves

• The curve XH is geometrically connected if det : H → (Z/NZ)×

is surjective.

• If E is an elliptic curve over a number field K with
j(E ) 6= 0, 1728, then there is a point (E , [ι]H) ∈ XH(K ) if and only
if im ρE ,N is conjugate to a subgroup of H.

• If H1 ⊆ H2 are two subgroups of GL2(Z/NZ), then there is a
natural morphism XH1 → XH2 .

• We will often use the map j : XH → XGL2(Z/NZ) ∼= P1 taking a
point (E , [ι]H) to j(E ).
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Example 1

• The modular curve X0(N) parametrizes elliptic curves with a
cyclic N-isogeny. If N = 2, this is the same as having a rational
point of order 2.

• The map j : X0(2)→ P1 is given by j = t3

t+16 . The points t =∞
and t = −16 are cusps.

• An elliptic curve E/Q with j(E ) 6= 0, 1728 has a rational point of

order 2 if and only if j(E ) = t3

t+16 for some t ∈ Q with t 6= −16.
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Example 2

• The modular curve X0(11) is the elliptic curve

y2 + y = x3 − x2 − 10x − 20.

• This curve has precisely 5 rational points. The point at infinity
and (16 : 60 : 1) are cusps.

• The point (5 : −6 : 1) maps to j = −32768, (5 : 5 : 1) maps to
j = −24729001 and (16 : −61 : 1) maps to j = −121.

Jeremy Rouse 3-adic images of Galois 18/41
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Examples 3 and 4

• The curve X0(27) is isomorphic to x3 + y3 = z3.

• The curve X0(64) is isomorphic to x4 + y4 = z4.

• Aigner proved in 1934 that x4 + y4 = z4 only has one non-trivial
point in a quadratic field: (1 +

√
−7)4 + (1−

√
−7)4 = 24.

• This point corresponds to an elliptic curve with CM by

Z
[
1+
√
−7

2

]
that has an endomorphism of degree 2.

Jeremy Rouse 3-adic images of Galois 19/41
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√
−7)4 + (1−

√
−7)4 = 24.

• This point corresponds to an elliptic curve with CM by

Z
[
1+
√
−7

2

]
that has an endomorphism of degree 2.
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Faltings’s theorem

Theorem (Faltings, 1983)

If X/Q is a curve with genus g ≥ 2, then there are only finitely
many rational points on X .

• For H ⊆ GL2(Z3), the genus of XH tends to infinity with the
index of H in GL2(Z3).
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Outline

• As a consequence, if the index of H in GL2(Z3) is high enough,
then XH(Q) will be finite.

1 We enumerate subgroups of H of GL2(Z3).

2 We compute models for the modular curves XH .

3 We (try to) provably find all the rational points on the curves
XH .
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Modular curves

Step 1 - Subgroups

• We start by finding all subgroups H of GL2(Z3) with the
following properties:

det : H → Z×3 is surjective,

H contains an element conjugate to

[
1 0
0 −1

]
H contains −I ,
There is no subgroup K with H ⊆ K so that XK has genus
≥ 2.

• There are 80 conjugacy classes of such subgroups and the index
can be as large as 729.
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Step 2 - Computing equations for XH

• We start with X1 = X0(1). The map j : X0(1)→ P1 is an
isomorphism.

• In most cases, if H is one of the subgroups in our list, we
construct XH as a cover of XH̃ for a subgroup H ⊆ H̃ so [H̃ : H] is
minimal.
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Step 2 - The function field

• The function field Q(X (N))/Q(j) is a Galois extension with
Galois group GL2(Z/NZ)/{±I}.

• The elements of this function field can be identified with modular
functions: functions f : {z ∈ C : =z > 0} → C that satisfy

f

(
az + b

cz + d

)
= f (z) for all z with =z > 0 and

[
a b
c d

]
∈ Γ(N).
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Step 2 - Generators

• We wish to construct an element h ∈ Q(X (N))/Q(j) that is
fixed by H.

• If ~a = (c, d) ∈ (Z/NZ)2 is a vector, and gcd(c , d ,N) = 1, then

g~a(z) =
9

π2
℘z

(
cz + d

N

)
is a weight 2 modular form for Γ(N) and ratios of these give
modular functions.

Jeremy Rouse 3-adic images of Galois 25/41



Introduction
Modular curves

Step 2 - Generators

• We wish to construct an element h ∈ Q(X (N))/Q(j) that is
fixed by H.

• If ~a = (c, d) ∈ (Z/NZ)2 is a vector, and gcd(c , d ,N) = 1, then

g~a(z) =
9

π2
℘z

(
cz + d

N

)
is a weight 2 modular form for Γ(N) and ratios of these give
modular functions.

Jeremy Rouse 3-adic images of Galois 25/41



Introduction
Modular curves

Step 2 - The model

• We take linear combinations and products of the g~a(z) to obtain
a modular form f for the subgroup H.

• We also keep track of the images f |M where M runs over coset
representatives of H in GL2(Z3).

• We divide by some standard modular form to get a modular
function h, and we compute the minimal polynomial of h over
Q(XH̃) to get a model of XH .
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Modular curves

Step 2 - Higher genus cases

• In higher genus cases, we use a variety of “modular forms tricks”
to construct Fourier expansions of weight 2 cusp forms in
S2(Γ(N),Q(ζN)) that are fixed by the action of H.

• Eran Assaf and David Zywina have recently done some work
about using modular symbols to compute bases for these spaces.

• These correspond to holomorphic differentials on XH and from
these, one can compute the canonical model of XH .
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Modular curves

Step 2 - Data

• If we find a curve XH̃ that has genus 1 and only finitely many
rational points, we don’t need to consider any curves XH that
cover it.

• In the end, we find

22 genus zero curves isomorphic to P1,

5 genus 1 curves (all with finitely many points),

4 genus two curves,

3 genus three curves,

4 genus four curves,

1 genus six curve,

1 genus 12 curve,

and 1 genus 43 curve.
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Modular curves

Step 3 - Finding the rational points

• One method we use to provably find all the rational points on
these curves is the theory of étale descent.

• Given a curve C of genus g , we search for an étale triple cover
φ : X → C . (Here X will have genus 3g − 2.)

• There will be a finite collection of twists φd : Xd → C so that⋃
d

φd(Xd(Q)) = C (Q).
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Modular curves

Step 3 - Example (1/3)

• The genus 6 curve is a Picard curve with model

y3 =
x(x3 − 6x2 + 3x + 1)

x3 + 3x2 − 6x + 1
.

• We get a family of étale covers by taking d ∈ {1, 3, 9} and
letting Xd be the curve defined by

dy31 = x(x3 − 6x2 + 3x + 1)

dy32 = x3 + 3x2 − 6x + 1.

• For d = 3, the second equation has no 3-adic points.

• For d = 9, the first equation defines a genus 3 curve whose
Jacobian has rank zero. This allows us to find the points on X9.
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Step 3 - Example (2/3)

• The d = 1 case remains. We can construct étale covers of
y31 = x(x3 − 6x2 + 3x + 1) of the form

ey32 = x

e2y32 = x3 − 6x2 + 3x + 1.

• If e = 1, the second equation defines a rank zero elliptic curve,
while if e = 3 the second equation has no 3-adic points.

• So e = 9. This means that x3 − 6x2 + 3x + 1 is 3 times a cube
x3 + 3x2 − 6x + 1 is a cube. So we have a rational point on
y3 = 9(x3 − 6x2 + 3x + 1)(x3 + 3x2 − 6x + 1).
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Step 3 - Example (3/3)

• This curve Y : y3 = 9(x3 − 6x2 + 3x + 1)(x3 + 3x2 − 6x + 1)
has genus 4 and its automorphism group is isomorphic to S3.

• The quotient by the subgroup of order 3 is
Z : y2 = x6 − 2x3 − 3. This genus 2 curve has Jacobian of rank
zero and only three rational points.

• Pulling these back to the original curve allows us to find all of its
rational points.
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Introduction
Modular curves

Hard case 1 - The genus 43 curve

• In 2006, Elkies computed a modular curve XH parametrizing
elliptic curves where ρE ,3 was surjective but ρE ,9 was not. This
curve XH is a degree 27 cover of the j-line and is isomorphic to P1.

• There is a maximal subgroup M ⊆ H of index 27. If x is a
rational point on XM , then the elliptic curve corresponding to x
must have ρE ,3 surjective, and Q(E [27]) = Q(E [3], ζ27).

• This is really weird, and suggests that the modular curve XM

might not have local points.
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Introduction
Modular curves

Hard case 1 - The model

• We compute the canonical model of this curve in P42. It’s the
vanishing set of 820 quadratic polynomials in 43 variables.

• The reduction mod 3 of this model has 19 points.

• If P = (x1 : x2 : · · · : x43) is a point on XM modulo 3, then for
every lift (x̃1, x̃2, x̃3, x̃4) ∈ (Z/9Z)4 of (x1, . . . , x4), we create an
ideal in the polynomial ring in 43 variables over Z generated by the
quadratic polynomials evaluated at x̃1, . . . , x̃4, and 9.
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Hard case 1 - No local points

• We check to see if 3 is contained in that ideal. If it is, then there
is no point on XM(Z/9Z) whose first four coordinates are
x̃1, . . . , x̃4.

• In this way, we show that XM(Z/9Z) is empty.
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Hard case 2 - X+
ns(27)

• The curve X+
ns(27) is the modular curve corresponding to the

normalizer of the non-split Cartan modulo 27. It has genus 12, at
least 8 rational points, and the analytic rank of its Jacobian is 12.

• Provably finding all the rational points on it would give an
independent solution of the class number 1 problem.

• There is a map from X+
ns(27) to a modular curve XK of genus 3,

but it’s not defined over Q.
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Hard case 2 - Genus 3 curve

• Let ζ = e2πi/3 and L = Q(ζ). This curve is

XK : a4 + (ζ − 1)a3b + (3ζ + 2)a3c − 3a2c2 + (2ζ + 2)ab3 − 3ζab2c

+ 3ζabc2 − 2ζac3 − ζb3c + 3ζb2c2 + (−ζ + 1)bc3 + (ζ + 1)c4 = 0.

• The Jacobian of XK has rank 6 over L and XK (L) has size at
least 13. One of these points is non-CM.

• By looking at differences of L-rational points, we are able to find
a point of order 3 in Jac(XK )(L).
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Hard case 2 - étale descent

• Using this, we can construct a family of étale triple covers {Yd}
of XK . Here d = 3aζb for 0 ≤ a, b ≤ 2.

• Counting points on these étale triple covers strongly suggests
that these genus 7 curves map to elliptic curves. In 8 of the 9
cases, the elliptic curve they map to has rank 0 or 1.

• In the final case (which gets a lot of the L-points on XK ), the
elliptic curve is E : y2 = x3 − 48, and E (L) has rank 2.
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Hard case 2 - Map to an elliptic curve

• By computing with this genus 7 curve over F7, we are able to
find the map to the elliptic curve.

• We write down the scheme Z that parametrizes maps from
Y → E , write down the mod 7 point on this scheme and use
Hensel’s lemma.

• We are able to “guess” a point in Z (L) and in this way construct
the map φ : Y → E .

Jeremy Rouse 3-adic images of Galois 39/41



Introduction
Modular curves

Hard case 2 - Map to an elliptic curve

• By computing with this genus 7 curve over F7, we are able to
find the map to the elliptic curve.

• We write down the scheme Z that parametrizes maps from
Y → E , write down the mod 7 point on this scheme and use
Hensel’s lemma.

• We are able to “guess” a point in Z (L) and in this way construct
the map φ : Y → E .

Jeremy Rouse 3-adic images of Galois 39/41



Introduction
Modular curves

Hard case 2 - Map to an elliptic curve

• By computing with this genus 7 curve over F7, we are able to
find the map to the elliptic curve.

• We write down the scheme Z that parametrizes maps from
Y → E , write down the mod 7 point on this scheme and use
Hensel’s lemma.

• We are able to “guess” a point in Z (L) and in this way construct
the map φ : Y → E .

Jeremy Rouse 3-adic images of Galois 39/41



Introduction
Modular curves

Hard case 2 - One more étale cover

• Since E has CM, there is a 3-isogeny ψ : E → E . Using this, we
can compute the fiber product

Y ×E E //

��

E

ψ
��

Y
φ // E

• This is an étale triple cover of Y , which has genus 19. Our last
hope was that this étale triple cover might map to an elliptic curve
with rank ≤ 1.

• It doesn’t. We computed the numerator of the zeta function of
Y ×E E over F4, and the “new part” is irreducible.
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Summary

• We (almost) classify the image of the 3-adic Galois
representation ρE ,3∞ for non-CM elliptic curves E/Q.

• We write down the possible images H ⊆ GL2(Z3) and compute
equations for the modular curves XH .

• We find the rational points on all of these modular curves,
except X+

ns(27).
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