Stacky Curves in Characteristic *p*

Andrew J. Kobin

ak5ah@virginia.edu

Connecticut Summer School in Number Theory

June 12, 2020

0000000000	0000	00000000	0000
Introduction			

Common problem: all sorts of information is lost when we consider quotient objects and/or singular objects.

Introduction 0000000000	Root Stacks	AS Root Stacks	Classification
Introduction			

Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).

Introduction 00000000000	Root Stacks	AS Root Stacks	Classification
Introduction			

Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).

Example: For the plane curve $X : y^2 - x = 0$, stacks remember automorphisms like $(x, y) \leftrightarrow (x, -y)$ using groupoids

Introduction 00000000000	Root Stacks 0000	AS Root Stacks	Classification
Introduction			

Solution: Keep track of lost information using *orbifolds* (topological and intuitive) or *stacks* (algebraic and fancy).

Goal: Classify stacky curves (= orbifold curves) in char. *p* (preprint available!)

Introduction	Root Stacks	AS Root Stacks	Classification

Complex Orbifolds

Definition

A **complex orbifold** is a topological space admitting an atlas $\{U_i\}$ where each $U_i \cong \mathbb{C}^n/G_i$ for a finite group G_i , satisfying compatibility conditions (think: manifold atlas but with extra info).

Introduction 00000000000	Root Stacks	AS Root Stacks	Classification
Algebraic Stacks			

Introduction 000000000000	Root Stacks	AS Root Stacks	Classification
Algebraic Stacks			

Introduction 000000000000	Root Stacks	AS Root Stacks	Classification
Algebraic Stacks			

Introduction 0000000000000	Root Stacks	AS Root Stacks	Classification
Algebraic Stacks			

Introduction 000000000000	Root Stacks	AS Root Stacks	Classification
Algebraic Stacks			

Introduction	Root Stacks	AS Root Stacks	Classification

One important class of examples can be viewed as smooth varieties or schemes with a finite automorphism group attached at each point.

Focus on curves for the rest of the talk

Algebraic Stacks

Introduction	Root Stacks	AS Root Stacks	Classification
00000000000			

An Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky \mathbb{P}^1 with a generic $\mathbb{Z}/2$ and a special $\mathbb{Z}/4$ and $\mathbb{Z}/6$.

Consequence: can deduce dimension formulas for modular forms from Riemann–Roch formula for stacks.

Root Stacks	AS Root Stacks	Classification
		0000

Goal: Classify stacky curves in char. *p*.

Main obstacle to overcome:

- In char. 0, local structure is determined by a cyclic group action.
- In char. *p*, this is not enough information need more invariants than just the order of a cyclic group.

Results (K. '20):

- Every *p*-cover of curves factors étale-locally through an Artin–Schreier root stack.
- Every stacky curve with order *p* automorphism group is étale-locally an Artin–Schreier root stack.
- For any algebraic curve *X*, there are infinitely many non-isomorphic Deligne–Mumford stacks with coarse space *X* and degree *p* automorphism groups at the same sets of points.

Introduction 00000000000	Root Stacks •000	AS Root Stacks	Classification

Key fact: in char. 0, all stabilizers (automorphism groups) are cyclic.

So stacky curves can be locally modeled by a *root stack*: charts look like

$$U \cong [\operatorname{Spec} A/\mu_n]$$

where $A = K[y]/(y^n - \alpha)$ and μ_n is the group of *n*th roots of unity.

(Think: degree *n* branched cover mod μ_n -action, but remember the action using groupoids.)

Introduction	Root Stacks O●OO	AS Root Stacks	Classification

More rigorously:

Definition (Cadman '07, Abramovich–Olsson–Vistoli '08)

Let X be a scheme and $L \to X$ a line bundle with section $s : X \to L$. The **nth root stack** of X along (L, s) is the fibre product

$$\sqrt[n]{(L,s)/X} \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \quad x \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ X \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] \quad x^n$$

Here, $[\mathbb{A}^1/\mathbb{G}_m]$ is the classifying stack for pairs (L, s).

Interpretation: $\sqrt[n]{(L,s)/X}$ admits a canonical tensor *n*th root of (L,s), i.e. (M,t) such that $M^{\otimes n} = L$ and $t^n = s$ (after pullback).

Theorem (Geraschenko–Satriano '15)

Every smooth separated **tame** Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.

Theorem (Geraschenko–Satriano '15)

Every smooth separated **tame** Deligne–Mumford stack of finite type with trivial generic stabilizer is* a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space and a finite list of numbers corresponding to the orders of cyclic stabilizers at a finite number of stacky points.

What happens with wild stacky curves in char. p?

Introduction	Root Stacks	AS Root Stacks	Classification
0000000000	0000	•0000000	0000

In trying to classify **wild** stacky curves in char. p, we face the following problems:

- Stabilizer groups need not be cyclic (or even abelian)
- 2 Cyclic $\mathbb{Z}/p^n\mathbb{Z}$ -covers of curves occur in families
- Root stacks don't work
 - Finding $M^{\otimes p}$ is a problem
 - $[\mathbb{A}^1/\mathbb{G}_m] \to [\mathbb{A}^1/\mathbb{G}_m], x \mapsto x^p$ is a problem

Key case: cyclic $\mathbb{Z}/p\mathbb{Z}$ stabilizers

Introduction 00000000000	Root Stacks	AS Root Stacks O●OOOOOOO	Classification

Idea: replace tame cyclic covers $y^n = f(x)$ with wild cyclic covers $y^p - y = f(x)$.

More specifically: Artin–Schreier theory classifies cyclic degree *p*-covers of curves in terms of the ramification jump (e.g. if $f(x) = x^m$ then *m* is the jump).

This suggests introducing wild stacky structure using the local model

$$U = [\operatorname{Spec} A/(\mathbb{Z}/p)]$$

where $A = k[y]/(y^p - y - f(x))$ and \mathbb{Z}/p acts additively.

Introduction	Root Stacks	AS Root Stacks	Classification
0000000000	0000	0000000	0000

$$\begin{array}{ccc} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{A}^1/\mathbb{G}_m] & & & x \\ & \downarrow & & \downarrow & & & \downarrow \\ & X & & & & [\mathbb{A}^1/\mathbb{G}_m] & & & x^n \end{array}$$

Introduction	Root Stacks	AS Root Stacks	Classification
0000000000	0000	0000000	0000

$$\begin{array}{ccc} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & & [u,v] \\ & \downarrow & & \downarrow & & \downarrow \\ & X & & & (L,s) & & [\mathbb{P}^1/\mathbb{G}_a] & & & [u^p,v^p-vu^{p-1}] \end{array}$$

Introduction	Root Stacks	AS Root Stacks	Classification
0000000000	0000	00000000	0000

$$\begin{array}{ccc} \sqrt[n]{(L,s)/X} & \longrightarrow [\mathbb{P}^1/\mathbb{G}_a] & & [u,v] \\ \downarrow & & \downarrow & & \downarrow \\ X & & (L,s,f) & & [\mathbb{P}^1/\mathbb{G}_a] & & & [u^p,v^p-vu^{p-1}] \end{array}$$

Introduction	Root Stacks	AS Root Stacks	Classification
		000000000	

$$\begin{array}{ccc} \wp_1^{-1}((L,s,f)/X) & \longrightarrow & [\mathbb{P}^1/\mathbb{G}_a] & & [u,v] \\ & \downarrow & & \downarrow & & \downarrow \\ & X & & & \downarrow & & \downarrow \\ & X & & & & [\mathbb{P}^1/\mathbb{G}_a] & & & [u^p,v^p-vu^{p-1}] \end{array}$$

Introduction	Root Stacks	AS Root Stacks	Classification
0000000000	0000	000000000	0000

Definition (K.)

Fix $m \ge 1$. Let X be a scheme, $L \to X$ a line bundle and $s : X \to L$ and $f : X \to L^{\otimes m}$ two sections not vanishing simultaneously. The **Artin–Schreier root stack** of X with jump m along (L, s, f) is the normalized pullback

$$\begin{array}{ccc} \wp_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] & [u,v] \\ & \downarrow & \downarrow & & \downarrow \\ & \chi \xrightarrow{(L,s,f)} & [\mathbb{P}(1,m)/\mathbb{G}_a] & [u^p,v^p-vu^{m(p-1)}] \end{array}$$

where

- $\mathbb{P}(1,m)$ is the weighted projective line with weights (1,m)
- $\mathbb{G}_a = (k, +)$, acting additively
- $[\mathbb{P}(1,m)/\mathbb{G}_a]$ is the classifying stack for triples (L,s,f) up to the principal part of f.

Introduction	Root Stacks	AS Root Stacks	Classification
		000000000	

$$\begin{array}{ccc} \varphi_m^{-1}((L,s,f)/X) \longrightarrow [\mathbb{P}(1,m)/\mathbb{G}_a] & & [u,v] \\ & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ & X \xrightarrow{(L,s,f)} & [\mathbb{P}(1,m)/\mathbb{G}_a] & & [u^p,v^p-vu^{m(p-1)}] \end{array}$$

Interpretation: $\wp_m^{-1}((L, s, f)/X)$ admits a canonical *p*th root of *L*, i.e. a line bundle *M* such that $M^{\otimes p} = L$, and an AS root of *s*.

Introduction	Root Stacks	AS Root Stacks	Classification
		00000000	

Key example:

Consider the AS cover

$$Y : y^{p} - y = x^{-m}$$
$$\mathbb{Z}/p \downarrow$$
$$\mathbb{P}^{1} = \operatorname{Proj} k[x_{0}, x_{1}]$$

where k is an algebraically closed field of characteristic p. Then

$$\wp_m^{-1}((\mathcal{O}(1), x_0, x_1^m) / \mathbb{P}^1) \cong [Y / (\mathbb{Z}/p)].$$

In general, every AS root stack is étale-locally isomorphic to such an "elementary AS root stack".

Introduction	Root Stacks	AS Root Stacks	Classification
0000000000	0000	00000000	•000

Classification of (Some) Wild Stacky Curves

So let's classify us some wild stacky curves! (Assume: everything defined over $k = \overline{k}$)

Theorem 1 (K. '20)

Every Galois cover of curves $\varphi : Y \to X$ with an inertia group \mathbb{Z}/p factors étale-locally through an Artin–Schreier root stack:

$$\begin{array}{c} Y & \stackrel{\varphi}{\longrightarrow} X \\ \acute{et} \stackrel{\uparrow}{\mid} & \acute{et} \stackrel{\uparrow}{\mid} \\ V & \stackrel{\varphi}{\longrightarrow} \wp_m^{-1}((L,s,f)/U) & \stackrel{\longrightarrow}{\longrightarrow} U \end{array}$$

Informal consequence: there are infinitely many non-isomorphic stacky curves over \mathbb{P}^1 with a single stacky point of order p.

This phenomenon only occurs in char. p.

Introduction	Root Stacks	AS Root Stacks	Classification
			0000

Classification of (Some) Wild Stacky Curves

Main result:

Theorem 2 (K. '20)

Every stacky curve \mathcal{X} with a stacky point of order p is étale-locally isomorphic to an Artin–Schreier root stack $\wp_m^{-1}((L, s, f)/U)$ over an open subscheme U of the coarse space of \mathcal{X} .

This can even be done globally if \mathcal{X} has coarse space \mathbb{P}^1 :

Theorem 3 (K. '20)

If \mathcal{X} has coarse space \mathbb{P}^1 and all stacky points of \mathcal{X} have order p, then \mathcal{X} is isomorphic to a fibre product of AS root stacks of the form $\wp_m^{-1}((L,s,f)/\mathbb{P}^1)$ for (m,p) = 1 and (L,s,f).

Introduction 00000000000	Root Stacks	AS Root Stacks	Classification
Generalizations			

What about \mathbb{Z}/p^2 -covers, stacky points of order p^2 , and beyond?

For cyclic stabilizer groups \mathbb{Z}/p^n , Artin–Schreier theory is subsumed by **Artin–Schreier–Witt theory**:

- AS equations $y^p y = f(x)$ are replaced by Witt vector equations $\underline{y}^p \underline{y} = \underline{f}(\underline{x}) = (f_0(\underline{x}), \dots, f_n(\underline{x})).$
- Covers are characterized by sequences of ramification jumps.
- Local structure is $U = [\operatorname{Spec} A/(\mathbb{Z}/p^n)]$ where

$$A = K[\mathbf{y}]/(\mathbf{y}^p - \mathbf{y} - \mathbf{f})$$

where $\underline{\mathbf{f}} = (f_0, \dots, f_{n-1})$ is a Witt vector over \overline{K} .

This local structure can be formally introduced using **Artin–Schreier–Witt root stacks** (work in progress).

Introduction 00000000000	Root Stacks	AS Root Stacks	Classification

Generalizations

Thank you!