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Introduction

Common problem: all sorts of information is lost when we consider
quotient objects and/or singular objects.
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and intuitive) or stacks (algebraic and fancy).
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Example: For the plane curve X : y2 − x = 0, stacks remember
automorphisms like (x, y)↔ (x,−y) using groupoids
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Introduction

Solution: Keep track of lost information using orbifolds (topological
and intuitive) or stacks (algebraic and fancy).
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Goal: Classify stacky curves (= orbifold curves) in char. p
(preprint available!)
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Complex Orbifolds

Definition

A complex orbifold is a topological space admitting an atlas {Ui}
where each Ui

∼= Cn/Gi for a finite group Gi, satisfying compatibility
conditions (think: manifold atlas but with extra info).
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.
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There’s also a version of orbifold in algebraic geometry: an algebraic
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or schemes with a finite automorphism group attached at each point.
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Focus on curves for the rest of the talk
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Algebraic Stacks

There’s also a version of orbifold in algebraic geometry: an algebraic
stack.

One important class of examples can be viewed as smooth varieties
or schemes with a finite automorphism group attached at each point.

Z/6
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Focus on curves for the rest of the talk
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An Example

Example

The (compactifed) moduli space of complex elliptic curves is a stacky
P1 with a generic Z/2 and a special Z/4 and Z/6.

Z/6

Z/4

Consequence: can deduce dimension formulas for modular forms
from Riemann–Roch formula for stacks.
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Goal: Classify stacky curves in char. p.

Main obstacle to overcome:
In char. 0, local structure is determined by a cyclic group action.
In char. p, this is not enough information – need more invariants
than just the order of a cyclic group.

Results (K. ‘20):
Every p-cover of curves factors étale-locally through an
Artin–Schreier root stack.
Every stacky curve with order p automorphism group is
étale-locally an Artin–Schreier root stack.
For any algebraic curve X, there are infinitely many
non-isomorphic Deligne–Mumford stacks with coarse space X
and degree p automorphism groups at the same sets of points.
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Root Stacks

Key fact: in char. 0, all stabilizers (automorphism groups) are cyclic.

So stacky curves can be locally modeled by a root stack: charts look
like

U ∼= [SpecA/µn]

where A = K[y]/(yn − α) and µn is the group of nth roots of unity.

(Think: degree n branched cover mod µn-action, but remember the
action using groupoids.)
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Root Stacks

More rigorously:

Definition (Cadman ‘07, Abramovich–Olsson–Vistoli ‘08)

Let X be a scheme and L→ X a line bundle with section s : X → L.
The nth root stack of X along (L, s) is the fibre product

n
√

(L, s)/X [A1/Gm]

X [A1/Gm]

x

xn
(L, s)

Here, [A1/Gm] is the classifying stack for pairs (L, s).

Interpretation: n
√

(L, s)/X admits a canonical tensor nth root of
(L, s), i.e. (M, t) such that M⊗n = L and tn = s (after pullback).
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Root Stacks

Theorem (Geraschenko–Satriano ‘15)

Every smooth separated tame Deligne–Mumford stack of finite type
with trivial generic stabilizer is∗ a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space
and a finite list of numbers corresponding to the orders of cyclic
stabilizers at a finite number of stacky points.

16 5 3 60
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Root Stacks

Theorem (Geraschenko–Satriano ‘15)

Every smooth separated tame Deligne–Mumford stack of finite type
with trivial generic stabilizer is∗ a root stack over its coarse space.

Corollary

Tame stacky curves are completely described by their coarse space
and a finite list of numbers corresponding to the orders of cyclic
stabilizers at a finite number of stacky points.
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What happens with wild stacky curves in char. p?
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Artin–Schreier Root Stacks

In trying to classify wild stacky curves in char. p, we face the following
problems:

1 Stabilizer groups need not be cyclic (or even abelian)
2 Cyclic Z/pnZ-covers of curves occur in families
3 Root stacks don’t work

Finding M⊗p is a problem
[A1/Gm] → [A1/Gm], x 7→ xp is a problem

Key case: cyclic Z/pZ stabilizers
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Artin–Schreier Root Stacks

Idea: replace tame cyclic covers yn = f(x) with wild cyclic covers
yp − y = f(x).

More specifically: Artin–Schreier theory classifies cyclic degree
p-covers of curves in terms of the ramification jump (e.g. if
f(x) = xm then m is the jump).

This suggests introducing wild stacky structure using the local model

U = [SpecA/(Z/p)]

where A = k[y]/(yp − y − f(x)) and Z/p acts additively.
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [A1/Gm]

X [A1/Gm]

x

xn
(L, s)
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s)
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Artin–Schreier Root Stacks

How do we do it?

n
√

(L, s)/X [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s, f)
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Artin–Schreier Root Stacks

How do we do it?

℘−1
1 ((L, s, f)/X) [P1/Ga]

X [P1/Ga]

[u, v]

[up, vp − vup−1]
(L, s, f)
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Artin–Schreier Root Stacks

Definition (K.)

Fix m ≥ 1. Let X be a scheme, L→ X a line bundle and s : X → L
and f : X → L⊗m two sections not vanishing simultaneously. The
Artin–Schreier root stack of X with jump m along (L, s, f) is the
normalized pullback

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

[u, v]

[up, vp − vum(p−1)]
(L, s, f)

ν

where
P(1,m) is the weighted projective line with weights (1,m)

Ga = (k,+), acting additively
[P(1,m)/Ga] is the classifying stack for triples (L, s, f) up to the
principal part of f .
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Artin–Schreier Root Stacks

℘−1
m ((L, s, f)/X) [P(1,m)/Ga]

X [P(1,m)/Ga]

[u, v]

[up, vp − vum(p−1)]
(L, s, f)

ν

Interpretation: ℘−1
m ((L, s, f)/X) admits a canonical pth root of L, i.e.

a line bundle M such that M⊗p = L, and an AS root of s.
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Artin–Schreier Root Stacks

Key example:

Example (K.)

Consider the AS cover

P1 = Proj k[x0, x1]

Y : yp − y = x−m

Z/p

where k is an algebraically closed field of characteristic p. Then

℘−1
m ((O(1), x0, x

m
1 )/P1) ∼= [Y/(Z/p)].

In general, every AS root stack is étale-locally isomorphic to such an
“elementary AS root stack”.
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Classification of (Some) Wild Stacky Curves

So let’s classify us some wild stacky curves!
(Assume: everything defined over k = k̄)

Theorem 1 (K. ’20)

Every Galois cover of curves ϕ : Y → X with an inertia group Z/p
factors étale-locally through an Artin–Schreier root stack:

Y X

V ℘−1
m ((L, s, f)/U) U

ϕ

ét ét

Informal consequence: there are infinitely many non-isomorphic
stacky curves over P1 with a single stacky point of order p.

This phenomenon only occurs in char. p.
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Classification of (Some) Wild Stacky Curves

Main result:

Theorem 2 (K. ’20)

Every stacky curve X with a stacky point of order p is étale-locally
isomorphic to an Artin–Schreier root stack ℘−1

m ((L, s, f)/U) over an
open subscheme U of the coarse space of X .

This can even be done globally if X has coarse space P1:

Theorem 3 (K. ’20)

If X has coarse space P1 and all stacky points of X have order p,
then X is isomorphic to a fibre product of AS root stacks of the form
℘−1
m ((L, s, f)/P1) for (m, p) = 1 and (L, s, f).
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Generalizations

What about Z/p2-covers, stacky points of order p2, and beyond?

For cyclic stabilizer groups Z/pn, Artin–Schreier theory is subsumed
by Artin–Schreier–Witt theory:

AS equations yp − y = f(x) are replaced by Witt vector
equations yp − y = f(x) = (f0(x), . . . , fn(x)).

Covers are characterized by sequences of ramification jumps.

Local structure is U = [SpecA/(Z/pn)] where

A = K[y]/(yp − y− f)

where f = (f0, . . . , fn−1) is a Witt vector over K.
This local structure can be formally introduced using
Artin–Schreier–Witt root stacks (work in progress).
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Generalizations

Thank you!
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