Topology and Diophantine Equations

David Conwin (joint w/ Tomer Schlank)

§1 History

Let \(k \) n.f. \(X/k \) variety

\(\square \) How to determine if \(X(k) = \emptyset \)?

\[X(k) = \emptyset \iff X(A_k) = \emptyset \]

Local-global principle

Lind-Reichardt (40's)

(Selmer) counterexamples. Used QR to prove \(X(k) = \emptyset \)
\[QR \Rightarrow CFT \]

Manin (‘71) used CFT via Brauer group \(H_{et}^2(X; G_m) \)

defined \(X(k) \subseteq X(A_k)^{Br} \subseteq X(A_k) \)

can be empty even if nonempty

Skorobogatov In cases where \(X(k) = \emptyset \) but \(X(A_k)^{Br} \neq \emptyset \)

\(X(k) \subseteq X(A_k)^{et Br} \subseteq X(A_k)^{Br} \)

Poonen ’08 found \(X \) s.t. \(X(k) = \emptyset \)

but \(X(A_k)^{et Br} \neq \emptyset \)
Poonen's Counterexample

\[X \xrightarrow{f} C \text{ proper flat} \]

\[C \text{ curve s.t. } |C(k)| < \infty \]

\[\dim X = 3 \]

\[\forall p \in C(k), f^{-1}(p) \text{ Châtelet surface} \]

\[\text{s.t. } V/\![\![A_{k}]\!\!]^{Br} = \emptyset \]

Easy to show \(X(k) = \emptyset \)

But \(X(\overline{A_{k}})^{\text{et}} \neq \emptyset \)

Key: \(f \) not smooth, i.e. not a fibration
Philosophy of Harpaz-Schlank

\(Br_1 \rightarrow \text{étale descent are étale homotopical} \)

\[Br(x)[n] \times H^2_{\text{ét}}(x; \mathbb{Z}/n(1)) \]

\(\ker = \text{Pic}/n \)

\(\text{locally const. coeff.} \)

\(\text{finite} \rightarrow \text{étale covers} \rightarrow \Pi_1 \)

HS developed étale htpy obstruction.

Thm (Harpaz-Schlank)

étale homotopy obstruction same as étale \(\text{Br} \) for \(k \) n.f.
Thm (C. Schlicht) If \(f: X \to C \)
proper and smooth, \(\ell \underline{\text{tr}}(C) < \infty \),
\(k \) tot. imaginary, then

\[
X(A_k) \overset{\text{EtBr}}{\to} \emptyset
\]

idea of proofstrong \(\text{prop} \Rightarrow \text{fibration} \)
can relate \(\text{etBr} \) on \(X \) to
\(\text{etBr} \) on base and on fibers over \(C(k) \)
tool long exact sequence of htpy groups
and equivalence btw \(\text{etBr} \) and htpy
obstructions