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This is the Extended Edition

When preparing for my talk, I had to cut a certain amount of
material. Those are the breaks, and I’m sure my talk went
better for fitting in the allotted time. On the other hand, some
of what got cut is closely related to material that other
speakers have discussed. So taking advantage of the online
format, I am providing this version of the slides with some of
this relevant material put back in IN PURPLE.



CM Points on
X0(N)

Pete L. Clark

Torsion Subgoups of Elliptic Curves

Let E/F be an elliptic curve over a number field F .

E(F )[tors] is finite. By Merel (1996), only finitely many
groups arise for each d = [F : Q].

Can we find all possibilities, for each d??

Yes, for... d = 1 (Mazur, 1970s) d = 2 (Kamienny, Kenku,
Momose, 1990s) d = 3 (Derickx, Etropolski, Morrow, van
Hoeij, Zureick-Brown, 20??)

Here I want to discuss work which should lead to a complete
solution in the CM case.
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Motivating Problem: Fibers Over J

Let X/Q be a modular curve: say X0(N), X1(N), X(N) or
X(M,N). Let π : X → X(1) be the map to the j-line. Given
a closed point J ∈ X(1), understand the fiber of π over X.

It’s a case of the classic ANT problem: how do prime ideals
split in finite extensions of Dedekind domains?

Away from J = 0, 1728,∞, no ramification. Want to count
upstairs primes – closed points P lying over J – and residual
degrees dP

dJ
= [Q(P ) : Q(J)]. Determine Q(P ) if possible.

For fixed J , it’s in principle equivalent to understanding adelic
Galois representations on E with j(E) = J . It’s more
interesting to work uniformly across sets of J . (Over J ∈ Q,
this is “Serre’s Uniformity Problem.”)

All hail the triumvirate: torsion subgroups ⇐⇒ points on
modular curves ⇐⇒ Galois representations.
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The CM Case

We will work in the CM case. Here much more is known.
After pioneering work of Silverberg (1988, 1992) and recent
work of Lozano-Robledo, Bourdon, Clark, Pollack, Stankewicz,
we are getting close to complete answers.

So let’s try to get even closer!

2019 work of Lozano-Robledo gives lots of information on the
mod N and `-adic Galois reps on a CM elliptic curve over
Q(J). His work in progress should do even more.
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Imaginary Quadratic Orders

CM setup: an elliptic curve E/C ∼= C/Λ has complex
multiplication if EndE = {α ∈ C | αΛ ⊂ Λ} ) Z, in which
case EndE is an order O in an imaginary quadratic field K.

K = Q(∆K) an imaginary quadratic field. For f ∈ Z+, unique
order O = O(∆) in K with [ZK : O] = f, of discriminant
∆ = f2∆K . E/C has ∆-CM if EndE ∼= O(∆).

The ∆-CM j-invariants form a single closed point J∆ on
X(1)/Q, of degree h∆ = # PicO(∆).

In other words, the j-invariants of ∆-CM elliptic curves form a
complete, single Galois orbit. Our favorite j-invariant in this
orbit is j∆ := j(C/O) ∈ R. More on this later.
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Extended Slide: The Main Theorem of CM

In the case X = X(N), which is a GL2(Z/NZ)/{±1}-Galois
covering of X(1) (and cofinal in all modular curves), work of
Stevenhagen (and later, Bourdon-Clark and Lozano-Robledo)
determines the splitting field of the fiber over J∆ ∈ X(1)/K as
an explicit class field. In principle this reduces all the fiber
computations on X → X(1)/K to class field theory.

Reminder: Reducing a problem to CFT (or group theory, or
Galois theory) is not the same as solving it! Retaining some
arithmetic geometry can be helpful.

Also: want to compute fibers on X(1)/Q. Nailing down
difference between /K and /Q is the hardest part.
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Bourdon-Clark

Let M | N . Recent work of Bourdon-Clark computes the least
degree of a point in the fiber of X(M,N)→ X(1) over J∆

(for all ∆), first as curves over K and later as curves over Q.

When M ≥ 3, residue fields of closed points must contain K.

Over K, degree of every closed point is a multiple of the least
degree. Need not be the case over Q (when M ≤ 2).

Why this matters: If F is a number field such that there is a
∆-CM E/F and Z/MZ× Z/NZ ↪→ E(F ), then there is a
closed ∆-CM point P ∈ X(M,N) and a field embedding
Q(P ) ↪→ F . So knowing all “primitive” degrees of ∆-CM
closed points on X(M,N) ⇐⇒ knowing all degrees of
number fields over which there is a ∆-CM elliptic curve with
torsion subgroup containing Z/MZ× Z/NZ.
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Transitioning to X0(N)

To classify CM torsion subgroups in degree d, after
Bourdon-Clark we still to determine all primitive degrees of
closed CM points on X1(N) and X(2, 2N). (Today: X1(N).)

Fix K. From now on we assume K 6= Q(
√
−3),Q(

√
−4)

Work of Bourdon-Clark implies, for all N ≥ 3, that the fiber of
X1(N)→ X0(N) over every closed CM point is inert:
consists of one closed point and the residual degree is
multiplied by deg(X1(N)→ X0(N)) = ϕ(N)

2 . So:

Knowing degrees of all ∆-CM closed points on X0(N) ⇐⇒
knowing all degrees of ∆-CM closed points on X1(N).
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√
−4)
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consists of one closed point and the residual degree is
multiplied by deg(X1(N)→ X0(N)) = ϕ(N)
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Main Result on X0(N)

MAIN RESULT: for all ∆ (with ∆K < −4) and all N ∈ Z+,
we determine the fiber of the Q-morphism X0(N)→ X(1)
over J∆

and identify the fields Q(P ).
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The rational ring class field I

The field of moduli Q(ϕ) of an isogeny ϕ : E → E′ satisfies

Q(ϕ) ⊃ Q(j(E), j(E′)).

FACT: If E has no CM, then Q(ϕ) = Q(j(E), j(E′)). Not
true in CM case, but not far off!

(It turns out that Q(ϕ) = Q(j(E), j(E′)) or K(j(E), j(E′)).)

For ∆ = f2∆K , we define the rational ring class field

Q(f) := Q(j∆) = Q(j(C/O(∆)))

and the ring class field

K(f) := K(j∆).

We have Q(f1)Q(f2) = Q(lcm(f1, f2)).

This would compute Q(j(E), j(E′)) except....
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The rational ring class field II

...the field Q(f)/Q is not [except in finitely many cases] Galois.

But it’s close. K(f)/Q is Galois, so if Q(f)/Q is not Galois, its
Galois closure is K(f).

The number of real ∆-CM j-invariants is

h2(∆) := #(PicO(∆))[2].

Gauss’s genus theory gives a formula for this in terms of ∆.

Q(f)/Q is Galois iff h(∆) = h2(∆), and if j is a ∆-CM
j-invariant, then j ∈ Q(f) iff j ∈ R, since Q(f) = K(f)c.
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A Crude Form of the Answer

A useful upper bound on Q(ϕ):

Theorem (Parish, 1989)

For any cyclic N -isogeny ϕ : E → E′ such that E has
∆(= f2∆K)-CM, we have K(ϕ) ⊂ K(fN).

Our main result will give, in particular, that for any cyclic
N -isogeny ϕ : E → E′ with E ∆-CM, then Q(ϕ) is (up to
field isomorphism) either Q(M f) or K(M f) for some M | N .

This explains the tensor products of such fields in the next slide.
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Reduction to the Prime Power Case

Reduction to X0(`a) is straightforward, though a bit technical.

Underlying Principle: If gcd(N1, N2) = 1, then
X0(N1N2)→ X(1) is the fiber product of X0(N1)→ X(1)
and X0(N2)→ X(1).

(NOT true for X1(N)....isogenies are better.)

Using this and the fact that if gcd(f1, f2) = f, then

Q(f1)⊗Q(f) Q(f2) ∼= Q(lcm(f1, f2)),

Q(f1)⊗Q(f) K(f2) ∼= K(lcm(f1, f2)),

K(f1)⊗Q(f) K(f2) ∼= K(lcm(f1, f2))×K(lcm(f1, f2)),

we reduce to the prime power case.
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Um, I was told there would be volcanoes

Fix a prime `. The (K, `)-isogeny volcano is a directed
multigraph with vertices the j-invariants of K-CM elliptic
curves E/C and with edges E → E′ corresponding to
`-isogenies ϕ : E → E′ up to isomorphism on E′. Every edge
has an inverse edge, the dual isogeny. The level of a vertex is
ord`(f).

Since `-power isogenies can only change the `-part of f, the
graph breaks up into pieces parameterized by f0, the prime-to-`
part of f. Let’s also fix f0.
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Isogeny Volcanoes

The graph has a very simple structure:

• Every vertex has outward degree `+ 1.

• The set of level 0 vertices is the surface. Edges lying within

the surface are horizontal. Each surface vertex has 1 +
(

∆K
`

)
horizontal outward edges.
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Isogeny Volcanoes II

• The other edges are ascending, going from level L ≥ 1 to
level L− 1, or descending, the inverses of ascending edges.

• Every vertex not on the surface has a unique ascending
outward edge. From this one deduces the number of
descending outward edges every vertex has (it’s ` away from
the surface, and always at least 1).
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Paths in Isogeny Volcanoes

Key Fact: Cyclic `a-isogenies ϕ : E → E′ ⇐⇒ length a
nonbacktracking paths from j(E) to j(E′). Such paths are
restricted: they must, ascend, then be horizontal, then
descend. (Some parts may have length zero.) So you can count
them without real trouble.
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Fields of moduli on X1(`
a)/K

We can now compute K(ϕ) for any cyclic `a-isogeny
ϕ : E → E′. If E has level c, E′ has level c′ and
C := max(c, c′), then

K(ϕ) ⊃ K(j(E), j(E′)) = K(`Cf0).

Using Parish’s Theorem one sees that K(ϕ) ⊂ K(`Cf0), so

K(ϕ) = K(`Cf0).

There is still a nontrivial counting problem.



CM Points on
X0(N)

Pete L. Clark

Fields of moduli on X1(`
a)/K

We can now compute K(ϕ) for any cyclic `a-isogeny
ϕ : E → E′. If E has level c, E′ has level c′ and
C := max(c, c′), then

K(ϕ) ⊃ K(j(E), j(E′)) = K(`Cf0).

Using Parish’s Theorem one sees that K(ϕ) ⊂ K(`Cf0), so

K(ϕ) = K(`Cf0).

There is still a nontrivial counting problem.



CM Points on
X0(N)

Pete L. Clark

Fields of moduli on X1(`
a)/K

We can now compute K(ϕ) for any cyclic `a-isogeny
ϕ : E → E′. If E has level c, E′ has level c′ and
C := max(c, c′), then

K(ϕ) ⊃ K(j(E), j(E′)) = K(`Cf0).

Using Parish’s Theorem one sees that K(ϕ) ⊂ K(`Cf0), so

K(ϕ) = K(`Cf0).

There is still a nontrivial counting problem.



CM Points on
X0(N)

Pete L. Clark

Volcanoes and Reality

We want to work over Q. If ϕ : E → E′ is a cyclic `a-isogeny
with E ∆-CM, WLOG we may assume j(E) = j∆. If E has
level c and E′ has level c′, we may assume c ≥ c′: otherwise
switch to ϕ∨, which has the same field of moduli.

Then:

Q(j(E)) = Q(`cf0) ⊂ Q(ϕ) ⊂ K(ϕ) = K(`cf0),

so the only question is whether Q(ϕ) contains K.

There is an action of complex conjugation c on the volcano.
Call a path real if all its edges are c-fixed.
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Reality of the Path Determines the Field of Moduli

If the path is not real then either
(i) It contains a non-real surface edge, or
(ii) The terminal vertex is not real.

Case (i) is less interesting: trust me that Q(ϕ) contains K.

In Case (ii) Q(ϕ) contains Q(`cf0) and a field that is conjugate
but not equal to Q(`c

′
f0). By what we saw above, that means

it contains K.

In order to implement this, we have to determine the action of
complex conjugation on the isogeny volcano.

I did so. (Tell you about it some other time!)

Finally, one is left with a refined version of the above
combinatorial problem: count real / complex paths, up to
closed points. It takes some work...Hope to have a preprint
available by the end of June.
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Thanks!

Thanks for listening, and thanks to the organizers.


