A Classification of Rational Isogeny-Torsion Graphs over \mathbb{Q}

Garen Chiloyan Joint with Álvaro Lozano-Robledo
University of Connecticut
June 13, 2020

Elliptic Curves

Definition

A rational elliptic curve, E / \mathbb{Q}, is a smooth projective curve of the form

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}
$$

for some $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{Q}$ with a point at infinity, $\mathcal{O}=[0: 1: 0]$.
We can dehomogenize to get an affine equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

so long as we remember the point at infinity \mathcal{O}.

Elliptic Curves as Groups

An elliptic curve has the structure of an abelian group with identity \mathcal{O} under the operation:

$E(\mathbb{Q})$ and $E(\mathbb{Q})_{\text {tors }}$

Definition

Let E / \mathbb{Q} be an elliptic curve. A point $P \in E$ is defined over \mathbb{Q} if $P=\mathcal{O}$ or $P=(a, b)$ for some $a, b \in \mathbb{Q}$. The set of all elements of E defined over \mathbb{Q} is denoted $E(\mathbb{Q})$.

Theorem (Mordell-Weil, 1922)

$E(\mathbb{Q})$ is a finitely generated abelian group.

Theorem (Mazur, 1978)

Let $E(\mathbb{Q})_{\text {tors }}$ be the set of all elements of $E(\mathbb{Q})$ of finite order. $E(\mathbb{Q})_{\text {tors }}$ is isomorphic to one of the following groups:

$$
\begin{aligned}
& \mathbb{Z} / M \mathbb{Z} \text { for } 1 \leq M \leq 10 \text { or } M=12 \text { or } \\
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z} \text { for } N=2,4,6, \text { or } 8
\end{aligned}
$$

N-Torsion and Galois Representations

Theorem

Let E / \mathbb{Q} be an elliptic curve and N a positive integer. The set of all elements of E with order divisible by N, denoted $E[N]$, is isomorphic to $\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}$.

Let $G_{\mathbb{Q}}:=G a l(\overline{\mathbb{Q}} / \mathbb{Q}) . G_{\mathbb{Q}}$ acts on E by $\sigma \cdot(a, b)=(\sigma(a), \sigma(b))$ and fixing the identity \mathcal{O}.
The action on E by $G_{\mathbb{Q}}$ commutes with the group operation on E, so $G_{\mathbb{Q}}$ also acts on $E[N]$.

Picking a basis for $E[N]$, we get the $\bmod N$ representation attached to E

$$
\rho_{E, N}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[N]) \cong G L(2, \mathbb{Z} / N \mathbb{Z})
$$

Isogenies

Definition

Let E / \mathbb{Q} and E^{\prime} / \mathbb{Q} be elliptic curves. An isogeny mapping E to E^{\prime} is a morphism $\phi: E \rightarrow E^{\prime}$ such that $\phi\left(\mathcal{O}_{E}\right)=\mathcal{O}_{E^{\prime}}$. The degree of an isogeny is the cardinality of its kernel.
E is said to be isogenous to E^{\prime} if there exists a non-constant isogeny mapping E to E^{\prime}. The set of all elliptic curves isogenous to E is called the isogeny class of E.

Theorem

Let E / \mathbb{Q} be an elliptic curve and let H be a finite subgroup of E.
There is a unique elliptic curve up to isomorphism, E / H and an isogeny $\phi_{H}: E \rightarrow E / H$ such that $\operatorname{ker}\left(\phi_{H}\right)=H . E / H$ is said to be generated by H.
If moreover, $\sigma(H)=H$ for all $\sigma \in G_{\mathbb{Q}}$, then ϕ_{H} and E / H are rational. In the case when $\sigma(H)=H$ for all $\sigma \in G_{\mathbb{Q}}$, both H and ϕ_{H} are said to be \mathbb{Q}-rational.

Rational Isogeny Graphs

Definition

Let E / \mathbb{Q} be a rational elliptic curve. The isogeny graph of E is simply a visualization of the isogeny class of E with edges being isogenies generated by the finite, cyclic, \mathbb{Q}-rational subgroups of E and vertices being elliptic curves generated by the finite, cyclic, \mathbb{Q}-rational subgroups of E.

Example

Let $E / \mathbb{Q}: y^{2}+x y+y=x^{3}-x^{2}-6 x-4$ with LMFDB label 17.a2.
Then the following is the rational isogeny graph of E :

Initial Questions

Let E / \mathbb{Q} and E^{\prime} / \mathbb{Q} be isogenous rational elliptic curves.

Questions:

- Given $E(\mathbb{Q})_{\text {tors }}$, what are the possibilities for $E^{\prime}(\mathbb{Q})_{\text {tors }}$?
- What are the possibilities of rational torsion for each curve isogenous to E ?
- What are the possibilities of rational torsion for each vertex of the isogeny graph of E ?

Rational Isogeny-Torsion Graphs

Definition

Let E / \mathbb{Q} be an elliptic curve. The rational isogeny-torsion graph of E is the rational isogeny graph of E with the classification of the torsion subgroups of each vertex.

Example

Let $E / \mathbb{Q}: y^{2}+x y+y=x^{3}-x^{2}-6 x-4$.

More Examples of Isogeny-Torsion Graphs

Classification of Rational Isogeny Graphs

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q}-rational isogenies gives a classification of the sizes and shapes of all rational isogeny graphs. They are of the following type:

Classification of Rational Isogeny Graphs

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q}-rational isogenies gives a classification of the sizes and shapes of all rational isogeny graphs. They are of the following type:

- L_{k} : Linear graphs with k vertices $(k=1,2,3,4)$ such that each isogeny is cyclic, \mathbb{Q}-rational of p-power degree, for a single prime p, but no curves with full two-torsion.

Classification of Rational Isogeny Graphs

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q}-rational isogenies gives a classification of the sizes and shapes of all rational isogeny graphs. They are of the following type:

- L_{k} : Linear graphs with k vertices $(k=1,2,3,4)$ such that each isogeny is cyclic, \mathbb{Q}-rational of p-power degree, for a single prime p, but no curves with full two-torsion.
- R_{k} : Rectangular graphs with k vertices $(k=4$ or 6$)$ such that each isogeny is cyclic, \mathbb{Q}-rational of degree divisible by p or q for two distinct primes p and q but no curves with full two-torsion.

Classification of Rational Isogeny Graphs

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q}-rational isogenies gives a classification of the sizes and shapes of all rational isogeny graphs. They are of the following type:

- L_{k} : Linear graphs with k vertices $(k=1,2,3,4)$ such that each isogeny is cyclic, \mathbb{Q}-rational of p-power degree, for a single prime p, but no curves with full two-torsion.
- R_{k} : Rectangular graphs with k vertices $(k=4$ or 6$)$ such that each isogeny is cyclic, \mathbb{Q}-rational of degree divisible by p or q for two distinct primes p and q but no curves with full two-torsion.
- T_{k} : Graphs with k vertices $(k=4,6$, or 8$)$ such that each isogeny is cyclic \mathbb{Q}-rational of 2-power degree. In this case, one, two, or three curves in the isogeny class have full Two-Torsion.

Classification of Rational Isogeny Graphs

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q}-rational isogenies gives a classification of the sizes and shapes of all rational isogeny graphs. They are of the following type:

- L_{k} : Linear graphs with k vertices $(k=1,2,3,4)$ such that each isogeny is cyclic, \mathbb{Q}-rational of p-power degree, for a single prime p, but no curves with full two-torsion.
- R_{k} : Rectangular graphs with k vertices $(k=4$ or 6$)$ such that each isogeny is cyclic, \mathbb{Q}-rational of degree divisible by p or q for two distinct primes p and q but no curves with full two-torsion.
- T_{k} : Graphs with k vertices $(k=4,6$, or 8$)$ such that each isogeny is cyclic \mathbb{Q}-rational of 2-power degree. In this case, one, two, or three curves in the isogeny class have full Two-Torsion.
- S: Graphs with 8 vertices such that each isogeny is cyclic \mathbb{Q}-rational of degree divisible by 2 or 3 and two curves in the isogeny class have full two-torsion.

Main Result

MAIN QUESTION

Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of all rational isogeny graphs and the torsion groups of their vertices?

Main Result

MAIN QUESTION

Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of all rational isogeny graphs and the torsion groups of their vertices? YES!

Main Result

MAIN QUESTION

Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of all rational isogeny graphs and the torsion groups of their vertices? YES!

Theorem (C., Lozano-Robledo)

There are 37 rational isogeny-torsion graphs.
Moreover, there are 12 graphs of L_{k} type, 8 graphs of R_{k} type, 13 graphs of T_{k} type, and 4 graphs of S type.

Note: for the following, we abbreviate $\mathbb{Z} / a \mathbb{Z}$ as [a] and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ by $[2, b]$.

Table of L_{k} graphs

Graph Type	Label	Isomorphism Types	LMFDB Label
E_{1}	L_{1}	$([1])$	$37 . \mathrm{a}$
$E_{1}-E_{2}$		$([1],[1])$	$75 . \mathrm{c}$
		$([2],[2])$	$46 . \mathrm{a}$
		$([3],[1])$	$44 . \mathrm{a}$
		$([5],[1])$	$38 . \mathrm{b}$
	$([7],[1])$	$26 . \mathrm{b}$	
$E_{1}-E_{2}-E_{3}$	L_{3}	$([1],[1],[1])$	$99 . \mathrm{d}$
		$([3],[3],[1])$	$19 . \mathrm{a}$
		$11 . \mathrm{a}$	
	$([9],[3],[1])$	$54 . \mathrm{b}$	
$E_{1}-E_{2}-E_{3}-E_{4}$	L_{4}	$([1],[1],[1],[1])$	$432 . \mathrm{e}$
		$([3],[3],[3],[1])$	$27 . \mathrm{a}$

Table 1. The list of all L_{k} rational isogeny-torsion graphs

Table of L_{k} Graphs

- \mathcal{O}

。 $\mathbb{Z} / m \mathbb{Z} \xrightarrow{p} \mathcal{O}$
If $p \geq 11$, then $m=1$. If $p=3,5$, or 7 , then $m=1$ or p.
. $\mathbb{Z} / 2 \mathbb{Z} \xrightarrow{2} \mathbb{Z} / 2 \mathbb{Z}$
. $\mathbb{Z} / m \mathbb{Z} \xrightarrow{p} \mathbb{Z} / m \mathbb{Z} \xrightarrow{p} \mathcal{O}$
$p=3$ or 5 and $m=1$ or p
$. \mathbb{Z} / 9 \mathbb{Z} \xrightarrow{3} \mathbb{Z} / 3 \mathbb{Z} \xrightarrow{3} \mathcal{O}$
. $\mathbb{Z} / m \mathbb{Z} \xrightarrow{3} \mathbb{Z} / m \mathbb{Z} \xrightarrow{3} \mathbb{Z} / m \mathbb{Z} \xrightarrow{3} \mathcal{O}$ $m=1$ or 3

Table of R_{k} Graphs

Graph Type	Label	Isomorphism Types	LMFDB Label
	R_{4}	([1],[1],[1],[1])	400.f
		([2],[2],[2],[2])	49.a
		([3],[3],[1], [1])	$50 . \mathrm{a}$
		([5],[5],[1], [1])	50.b
		([6],[6],[2], [2])	20.a
		([10], [10], [2], [2])	66.c
	R_{6}	([2],[2], [2],[2],[2],[2])	98.a
		([6],[6],[6],[6],[2],[2])	$14 . \mathrm{a}$

TABLE 3. The list of all R_{k} rational isogeny-torsion graphs

R_{4} graphs

$$
\begin{aligned}
& \mathbb{Z} / m \mathbb{Z} \xrightarrow{3} \mathcal{O} \\
& p|\quad| p \\
& \mathbb{Z} / m \mathbb{Z}-\mathcal{O} \\
& p=5 \text { or } 7 \text { and } m=1 \text { or } 3 \\
& \mathbb{Z} / m \mathbb{Z} \xrightarrow{5} \mathcal{O} \\
& \mathbb{Z} / m \mathbb{Z}{ }_{5} \mathcal{O} \\
& m=1 \text { or } 5 \\
& \mathbb{Z} / m \mathbb{Z} \xrightarrow{p} \mathbb{Z} / 2 \mathbb{Z} \\
& \mathbb{Z} / m \mathbb{Z} \underset{p}{ } \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

If $p=3$ or 5 , then $m=2 p$ or 2 . If $p=7$, then $m=2$.

R_{6} Graphs

$$
\left.\begin{array}{cccc}
\mathbb{Z} / 6 \mathbb{Z} & 3 & \mathbb{Z} / 6 \mathbb{Z} & 3 \\
2 & & \mathbb{Z} / 2 \mathbb{Z} \\
2 & & & \\
\mathbb{Z} / 6 \mathbb{Z} & -3 & & \left.\right|_{2} \\
& & & \\
\hline
\end{array}\right)
$$

Table of T_{k} Graphs

Table 2. The list of all T_{k} rational isogeny-torsion graphs

T_{4} Graphs

$$
\begin{gathered}
\mathbb{Z} / 2 \mathbb{Z} \\
2 \mid
\end{gathered}
$$

T_{6} Graphs with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

T_{6} graphs with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$

T_{8} graphs with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

T_{8} Graphs with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$

T_{8} graphs with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$

Table of S graphs

Graph Type	Label	Isomorphism Types	LMFDB Label
	S	([2,2],[2,2],[2],[2],[2],[2],[2],[2])	240.b
		([2,2], [2, 2],[4],[4],[2],[2],[2],[2])	150.b
		([2,6],[2,2],[6],[2],[6],[2],[6],[2])	$30 . \mathrm{a}$
		([2,6],[2, 2], [12], [4],[6], [2],[6],[2])	$90 . \mathrm{c}$

Table 4. The list of all (possible) S rational isogeny-torsion graphs

S Type Graphs with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$

S Type Graphs with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

The following first two examples of rational isogeny-torsion graphs with 27-isogenies exist.
$\mathbb{Z} / 3 \mathbb{Z} \xrightarrow{3} \mathbb{Z} / 3 \mathbb{Z} \xrightarrow{3} \mathbb{Z} / 3 \mathbb{Z} \xrightarrow{3} \mathcal{O}$
LMFDB Label 27.a
$\mathcal{O} \xlongequal{3} \mathcal{O} \xlongequal{3} \mathcal{O}$
LMFDB Label 432.e

There are no examples of the following rational isogeny-torsion graph.
$\mathbb{Z} / 9 \mathbb{Z} \xrightarrow{3} \mathbb{Z} / 9 \mathbb{Z} \xrightarrow{3} \mathbb{Z} / 3 \mathbb{Z} \xrightarrow{3} \mathcal{O}$
Reasoning: Let E be a curve with a 27 -isogeny, then E corresponds to j-invariant $-2^{15} \cdot 3 \cdot 5^{3}$. If $P \in E[9] \backslash\{\mathcal{O}\}$, then $\mathbb{Q}(x(P))$ is a number field of degree 3,6 , or 27 .

Examples of 21-isogenies

There exist examples of the following rational isogeny-torsion graphs of degree 21

Isogeny Class 1296.f

Non-examples of 21-isogenies

There are no examples of the following rational isogeny-torsion graphs of degree 21.

Reasoning : A rational 7-isogeny maps a point of order 3 defined over \mathbb{Q} to a point of order 3 defined over \mathbb{Q}.

Reasoning : Let E / \mathbb{Q} be a curve with a \mathbb{Q}-rational 21 -isogeny. Let $P \in E[7] \backslash\{\mathcal{O}\}$, then $\mathbb{Q}(x(P))$ is a number field of degree 3 or 21 , not 1 . If E^{\prime} is a quadratic twist of E and $P^{\prime} \in E^{\prime}[7]$, then $\mathbb{Q}(x(P))=\mathbb{Q}\left(x\left(P^{\prime}\right)\right)$

Classification of T_{4} Graphs (1)

Let E / \mathbb{Q} be an elliptic curve with 4 curves in its isogeny class and

$$
E(\mathbb{Q})_{\text {tors }}=\langle P, Q\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} .
$$

What are the possible isogeny-torsion graphs of E ?

- The finite, cyclic, \mathbb{Q}-rational subgroups of E are $\{\mathcal{O}\},\langle P\rangle,\langle Q\rangle$ and $\langle P+Q\rangle$.
- $(E /\langle P\rangle)(\mathbb{Q})_{\text {tors }},(E /\langle Q\rangle)(\mathbb{Q})_{\text {tors }}$, and $(E /\langle P+Q\rangle)(\mathbb{Q})_{\text {tors }}$ are cyclic.
- E has a point of order 2 defined over \mathbb{Q}, thus all isogenous curves do too. As there are 4 curves in the isogeny class, no curve isogenous to E can have a point of odd order or order 8 defined over \mathbb{Q}.

Classification of T_{4} Graphs (2)

Let's assume the following isogeny-torsion graph exists.

Classification of T_{4} Graphs (3)

- Assume E is non-CM and $(E /\langle P\rangle)(\mathbb{Q})_{\text {tors }},(E /\langle Q\rangle)(\mathbb{Q})_{\text {tors }}$, and $(E /\langle P+Q\rangle)(\mathbb{Q})_{\text {tors }}$, are cyclic of order 4. Then the image of the mod 4 Galois representation of E is conjugate to

$$
H=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)\right\} \in G L_{2}(\mathbb{Z} / 4 \mathbb{Z})
$$

No element of H "behaves like" complex conjugation, ie, no element of H is conjugate over $G L_{2}(\mathbb{Z} / 4 \mathbb{Z})$ to $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ or $\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$.
Thus, there are no curves E without $C M$ that have an isogeny-torsion graph of the form ([2, 2], [4], [4], [4])

- Suppose E is $C M$, then there are only finitely many j-invariants that correspond to a torsion subgroup with full two-torsion.
No such curve corresponding to those j-invariants or their twists will give you an isogeny-torsion graph of the form ([2, 2], [4], [4], [4]).

All T_{4} Graphs

Classification of S Graphs (1)

The hardest part of classifying rational isogeny torsion graphs was eliminating the possibility of the following two graphs

Classification of S Graphs (2)

Classification of S Graphs (3)

- Let E / \mathbb{Q} be a curve with an isogeny-torsion graph from the last slide, then E is non-CM. The image of the mod 4 Galois representation of E is conjugate in $G L_{2}(\mathbb{Z} / 4 \mathbb{Z})$ to

$$
H=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right),\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\right\}
$$

- All curves with a 2 -adic Galois image mod 4 conjugate to H are parametrized by $X_{24 e}$ (RZB database) with j-invariant $\frac{\left(t^{4}+t^{2}+1\right)^{3}}{t^{4}\left(t^{2}+1\right)^{2}}$.
- Add a 3-isogeny. Curves with a 3-isogeny are parametrized by rational points on $X_{0}(3)$ with $j=\frac{(s+27)(s+243)^{3}}{s^{3}}$.
- Equating, we get $\frac{\left(t^{4}+t^{2}+1\right)^{3}}{t^{4}\left(t^{2}+1\right)^{2}}=\frac{(s+27)(s+243)^{3}}{s^{3}}$ and rearranging, we get a curve $C:\left(t^{4}+t^{2}+1\right)^{3} s^{3}-t^{4}\left(t^{2}+1\right)^{2}(s+27)(s+243)^{3}=0$ of genus 13.

Classification of S Graphs (4)

- There is an obvious map $(s, t) \rightarrow\left(s, t^{2}\right)$ that maps C to a curve $C^{\prime}:\left(t^{2}+t+1\right)^{3} s^{3}-t^{2}(t+1)^{2}(s+27)(s+243)^{3}=0$ of genus 6
- C^{\prime} has an automorphism $\psi(t, s, z)=\left(-t z-z^{2}, t s, t z\right)$. The quotient curve $C^{\prime \prime}=C^{\prime} /\langle\psi\rangle$ has genus 2 with equation $C^{\prime \prime}: y^{2}+x^{2} y=-x^{5}-x^{4}+4 x^{3}-2 x^{2}-9 x+2$.
- Using a descent, the Jacobian variety, $J\left(C^{\prime \prime}\right) / \mathbb{Q}$ has rank 0 and thus, we can use Chabauty's method to compute the rational points of $C^{\prime \prime}$.
- $C^{\prime \prime}$ has two rational points, namely, $[-2,-2,1]$ and $[1,0,0]$ which map backwards to the points $[t, s, z]=[-1,0,1],[0,0,1],[0,1,0]$, and $[1,0,0]$ in C^{\prime}. Each of these points have t or s coordinate to be 0 so they are all cusps (the j invariant is undefined). Thus, the two S graphs we are trying to eliminate in fact do not exist.

Begin at the beginning

\% MATHEMATICS

Home

Questions

Tags
Users
Unanswered

Isogenies between elliptic curves with specified torsion groups

Asked 4 years, 9 months ago Active 4 years, 9 months ago Viewed 120 times

For each of the 15 possible torsion groups of an elliptic curve defined over \mathbb{Q} we have an infinite family of curves with that torsion group. This sometimes goes under the name of Kubert normal form or Tate normal form.

I have been wondering if we have something similar for the following setting.
日 Let's say we have an elliptic curve E with torsion group T and an elliptic curve E^{\prime} with torsion group T^{\prime} and an isogeny $E \rightarrow E^{\prime}$.
(1) Is it possible to come up with infinite families of such pairs of isogenous curves E, E^{\prime} for each (or some) of the 15×14 pairs of torsion groups T, T^{\prime} ?

Or are there any other partial results related to this question?

```
elliptic-curves
```

share cite improve this question follow
$1,058-6$ - 12

and go on till you come to the end, then stop

Harris helped me figure it out!!!
the curve we want has genus 13. It has a map down to a curve of genus 6 .
the curve of genus 6 has an automorphism that induces a map down to a curve of genus 2
the curve of genus 2 has a jacobian of rank 0 over Q, and Chabauty computes all the rational points on this curve. There are two points
the two points on genus 2 come from 4 points in genus 6 , and they are all cusps!
so no, the elusive graphs do not exist
AWESOME

```
nice
I'm really happy
what a way to end the year
```


Questions?

