A Classification of Rational Isogeny-Torsion Graphs over \mathbb{Q}

Garen Chiloyan Joint with Álvaro Lozano-Robledo

University of Connecticut

June 13, 2020

Definition

A rational elliptic curve, E/\mathbb{Q} , is a smooth projective curve of the form

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$$

for some $a_1, a_2, a_3, a_4, a_6 \in \mathbb{Q}$ with a point at infinity, $\mathcal{O} = [0:1:0]$.

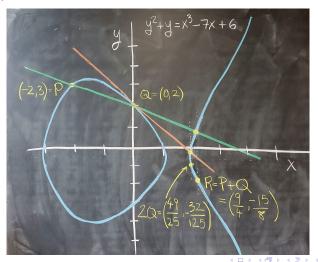
We can dehomogenize to get an affine equation of the form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

so long as we remember the point at infinity \mathcal{O} .

Elliptic Curves as Groups

An elliptic curve has the structure of an abelian group with identity $\ensuremath{\mathcal{O}}$ under the operation:



Garen Chiloyan Joint with Álvaro Lozano-Rob

$E(\mathbb{Q})$ and $E(\mathbb{Q})_{tors}$

Definition

Let E/\mathbb{Q} be an elliptic curve. A point $P \in E$ is **defined over** \mathbb{Q} if $P = \mathcal{O}$ or P = (a, b) for some $a, b \in \mathbb{Q}$. The set of all elements of E defined over \mathbb{Q} is denoted $E(\mathbb{Q})$.

Theorem (Mordell-Weil, 1922)

 $E(\mathbb{Q})$ is a finitely generated abelian group.

Theorem (Mazur, 1978)

Let $E(\mathbb{Q})_{tors}$ be the set of all elements of $E(\mathbb{Q})$ of finite order. $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups:

 $\mathbb{Z}/M\mathbb{Z}$ for $1 \leq M \leq 10$ or M = 12 or

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ for N = 2, 4, 6, or 8.

Theorem

Let E/\mathbb{Q} be an elliptic curve and N a positive integer. The set of all elements of E with order divisible by N, denoted E[N], is isomorphic to $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$.

Let $G_{\mathbb{Q}} := Gal(\overline{\mathbb{Q}}/\mathbb{Q})$. $G_{\mathbb{Q}}$ acts on E by $\sigma \cdot (a, b) = (\sigma(a), \sigma(b))$ and fixing the identity \mathcal{O} .

The action on *E* by $G_{\mathbb{Q}}$ commutes with the group operation on *E*, so $G_{\mathbb{Q}}$ also acts on *E*[*N*].

Picking a basis for E[N], we get the mod N representation attached to E

$$\rho_{E,N} \colon G_{\mathbb{Q}} \to Aut(E[N]) \cong GL(2, \mathbb{Z}/N\mathbb{Z})$$

Isogenies

Definition

Let E/\mathbb{Q} and E'/\mathbb{Q} be elliptic curves. An **isogeny** mapping E to E' is a morphism $\phi: E \to E'$ such that $\phi(\mathcal{O}_E) = \mathcal{O}_{E'}$. The **degree** of an isogeny is the cardinality of its kernel. E is said to be **isogenous** to E' if there exists a *non-constant* isogeny mapping E to E'. The set of all elliptic curves isogenous to E is called the **isogeny class of** E.

Theorem

Let E/\mathbb{Q} be an elliptic curve and let H be a finite subgroup of E. There is a unique elliptic curve up to isomorphism, E/H and an isogeny $\phi_H \colon E \to E/H$ such that $\ker(\phi_H) = H$. E/H is said to be **generated** by H.

If moreover, $\sigma(H) = H$ for all $\sigma \in G_{\mathbb{Q}}$, then ϕ_H and E/H are rational. In the case when $\sigma(H) = H$ for all $\sigma \in G_{\mathbb{Q}}$, both H and ϕ_H are said to be \mathbb{Q} -rational.

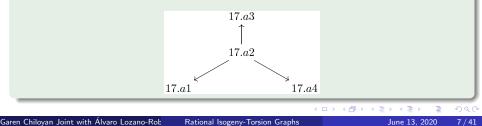
Rational Isogeny Graphs

Definition

Let E/\mathbb{Q} be a rational elliptic curve. The **isogeny graph** of *E* is simply a visualization of the isogeny class of *E* with edges being isogenies generated by the finite, cyclic, \mathbb{Q} -rational subgroups of *E* and vertices being elliptic curves generated by the finite, cyclic, \mathbb{Q} -rational subgroups of *E*.

Example

Let E/\mathbb{Q} : $y^2 + xy + y = x^3 - x^2 - 6x - 4$ with LMFDB label 17.a2. Then the following is the rational isogeny graph of E:



Let E/\mathbb{Q} and E'/\mathbb{Q} be isogenous rational elliptic curves.

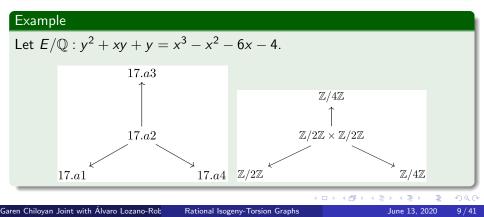
Questions:

- Given $E(\mathbb{Q})_{tors}$, what are the possibilities for $E'(\mathbb{Q})_{tors}$?
- What are the possibilities of rational torsion for each curve isogenous to *E*?
- What are the possibilities of rational torsion for each vertex of the isogeny graph of *E*?

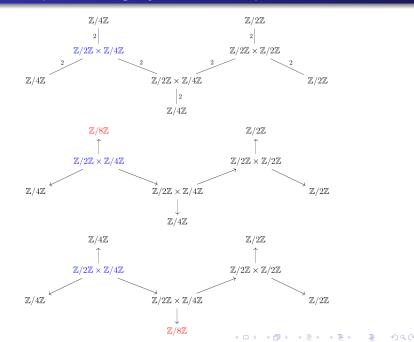
Rational Isogeny-Torsion Graphs

Definition

Let E/\mathbb{Q} be an elliptic curve. The **rational isogeny-torsion graph** of *E* is the rational isogeny graph of *E* with the classification of the torsion subgroups of each vertex.



More Examples of Isogeny-Torsion Graphs



Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q} -rational isogenies gives a classification of the sizes and shapes of *all* rational isogeny graphs. They are of the following type:

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q} -rational isogenies gives a classification of the sizes and shapes of *all* rational isogeny graphs. They are of the following type:

L_k: Linear graphs with k vertices (k = 1, 2, 3, 4) such that each isogeny is cyclic, Q-rational of p-power degree, for a single prime p, but no curves with full two-torsion.

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q} -rational isogenies gives a classification of the sizes and shapes of *all* rational isogeny graphs. They are of the following type:

- L_k: Linear graphs with k vertices (k = 1, 2, 3, 4) such that each isogeny is cyclic, Q-rational of p-power degree, for a single prime p, but no curves with full two-torsion.
- *R_k*: Rectangular graphs with *k* vertices (*k* = 4 or 6) such that each isogeny is cyclic, Q-rational of degree divisible by *p* or *q* for two distinct primes *p* and *q* but no curves with full two-torsion.

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q} -rational isogenies gives a classification of the sizes and shapes of *all* rational isogeny graphs. They are of the following type:

- L_k: Linear graphs with k vertices (k = 1, 2, 3, 4) such that each isogeny is cyclic, Q-rational of p-power degree, for a single prime p, but no curves with full two-torsion.
- *R_k*: Rectangular graphs with *k* vertices (*k* = 4 or 6) such that each isogeny is cyclic, Q-rational of degree divisible by *p* or *q* for two distinct primes *p* and *q* but no curves with full two-torsion.
- T_k: Graphs with k vertices (k = 4, 6, or 8) such that each isogeny is cyclic Q-rational of 2-power degree. In this case, one, two, or three curves in the isogeny class have full Two-Torsion.

Kenku's theorem (1980) on the classification of the degrees of finite-degree, cyclic, \mathbb{Q} -rational isogenies gives a classification of the sizes and shapes of *all* rational isogeny graphs. They are of the following type:

- L_k: Linear graphs with k vertices (k = 1, 2, 3, 4) such that each isogeny is cyclic, Q-rational of p-power degree, for a single prime p, but no curves with full two-torsion.
- *R_k*: Rectangular graphs with *k* vertices (*k* = 4 or 6) such that each isogeny is cyclic, Q-rational of degree divisible by *p* or *q* for two distinct primes *p* and *q* but no curves with full two-torsion.
- T_k: Graphs with k vertices (k = 4, 6, or 8) such that each isogeny is cyclic Q-rational of 2-power degree. In this case, one, two, or three curves in the isogeny class have full Two-Torsion.
- S: Graphs with 8 vertices such that each isogeny is cyclic Q-rational of degree divisible by 2 or 3 and two curves in the isogeny class have full two-torsion.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

MAIN QUESTION Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of all rational isogeny graphs *and* the torsion groups of their vertices?

MAIN QUESTION Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of all rational isogeny graphs *and* the torsion groups of their vertices? **YES**!

MAIN QUESTION Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of all rational isogeny graphs *and* the torsion groups of their vertices? **YES!**

Theorem (C., Lozano-Robledo)

There are 37 rational isogeny-torsion graphs. Moreover, there are 12 graphs of L_k type, 8 graphs of R_k type, 13 graphs of T_k type, and 4 graphs of S type.

Note: for the following, we abbreviate $\mathbb{Z}/a\mathbb{Z}$ as [a] and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ by [2, b].

Table of L_k graphs

Graph Type	Label	Isomorphism Types	LMFDB Label
E_1	L_1	([1])	37.a
$E_1 - E_2$	L_2	([1], [1])	75.c
		([2], [2])	46.a
		([3], [1])	44.a
		([5], [1])	38.b
		([7], [1])	26.b
$E_1 - E_2 - E_3$	L_3	([1], [1], [1])	99.d
		([3], [3], [1])	19.a
		([5], [5], [1])	11.a
		([9], [3], [1])	$54.\mathrm{b}$
$E_1 - E_2 - E_3 - E_4$	L_4	([1], [1], [1], [1])	432.e
		([3],[3],[3],[1])	27.a
TABLE 1. The list of all L_k rational isogeny-torsion graphs			

Table of L_k Graphs

• *O*

$$\mathbb{Z}/m\mathbb{Z} \xrightarrow{p} \mathcal{O}$$

If $p \ge 11$, then m = 1. If p = 3, 5, or 7, then m = 1 or p.

$$\mathbb{Z}/2\mathbb{Z} \stackrel{2}{\longrightarrow} \mathbb{Z}/2\mathbb{Z}$$

$$\mathbb{Z}/m\mathbb{Z} \stackrel{p}{\longrightarrow} \mathbb{Z}/m\mathbb{Z} \stackrel{p}{\longrightarrow} \mathcal{O}$$

p = 3 or 5 and m = 1 or p

$$\mathbb{Z}/9\mathbb{Z} \xrightarrow{3} \mathbb{Z}/3\mathbb{Z} \xrightarrow{3} \mathcal{O}$$

$$\mathbb{Z}/m\mathbb{Z} \xrightarrow{3} \mathbb{Z}/m\mathbb{Z} \xrightarrow{3} \mathbb{Z}/m\mathbb{Z} \xrightarrow{3} \mathcal{O}$$

$$m = 1$$
 or 3

Table of R_k Graphs

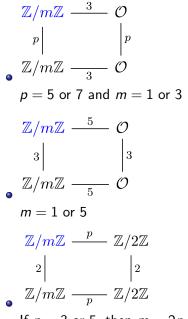
Label	Isomorphism Types	LMFDB Label
	([1], [1], [1], [1])	400.f
	([2], [2], [2], [2])	49.a
R_4	([3], [3], [1], [1])	50.a
	([5], [5], [1], [1])	50.b
	([6], [6], [2], [2])	20.a
	([10], [10], [2], [2])	66.c
	([2], [2], [2], [2], [2], [2])	98.a
R_6	([6], [6], [6], [6], [2], [2])	14.a
	R_4 R_6	$R_{4} \begin{array}{c} ([1], [1], [1], [1]) \\ ([2], [2], [2], [2]) \\ ([3], [3], [1], [1]) \\ ([5], [5], [1], [1]) \\ ([6], [6], [2], [2]) \\ ([10], [10], [2], [2]) \\ ([2], [2], [2], [2], [2], [2]) \end{array}$

TABLE 3. The list of all R_k rational isogeny-torsion graphs

э

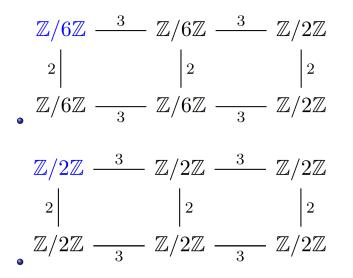
A D > A A > A > A

R₄ graphs



If p = 3 or 5, then m = 2p or 2. If p = 7, then m = 2, then m = 2 is the second se

R₆ Graphs



June 13, 2020 17 / 4

-∢ ∃ ▶

3

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Table of T_k Graphs

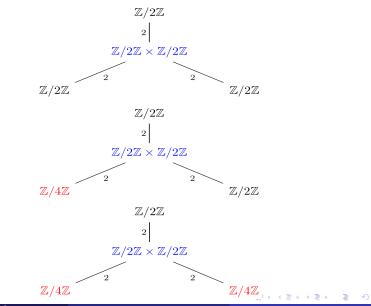
Graph Type	Label	Isomorphism Types	LMFDB Label
E_2	T_4	([2,2], [2], [2], [2])	120.a
E_1		([2,2], [4], [2], [2])	33.a
		([2,2], [4], [4], [2])	17.a
E_3 E_4			
E_2 E_5 E_1 E_4	T_6	([2,4],[4],[4],[2,2],[2],[2])	24.a
		([2,4],[8],[4],[2,2],[2],[2])	21.a
		([2,2],[2],[2],[2],[2],[2],[2])	126.a
E ₃ E ₆		([2,2],[4],[2],[2,2],[2],[2])	63.a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_8	([2,8],[8],[8],[2,4],[4],[2,2],[2],[2])	210.e
		([2,4],[4],[4],[2,4],[4],[2,2],[2],[2])	195.a
		([2,4],[4],[4],[2,4],[8],[2,2],[2],[2])	15.a
		([2,4],[8],[4],[2,4],[4],[2,2],[2],[2])	1230.f
		([2,2],[2],[2],[2,2],[2],[2],[2],[2])	45.a
		([2,2],[4],[2],[2,2],[2],[2],[2],[2],[2])	75.b
TABLE 2. The list of all T_k rational isogeny-torsion graphs			

Garen Chiloyan Joint with Álvaro Lozano-Rob

э

(日)

T_4 Graphs

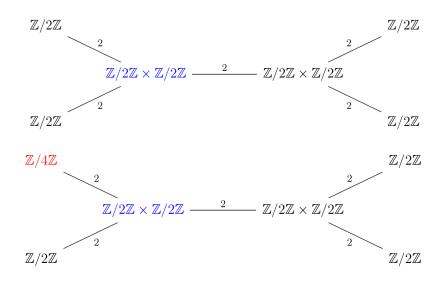


Garen Chiloyan Joint with Álvaro Lozano-Rob

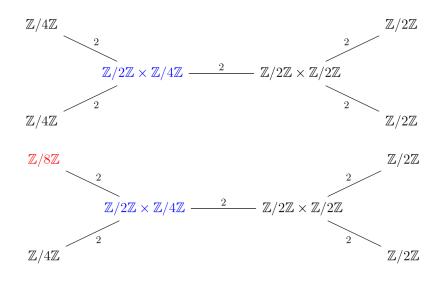
Rational Isogeny-Torsion Graphs

June 13, 2020 19 / 41

$\overline{T_6}$ Graphs with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

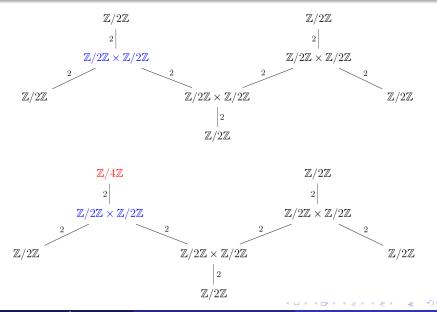


T_6 graphs with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$

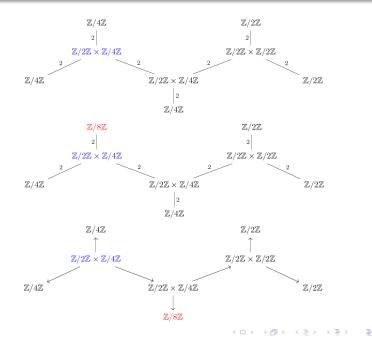


June 13, 2020 21 / 41

T_8 graphs with $\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$

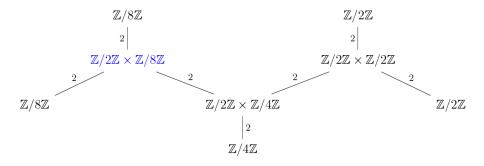


$\overline{T_8}$ Graphs with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$



Ja C

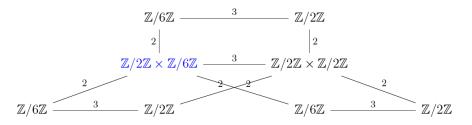
T_8 graphs with $\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/8\mathbb{Z}$

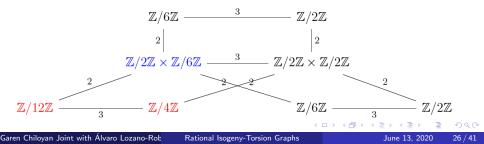


Graph Type	Label	Isomorphism Types	LMFDB Label
$E_3 \longrightarrow E_4$		([2,2],[2,2],[2],[2],[2],[2],[2],[2])	240.b
$ $ $ $ $ $ E_1 $$ E_2	S	([2,2],[2,2],[4],[4],[2],[2],[2],[2])	$150.\mathrm{b}$
	0	([2,6],[2,2],[6],[2],[6],[2],[6],[2])	30.a
$E_5 - E_6 - E_7 - E_8$		([2,6],[2,2],[12],[4],[6],[2],[6],[2])	90.c

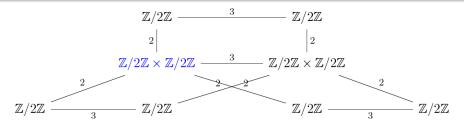
TABLE 4. The list of all (possible) S rational isogeny-torsion graphs

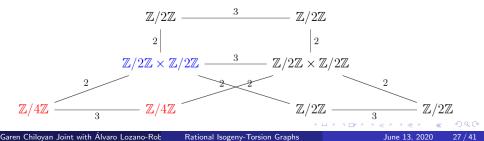
S Type Graphs with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$





S Type Graphs with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$





27-isogenies

The following first two examples of rational isogeny-torsion graphs with 27-isogenies exist.

$$\mathbb{Z}/3\mathbb{Z} \xrightarrow{3} \mathbb{Z}/3\mathbb{Z} \xrightarrow{3} \mathbb{Z}/3\mathbb{Z} \xrightarrow{3} \mathcal{O}$$

LMFDB Label 27.a

$$\mathcal{O} \xrightarrow{3} \mathcal{O} \xrightarrow{3} \mathcal{O} \xrightarrow{3} \mathcal{O}$$

LMFDB Label 432.e

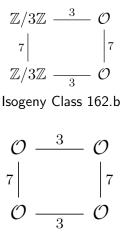
There are no examples of the following rational isogeny-torsion graph.

$$\mathbb{Z}/9\mathbb{Z} \xrightarrow{3} \mathbb{Z}/9\mathbb{Z} \xrightarrow{3} \mathbb{Z}/3\mathbb{Z} \xrightarrow{3} \mathcal{O}$$

Reasoning: Let *E* be a curve with a 27-isogeny, then *E* corresponds to *j*-invariant $-2^{15} \cdot 3 \cdot 5^3$. If $P \in E[9] \setminus \{\mathcal{O}\}$, then $\mathbb{Q}(x(P))$ is a number field of degree 3, 6, or 27.

Examples of 21-isogenies

There exist examples of the following rational isogeny-torsion graphs of degree 21

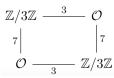


Isogeny Class 1296.f

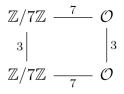
◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

Non-examples of 21-isogenies

There are no examples of the following rational isogeny-torsion graphs of degree 21.



Reasoning : A rational 7-isogeny maps a point of order 3 defined over \mathbb{Q} to a point of order 3 defined over \mathbb{Q} .



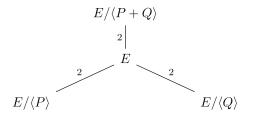
Reasoning : Let E/\mathbb{Q} be a curve with a \mathbb{Q} -rational 21-isogeny. Let $P \in E[7] \setminus \{\mathcal{O}\}$, then $\mathbb{Q}(x(P))$ is a number field of degree 3 or 21, not 1. If E' is a quadratic twist of E and $P' \in E'[7]$, then $\mathbb{Q}(x(P)) = \mathbb{Q}(x(P'))_{\mathcal{O} \subset \mathcal{O}}$

Classification of T_4 Graphs (1)

Let E/\mathbb{Q} be an elliptic curve with 4 curves in its isogeny class and

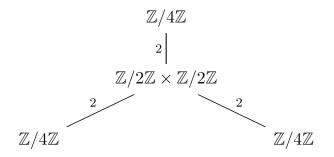
 $E(\mathbb{Q})_{tors} = \langle P, Q \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$

What are the possible isogeny-torsion graphs of E?



- The finite, cyclic, \mathbb{Q} -rational subgroups of E are $\{\mathcal{O}\}, \langle P \rangle, \langle Q \rangle$ and $\langle P + Q \rangle$.
- $(E/\langle P \rangle)(\mathbb{Q})_{\text{tors}}, (E/\langle Q \rangle)(\mathbb{Q})_{\text{tors}}, \text{ and } (E/\langle P + Q \rangle)(\mathbb{Q})_{\text{tors}} \text{ are cyclic.}$
- E has a point of order 2 defined over Q, thus all isogenous curves do too. As there are 4 curves in the isogeny class, no curve isogenous to E can have a point of odd order or order 8 defined over Q.

Let's assume the following isogeny-torsion graph exists.



Classification of T_4 Graphs (3)

• Assume E is non-CM and $(E/\langle P \rangle)(\mathbb{Q})_{\text{tors}}, (E/\langle Q \rangle)(\mathbb{Q})_{\text{tors}}$, and $(E/\langle P+Q \rangle)(\mathbb{Q})_{\text{tors}}$, are cyclic of order 4. Then the image of the mod 4 Galois representation of E is conjugate to

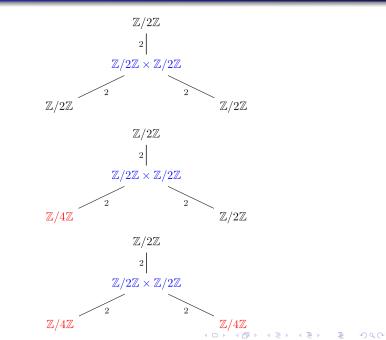
$$H = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array} \right) \right\} \in GL_2(\mathbb{Z}/4\mathbb{Z})$$

No element of *H* "behaves like" complex conjugation, ie, no element of *H* is conjugate over $GL_2(\mathbb{Z}/4\mathbb{Z})$ to $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$. Thus, there are no curves *E* without CM that have an isogeny-torsion graph of the form ([2, 2], [4], [4], [4])

Suppose E is CM, then there are only finitely many *j*-invariants that correspond to a torsion subgroup with full two-torsion.
 No such curve corresponding to those *j*-invariants or their twists will give you an isogeny-torsion graph of the form ([2, 2], [4], [4], [4]).

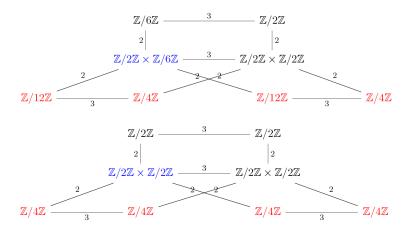
33 / 41

All T_4 Graphs

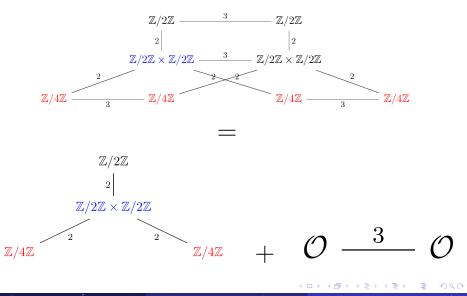


Classification of S Graphs (1)

The hardest part of classifying rational isogeny torsion graphs was eliminating the possibility of the following two graphs



Classification of S Graphs (2)



Classification of S Graphs (3)

 Let E/Q be a curve with an isogeny-torsion graph from the last slide, then E is non-CM. The image of the mod 4 Galois representation of E is conjugate in GL₂(Z/4Z) to

$$H = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array} \right), \left(\begin{array}{cc} 3 & 2 \\ 2 & 1 \end{array} \right), \left(\begin{array}{cc} 3 & 2 \\ 2 & 3 \end{array} \right) \right\}$$

- All curves with a 2-adic Galois image mod 4 conjugate to H are parametrized by X_{24e} (RZB database) with *j*-invariant (t⁴+t²+1)³/t⁴(t²+1)².
- Add a 3-isogeny. Curves with a 3-isogeny are parametrized by rational points on $X_0(3)$ with $j = \frac{(s+27)(s+243)^3}{s^3}$.
- Equating, we get $\frac{(t^4+t^2+1)^3}{t^4(t^2+1)^2} = \frac{(s+27)(s+243)^3}{s^3}$ and rearranging, we get a curve $C: (t^4+t^2+1)^3s^3 t^4(t^2+1)^2(s+27)(s+243)^3 = 0$ of genus 13.

Classification of S Graphs (4)

- There is an obvious map $(s, t) \rightarrow (s, t^2)$ that maps C to a curve $C': (t^2 + t + 1)^3 s^3 - t^2 (t + 1)^2 (s + 27) (s + 243)^3 = 0$ of genus 6
- C' has an automorphism $\psi(t, s, z) = (-tz z^2, ts, tz)$. The quotient curve $C'' = C'/\langle \psi \rangle$ has genus 2 with equation $C'': y^2 + x^2y = -x^5 x^4 + 4x^3 2x^2 9x + 2$.
- Using a descent, the Jacobian variety, J(C")/Q has rank 0 and thus, we can use Chabauty's method to compute the rational points of C".
- C" has two rational points, namely, [-2, -2, 1] and [1, 0, 0] which map backwards to the points [t, s, z] = [-1, 0, 1], [0, 0, 1], [0, 1, 0], and [1, 0, 0] in C'. Each of these points have t or s coordinate to be 0 so they are all cusps (the j invariant is undefined). Thus, the two S graphs we are trying to eliminate in fact do not exist.

<日

<</p>

3

\$ MATHEMATICS

			е

Questions

Tags

Users

Unanswered

Isogenies between elliptic curves with specified torsion groups

Asked 4 years, 9 months ago Active 4 years, 9 months ago Viewed 120 times

For each of the 15 possible torsion groups of an elliptic curve defined over Q we have an infinite family of curves with that torsion group. This sometimes goes under the name of Kubert normal form or Tate normal form.

I have been wondering if we have something similar for the following setting.

Let's say we have an elliptic curve E with torsion group T and an elliptic curve E' with torsion group T' and an isogeny $E \to E'$.

Is it possible to come up with infinite families of such pairs of isogenous curves E, E' for each (or some) of the 15 × 14 pairs of torsion groups T, T'?

Or are there any other partial results related to this question?

elliptic-curves

share cite improve this question follow

Garen Chiloyan Joint with Álvaro Lozano-Rob

Rational Isogeny-Torsion Graphs

and go on till you come to the end, then stop

Harris helped me figure it out!!!

woot

the curve we want has genus 13. It has a map down to a curve of genus 6.

the curve of genus 6 has an automorphism that induces a map down to a curve of genus 2

the curve of genus 2 has a jacobian of rank 0 over Q, and Chabauty computes all the rational points on this curve. There are two points

the two points on genus 2 come from 4 points in genus 6, and they are all cusps!

so no, the elusive graphs do not exist

AWESOME

nice

I'm really happy

what a way to end the year

Questions?

(日)