Torsion for CM Elliptic Curves Defined over Number Fields of Degree 2p

Holly Paige Chaos (Wake Forest University)

June 13, 2020

Introduction

Classical Question: Given a polynomial equation, what are the rational solutions?

Introduction

Classical Question: Given a polynomial equation, what are the rational solutions?

$$
y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Q}
$$

Introduction

Classical Question: Given a polynomial equation, what are the rational solutions?

$$
y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Q}
$$

$E=$ elliptic curve $/ \mathbb{Q}$

Introduction

Classical Question: Given a polynomial equation, what are the rational solutions?

$$
y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{Q}
$$

$E=$ elliptic curve $/ \mathbb{Q}$

Theorem (Mordell)
$E(\mathbb{Q})$ is a finitely generated abelian group.

$$
E(\mathbb{Q}) \cong E(\mathbb{Q})[\text { tors }] \times \mathbb{Z}^{r}
$$

Question: Which finite groups arise?

Question: Which finite groups arise?

Theorem (Mazur, 1977)

For $E / \mathbb{Q}, E(\mathbb{Q})[$ tors $]$ is isomorphic to

$$
\begin{array}{ll}
\mathbb{Z} / m \mathbb{Z} & 1 \leq m \leq 10 \text { or } m=12 \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 m \mathbb{Z} & 1 \leq m \leq 4
\end{array}
$$

Question: Which finite groups arise?

Theorem (Mazur, 1977)

For $E / \mathbb{Q}, E(\mathbb{Q})[$ tors $]$ is isomorphic to

$$
\begin{array}{ll}
\mathbb{Z} / m \mathbb{Z} & 1 \leq m \leq 10 \text { or } m=12 \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 m \mathbb{Z} & 1 \leq m \leq 4
\end{array}
$$

Theorem (Kamienny-Kenku-Momose)

Let F be a quadratic field. For E / F the group $E(F)[$ tors $]$ is isomorphic to

$$
\begin{array}{ll}
\mathbb{Z} / m \mathbb{Z} & 1 \leq m \leq 18, m \neq 17 \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 m \mathbb{Z} & 1 \leq m \leq 6 \\
\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 m \mathbb{Z} & 1 \leq m \leq 2 \\
\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} &
\end{array}
$$

Question

Consider all number fields F of degree d and all E / F. What $E(F)$ [tors] arise?

Question

Consider all number fields F of degree d and all E / F. What $E(F)$ [tors] arise?

Theorem (Merel, 1996)

If E is an elliptic curve defined over a number field F of degree d,

$$
\# E(F)[\text { tors }] \leq C(d)
$$

Question

Consider all number fields F of degree d and all E / F. What $E(F)$ [tors] arise?

Theorem (Merel, 1996)

If E is an elliptic curve defined over a number field F of degree d,

$$
\# E(F)[\text { tors }] \leq C(d)
$$

$[F: \mathbb{Q}]=d:$ Only finitely many groups arise.

CM Elliptic Curves

For most elliptic curves, $\operatorname{End}_{\bar{F}}(E) \cong \mathbb{Z}$.

- Usual endomorphisms: $P \mapsto[n] P, n \in \mathbb{Z}$.

CM Elliptic Curves

For most elliptic curves, $\operatorname{End}_{\bar{F}}(E) \cong \mathbb{Z}$.

- Usual endomorphisms: $P \mapsto[n] P, n \in \mathbb{Z}$.

For elliptic curves with complex multiplication (CM),
$\operatorname{End}_{\bar{F}}(E) \cong \mathcal{O}=\mathbb{Z}+f \mathcal{O}_{K}$.

CM Elliptic Curves

For most elliptic curves, $\operatorname{End}_{\bar{F}}(E) \cong \mathbb{Z}$.

- Usual endomorphisms: $P \mapsto[n] P, n \in \mathbb{Z}$.

For elliptic curves with complex multiplication (CM),
$\operatorname{End}_{\bar{F}}(E) \cong \mathcal{O}=\mathbb{Z}+f \mathcal{O}_{K}$.

- The elliptic curve $y^{2}=x^{3}+1$ has $C M$ by the maximal order in $\mathbb{Q}(\sqrt{-3})$.
- Extra endomorphism:

$$
(x, y) \mapsto\left(\frac{-1+\sqrt{-3}}{2} x, y\right)
$$

Torsion on CM Elliptic Curves

Theorem (Olson, 1974)

Let E / \mathbb{Q} be a CM elliptic curve. Then $E(\mathbb{Q})[$ tors $]$ is isomorphic to one of the following 6 groups:

$$
\{\cdot\}, \quad \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 3 \mathbb{Z}, \quad \mathbb{Z} / 4 \mathbb{Z}, \quad \mathbb{Z} / 6 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

Torsion on CM Elliptic Curves

Theorem (Olson, 1974)

Let E / \mathbb{Q} be a CM elliptic curve. Then $E(\mathbb{Q})[$ tors $]$ is isomorphic to one of the following 6 groups:

$$
\{\cdot\}, \quad \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 3 \mathbb{Z}, \quad \mathbb{Z} / 4 \mathbb{Z}, \quad \mathbb{Z} / 6 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

- $[F: \mathbb{Q}] \leq 13:$ Clark, Corn, Rice, Stankewicz, 2014.

Torsion on CM Elliptic Curves

Theorem (Olson, 1974)

Let E / \mathbb{Q} be a CM elliptic curve. Then $E(\mathbb{Q})[$ tors $]$ is isomorphic to one of the following 6 groups:

$$
\{\cdot\}, \quad \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 3 \mathbb{Z}, \quad \mathbb{Z} / 4 \mathbb{Z}, \quad \mathbb{Z} / 6 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

- $[F: \mathbb{Q}] \leq 13:$ Clark, Corn, Rice, Stankewicz, 2014.
- $[F: \mathbb{Q}]=p$ or $p^{2}:$ Bourdon, Clark, Stankewicz, 2015.

Torsion on CM Elliptic Curves

Theorem (Olson, 1974)

Let E / \mathbb{Q} be a CM elliptic curve. Then $E(\mathbb{Q})[$ tors $]$ is isomorphic to one of the following 6 groups:

$$
\{\cdot\}, \quad \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 3 \mathbb{Z}, \quad \mathbb{Z} / 4 \mathbb{Z}, \quad \mathbb{Z} / 6 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

- $[F: \mathbb{Q}] \leq 13:$ Clark, Corn, Rice, Stankewicz, 2014.
- $[F: \mathbb{Q}]=p$ or $p^{2}:$ Bourdon, Clark, Stankewicz, 2015.
- $[F: \mathbb{Q}]$ odd: Bourdon, Pollack, 2017.

What happens when E is defined over a number field of degree 14 ?

What happens when E is defined over a number field of degree 14 ?

Theorem (C., 2019)

Let F be a number field of degree 14. Let E / F be a CM elliptic curve. For E / F the group $E(F)[$ tors $]$ is isomorphic to one of the following:

$$
\begin{array}{ll}
\mathbb{Z} / m \mathbb{Z} & 1 \leq m \leq 4 \text { or } m=6,7,10,29,43,49,53 \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 m \mathbb{Z} & 1 \leq m \leq 3 \\
\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} &
\end{array}
$$

What happens when E is defined over a number field of degree 14 ?

Theorem (C., 2019)

Let F be a number field of degree 14. Let E / F be a CM elliptic curve. For E / F the group $E(F)[$ tors $]$ is isomorphic to one of the following:

$$
\begin{array}{ll}
\mathbb{Z} / m \mathbb{Z} & 1 \leq m \leq 4 \text { or } m=6,7,10,29,43,49,53 \\
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 m \mathbb{Z} & 1 \leq m \leq 3 \\
\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} &
\end{array}
$$

The groups that did not arise in degree 2 are

$$
\mathbb{Z} / 29 \mathbb{Z}, \mathbb{Z} / 43 \mathbb{Z}, \mathbb{Z} / 49 \mathbb{Z}, \mathbb{Z} / 58 \mathbb{Z}, .
$$

Proof-ish

Theorem (Bourdon, Clark, 2018)

If a CM elliptic curve E defined over a number field F of degree 14 has a point of order N, then

$$
\left.\frac{\varphi(N)}{\# \mathcal{O}^{x}} \right\rvert\, 14 .
$$

Proof-ish Part 2

Lemma (C., 2019)

Let \mathcal{O} be the order of discriminant Δ and let $\ell_{1}^{a_{1}} \cdots \ell_{n}^{a_{n}}$ denote the prime power decomposition of $N \geq 4$. If $\frac{\varphi(N)}{\omega}=d$, then, in order to have a point of order N occur in degree d, we must have $\left(\frac{\Delta}{\ell}\right)=0$ for every odd prime $\ell \mid N$. Furthermore, if the largest power of two dividing N is 2, then two may be split but otherwise 2 must also be ramified.

Proof-ish Part 2

Lemma (C., 2019)

Let \mathcal{O} be the order of discriminant Δ and let $\ell_{1}^{a_{1}} \cdots \ell_{n}^{a_{n}}$ denote the prime power decomposition of $N \geq 4$. If $\frac{\varphi(N)}{\omega}=d$, then, in order to have a point of order N occur in degree d, we must have $\left(\frac{\Delta}{\ell}\right)=0$ for every odd prime $\ell \mid N$. Furthermore, if the largest power of two dividing N is 2, then two may be split but otherwise 2 must also be ramified.

- Bourdon, Clark, 2019.

But wait! There's more!

Theorem (C., 2019)

Let F be a number field of degree $2 p$. Let E / F be a CM elliptic curve. Then $E(F)$ [tors] is isomorphic to one of the groups arising over quadratic fields or to one of the following groups:

degree	group
22	

But wait! There's more!

Theorem (C., 2019)

Let F be a number field of degree $2 p$. Let E / F be a CM elliptic curve. Then $E(F)$ [tors] is isomorphic to one of the groups arising over quadratic fields or to one of the following groups:

degree	group
22	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 46 \mathbb{Z}$
26	$\mathbb{Z} / m \mathbb{Z}$
	$m=21,53,79,106$

But wait! There's more!

Theorem (C., 2019)

Let F be a number field of degree $2 p$. Let E / F be a CM elliptic curve. Then $E(F)$ [tors] is isomorphic to one of the groups arising over quadratic fields or to one of the following groups:

degree	group
22	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 46 \mathbb{Z}$
26	$\mathbb{Z} / m \mathbb{Z}$
	$m=21,53,79,106$
34	$\mathbb{Z} / 103 \mathbb{Z}$

But wait! There's more!

Theorem (C., 2019)

Let F be a number field of degree $2 p$. Let E / F be a CM elliptic curve. Then $E(F)$ [tors] is isomorphic to one of the groups arising over quadratic fields or to one of the following groups:

degree	group
22	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 46 \mathbb{Z}$
26	$\mathbb{Z} / m \mathbb{Z}$
	$m=21,53,79,106$
34	$\mathbb{Z} / 103 \mathbb{Z}$
38	NONE!

Connection to Sophie Germain primes

Theorem (C., 2019)

Let F be a number field of degree $2 p$ for $p>3$ prime and E / F be a CM elliptic curve. If $E(F)[$ tors $]$ is new and $j(E) \neq 0$ or 1728 , then

$$
E(F)[\text { tors }] \cong \begin{cases}\mathbb{Z} / m \mathbb{Z} & m=5,8,12, \text { or } 2 p+1, \\ \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 m \mathbb{Z} & m=2 p+1,\end{cases}
$$

where $2 p+1$ is a prime greater than 3 .

Theorem (C.,2019)

Let F be a number field of degree $2 p$ for $p>3$ prime and E / F be a CM elliptic curve. If $E(F)[$ tors $]$ is new and $j(E)=1728$, then

$$
E(F)[\text { tors }] \cong \begin{cases}\mathbb{Z} / m \mathbb{Z} & m=4 p+1 \\ \mathbb{Z} / 2 m \mathbb{Z} & m=4 p+1\end{cases}
$$

where $4 p+1$ is a prime greater than 3 .

Theorem (C.,2019)

Let F be a number field of degree $2 p$ for $p>3$ prime and E / F be a CM elliptic curve. If $E(F)$ [tors] is new, $j(E)=0$, and

- $p \neq 7$, then

$$
E(F)[\text { tors }] \cong\{\mathbb{Z} / m \mathbb{Z} \quad m=6 p+1
$$

- $p=7$, then

$$
E(F)[\text { tors }] \cong \begin{cases}\mathbb{Z} / m \mathbb{Z} & m=6 p+1 \\ \mathbb{Z} / m^{2} \mathbb{Z} & m=7\end{cases}
$$

where $6 p+1$ is a prime greater than 3 .

Thanks for listening!

