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ABSTRACT OF THE DISSERTATION

Finding Elliptic Curves and Families of Elliptic Curves

over Q of Large Rank

by Garikai Campbell

Dissertation Director: Jerrold B. Tunnell

One of the most fundamental questions one can ask about elliptic curves is “what

abelian groups arise as the group of an elliptic curve defined over the rationals?” By

well known results of Mordell (generalized to other number fields by Weil) and of Mazur

(similarly generalized by Merel), we know that the groups are finitely generated and

that the torsion subgroups must be one of fifteen possible groups, with each possibility

occuring. What is not known is how large the free part, more precisely the rank, of

the group of an elliptic curve can be. Most believe that for every positive integer M ,

there exists an elliptic curve defined over Q whose group has rank greater than M .

One other naturally related question for which there is not enough evidence to provide

a reasonable conjecture is “for every positive integer M and possible torsion group

T , is there an elliptic curve whose group has rank greater than M and whose torsion

subgroup is T?” Even if we could answer these questions, we would still like to produce

examples of such curves. This thesis reviews and extends some of the techniques used

to produce elliptic curves and infinite families of elliptic curves defined over Q of large

rank. While we do address the full breadth of this problem, we will pay particular

attention to producing infinite families of elliptic curves with specified torsion.

ii



Acknowledgements

I have completed this doctoral program with financial support from many sources. I

would like to thank the Mellon Foundation, the General Electric Foundation, the Na-

tional Science Foundation and the Rutgers University Minority Advancement Program.

I would like to also thank my advisor, Jerrold Tunnell, for suggesting this thesis

problem, for all his help in attacking the problem and for all his support in getting past

the times I was stuck!

In the last year I have had the opportunity to teach and complete my research at

Swarthmore College as a Minority Scholar in Residence Fellow. This has been both

an invaluable experience and a great pleasure. I have enjoyed the interaction and help

from each of the professors. I would like to thank Charles James and Gene Klotz in

particular, for bringing this fellowship to my attention and for encouraging me to apply.

I have also been involved with a number of summer programs which have helped

in my development as a mathematician. Most notable is the PDP Program for which

I would like to thank Uri Treisman, Leon Henkin and Carl Pomerance. Thank you all

for encouraging me to pursue a PhD and for your continued support.

I believe that students learn the most from their interaction with other students and

my graduate experience has been true to this. I would like to thank my fellow graduate

students, Jenny Kelley, Naomi Klarreich, Terri Girardi and Luke Higgins in particular,

for their support over the past few years.

I would also like to acknowledge and thank the support and inspiration of personal

friends and family. Specifically I would like to thank my brothers Sekou and Britt

Campbell, Peter Alfinito, John Byars, Martin Hunt, Bob Dougherty and C. Roy Epps.

Others who I would like to acknowledge include Chris Towse, Susan Gooen, Rafael

Irizarry, Ben Hansen and my many friends at NACME.

iii



Dedication

To my parents, my wife and my children.

Thank you mom and dad for all the encouragement and support, but thank you

most for being my first and greatest educators. Thank you Diana for sharing your love,

strength, and dreams along this journey; I have been blessed to have you as guide and

companion. Finally, I have been told that while it may seem like this journey is coming

to an end, it is really only beginning and I agree. So, to my parents, to my wife and to

my two sons, thank you for helping me to a great beginning and for keeping me excited

about what is to come.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. An Introduction to the Problem . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2. Prior Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3. The Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4. New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Constructing Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1. Weierstrass Form and Reduction . . . . . . . . . . . . . . . . . . 6

1.2.2. The Finite Field Method . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3. The Polynomial Method . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Sieving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1. Descent and Kretschmer’s Bound . . . . . . . . . . . . . . . . . . 9

1.3.2. Bad Reduction and Mazur’s Bound . . . . . . . . . . . . . . . . . 11

1.3.3. Mestre’s and Nagao’s Sums . . . . . . . . . . . . . . . . . . . . . 12

1.4. Computing Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. The Finite Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1. Finding a Single Elliptic Curve . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1. The Original Method in Detail . . . . . . . . . . . . . . . . . . . 16

2.1.2. Varying the Parameters . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. More on Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



2.2.1. Sums over Primes . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2. Applications to sE(N) and GE(N) . . . . . . . . . . . . . . . . . 20

2.3. Finding Curves with Nontrivial Torsion . . . . . . . . . . . . . . . . . . 20

2.3.1. Modifying the Method . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2. Curves with Nontrivial Torsion . . . . . . . . . . . . . . . . . . . 22

3. The Polynomial Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. The Quartic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1. Alternate Models of Elliptic Curves . . . . . . . . . . . . . . . . 24

3.1.2. Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3. The Group Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2. Constructing Curves over Q(t) . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1. Two Polynomial Constructions . . . . . . . . . . . . . . . . . . . 28

3.2.2. Setting up the Construction . . . . . . . . . . . . . . . . . . . . . 30

3.2.3. Differentiating Choices of Roots . . . . . . . . . . . . . . . . . . 31

3.2.4. Conditions on rA(x) . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.5. Nagao’s Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3. Constructing Curves of Rank 13 over Q(t) . . . . . . . . . . . . . . . . . 37

3.3.1. Finding Elements of S . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4. Producing Curves over Q(t) with Nontrivial Torsion . . . . . . . . . . . 41

3.4.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2. Curves Containing Points of Order 3 . . . . . . . . . . . . . . . . 41

3.4.3. Curves with Torsion Subgroup Z/2Z⊕ Z/6Z . . . . . . . . . . . . 44

3.4.4. Curves with Torsion Subgroup Containing Z/2Z⊕ Z/2Z . . . . . 45

3.4.5. Curves with Torsion Subgroup Containing Z/4Z or Z/2Z⊕ Z/4Z 47

3.4.6. On Curves Containing a Point of Order 3 . . . . . . . . . . . . . 48

3.5. Applying to Finding Curves over Q with Nontrivial Torsion . . . . . . . 49

3.5.1. Curves Containing Points of Order 3 . . . . . . . . . . . . . . . . 49

vi



3.5.2. Curves with Torsion Subgroup Z/2Z⊕ Z/6Z . . . . . . . . . . . . 50

3.5.3. Curves with Torsion Subgroup Containing Z/2Z⊕ Z/2Z . . . . . 52

3.5.4. Curves with Torsion Subgroup Z/4Z or Z/2Z⊕ Z/4Z . . . . . . . 52

4. Algorithms and Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1. Weierstrass Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1. The Quartic Model to Weierstrass Form . . . . . . . . . . . . . . 54

4.1.2. Minimal Weierstrass Form and Laska’s Algorithm . . . . . . . . 55

4.2. Computing Rank and Searching for Points . . . . . . . . . . . . . . . . . 59

4.2.1. Code for Computing Rank of a Subgroup . . . . . . . . . . . . . 59

4.2.2. Code for Computing Mazur’s Bound . . . . . . . . . . . . . . . . 60

4.2.3. Code for Computing Kretschmer’s Bound . . . . . . . . . . . . . 62

4.2.4. Rank and the Sign of the Functional Equation . . . . . . . . . . 65

4.2.5. Code for Searching for Points . . . . . . . . . . . . . . . . . . . . 65

4.3. The Polynomial Method and the Quartic Model . . . . . . . . . . . . . . 66

4.3.1. Choosing a Polynomial Construction . . . . . . . . . . . . . . . . 66

4.3.2. Code for the Polynomial Construction . . . . . . . . . . . . . . . 67

4.3.3. Code for the Group Law . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.4. Code for Sieving . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4. The Finite Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1. Two Types of Tate Normal Forms . . . . . . . . . . . . . . . . . 72

4.4.2. Finding Curves with Points of Order 3 . . . . . . . . . . . . . . . 73

4.4.3. Finding Curves with Points of Order 4 . . . . . . . . . . . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



1

Chapter 1

An Introduction to the Problem

1.1 Preliminaries

1.1.1 Statement of the Problem

A curve is a projective variety of dimension one. A smooth curve is one for which there

exists a well defined, non-vanishing tangent at every point on the curve. Any smooth

curve defined over a field K is described by a set of equations with coefficients in K. To

be precise, let C be any curve. We call the homogeneous ideal of C, the ideal generated

by

{F ε K[x0, x1, ..., xn] | F is homogeneous and F (P ) = 0 for all P ε C}.

We denote this ideal by I(C). If in fact this ideal can be generated by homogeneous

polynomials in K[x0, x1, ..., xn], then the curve is said to be defined over K. The

homogeneous ideal may be generated by many different sets of polynomials and we

would like to distinguish between the curve and any particular representation of this

ideal describing the curve. It is for this reason, we make the following definition. Let

C be any curve and let {F1, F2, ..., Fm} be a set of generators for I(C). We call the set

of equations {F1 = 0, F2 = 0, ..., Fm = 0} a projective model for the curve C.

Very often, we will want to refer to some affine piece of a curve. We have the problem

of distinguishing between the curve and a particular representation of the curve here

as well. In this case, we want to be careful to remember that the curve is a projective

variety even if we are representing some affine piece of the curve. And so, for any curve

C, we again begin by letting {F1, F2, ..., Fm} be a set of generators for the homogeneous

ideal I(C). Furthermore, for some fixed variable x and for each j ε {1, 2, ...,m}, we



2

let fj be the dehomogenization of Fj with respect to x. We call the set of equations

{f1 = 0, f2 = 0, ..., fm = 0} an (affine) model for the curve C.

For any curve C ⊂ Pn(K) defined over a field K, we define the K−rational points

of C, denoted C(K), to be C ∩ Pn(K). A measure of the complexity of a curve is

the genus, as defined in the Riemann-Roch Theorem. Perhaps, the most simple of the

smooth curves are the conics. We will say that a conic defined over K is a smooth

curve of genus zero defined over K. We have the easy but important theorem:

Theorem 1.1.1 If C is a conic defined over K and C(K) is not empty, then C(K) is

isomorphic to P1(K).

This theorem says that we can parameterize the solutions to any model of a conic, as

long as there is at least one solution. Elliptic curves can be thought of as curves of

complexity one level greater than conics. An elliptic curve, E, defined over a field K,

is a smooth curve of genus one with at least one K-rational point. By contrast to our

fairly complete understanding of conics, our understanding of elliptic curves is quite

minimal.

If we attempt to parameterize the K-rational points on an elliptic curve in the way

we parameterize the K-rational points on the conic, we discover that (in general) this

is not possible. This leads quite naturally to the discovery that the set of K−rational

points, E(K), on an elliptic curve form an abelian group. A fundamental question we

then ask is: what groups can E(K) be? Mordell proved that if K = Q, then

E(K) ∼= T⊕ Zr

with T a finite group. Weil proved that the group E(K) is in fact finitely generated for

any number field K. This fact has since been further extended to other fields (see [25,

section III.6]); in particular, E(Q(t)) is finitely generated.

Furthermore, Mazur proved that if K = Q, then T is one of the following:

1. Z/nZ where n ε {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}

2. Z/2Z⊕ Z/nZ where n ε {2, 4, 6, 8}

and that each occur as the torsion subgroup of some elliptic curve. Merel has since

extended this theorem and proved the strong uniform boundedness conjecture: if K
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is a number field, then the order of the torsion subgroup of E(K) is bounded by a

constant which depends only on the degree of K over Q.

These theorems of Mordell, Weil, Mazur and Merel have brought us very far in an-

swering the question of what groups E(K) can be, but they do not answer it completely.

In particular, we do not know what values of rank are possible for elliptic curves– not

in the case of elliptic curves defined over a general field K, nor in the more specific case

of K = Q. A major open question in the study of elliptic curves is whether or not the

rank is bounded. We present the following “folklore” conjecture:

Conjecture 1.1.2 For any positive integer M , there exists an elliptic curve defined

over Q such that the rank of E(Q) is greater than M .

A good deal of evidence has been collected, both experimental and theoretical, to

support this conjecture. The analogous statement:

For any (allowable) group T, there exists an elliptic curve E with torsion

subgroup equal to T and rank at least M ,

does not have the same well established foundation. While the statement is certainly

reasonable, it is also conceivable that the existence of certain torsion places restrictions

on the rank of the elliptic curve.

Ideally, we would like to have a constructive proof of the conjecture and, if true,

the statement as well– one which provides an effective method for producing arbitrarily

large rank with or without some specified torsion. No such method currently exists and

so we ask the slightly more tame question: how do we construct or find elliptic curves

with very large rank with or without some specified torsion?

1.1.2 Prior Results

Experimental results define what we mean by “large rank” and so we begin by listing

some of the highest known ranks of elliptic curves defined over Q. The list is split into

four standard categories.
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Curves Infinite Families of Curves

Rank Source Rank Source

unknown r ≥ 12 Mestre [13] r ≥ 11 Mestre [14]

or trivial r ≥ 21 Nagao, Kouya [23] r ≥ 12 Mestre [15]

torsion r ≥ 22 Fermigier [4] r ≥ 13 Nagao [19]

r ≥ 14 Kihara [7]

r2 = 10 Kretschmer [11] r2 ≥ 6 Nagao [20]

known r2 ≥ 14 Fermigier [3] r2 ≥ 8 Fermigier [3]

torsion r2 ≥ 9 Kihara [6]

r2⊕2 ≥ 4 Kihara [8]

r2⊕2 ≥ 5 Kihara [9]

In the known torsion categories a subscript of n or 2⊕ n indicates that the torsion

subgroup is known to contain the group Z/nZ or Z/2Z ⊕ Z/nZ, respectively. We will

continue to use this notation to denote the rank of an elliptic curve with known torsion.

1.1.3 The Techniques

There are many techniques one can use to find elliptic curves of large rank and the list

above reflects that. We restrict our attention to two of these techniques, the finite field

method and the polynomial method, each of which can be attributed to Mestre. Each

of these techniques follow the same general structure:

1. Constructing Phase: In this phase of the process, we produce a family of

elliptic curves defined over the rationals which we believe to contain curves of

high rank. In the case of the finite field method, we suspect that the curves we

get during this phase have high rank based on a standard conjecture. In the

case of the polynomial method, we construct curves with a prescribed number of

points which we suspect to be linearly independent.

2. Sieving Phase: When trying to produce a single elliptic curve defined over the

rationals of high rank, we take the family of curves produced in the previous
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step and for each curve in that list, compute some value(s) associated to the

curve. Based on these values, we choose which curves we would like to pass to

the computing rank phase of the process.

3. Computing Rank Phase: Once we have a small list of curves which we believe

to have high rank, we have to verify that they in fact do have high rank.

The latter two steps of this process are the same for each technique and we review

them later in this chapter; where they differ is in the constructing phase. Therefore,

we will focus on the extension and analysis of this phase of each technique. More

specifically, we pay special attention to altering existing techniques to find elliptic curves

of large rank with specified torsion.

1.1.4 New Results

Below is a list of some new results achieved by these extensions and analyses, together

with where they are discussed:

Curves Infinite Families of Curves

Rank Chapter (section) Rank Chapter (section)

r3 ≥ 4 3.5.1 r3 ≥ 3 3.4.2

r3 = 4 2.3.2

r2⊕6 = 3 3.5.2 r2⊕6 ≥ 1 3.4.3

r2⊕6 ≥ 3 3.5.2

known r2⊕2 ≥ 5 3.4.4

torsion r2⊕4 ≥ 3 3.5.5 r2⊕4 ≥ 1 3.4.5

r2⊕4 = 3 3.5.5

r4 ≥ 3 3.5.5 r4 ≥ 1 3.4.5

r4 = 3 3.5.5

r4 ≥ 2 2.3.2
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In addition to the results listed above, we also include some discussion of the more

general case of producing an infinite family of elliptic curves defined over Q without

regard to torsion. This discussion leads to the discovery of some curves of rank at least

13 over Q(t).

1.2 Constructing Elliptic Curves

1.2.1 Weierstrass Form and Reduction

We begin the discussion with the following well known result.

Theorem 1.2.1 For all elliptic curves, E, defined over the rationals

1. E is isomorphic to an elliptic curve of the form

y2 + a1 xy + a3 y = x3 + a2 x2 + a4 x + a6.

An elliptic curve expressed in this way is said to be in Weierstrass form.

2. Two curves in Weierstrass form are isomorphic if and only if there is a change

of variables of the form:

x = u2x′ + r

y = u3y′ + u2sx′ + t,

where u, r, s and t are rational with u 6= 0.

3. There exists a Weierstrass form for which the coefficients are integral and the

absolute value of the discriminant is minimal.

We will denote the minimal Weierstrass form of an elliptic curve E by Emin and

similarly, the minimal discriminant of Emin as ∆Emin . Parts 1 and 2 of the theorem

are essentially consequences of the Riemann-Roch theorem (see [24, sections II.5,III.3]).

In section 4.1.2 we give an algorithm due to Laska for finding the minimal Weierstrass

form.

Given an elliptic curve, E, in Weierstrass form, with integer coefficients and given

a prime, p, we can reduce each of the coefficients of E modulo p. This new curve, Ep,
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can be considered to have coefficients in any field of characteristic p and in particular

in the field of p elements, Fp. We call the set of points defined over Fp on this new curve

Ep(Fp). In some cases, Ep is not a smooth curve over Fp. Recall that this occurs if and

only if the prime p divides the discriminant of E. If E is in minimal Weierstrass form,

we call these primes, primes of bad reduction. We call the primes that do not divide

the minimal discriminant primes of good reduction. We will say that the curve Ep is

the curve E reduced modulo p and we will call any curve E, defined over the rationals,

which reduces to Ep modulo p, a lift of Ep.

1.2.2 The Finite Field Method

Let E be an elliptic curve and p be any prime. We denote the number of elements in

Ep(Fp) by #Ep. There is both theoretical and experimental evidence to suggest that

elliptic curves, E, of large rank have the property that #Ep is large for many primes p.

We will review this evidence when we discuss sieving later in this chapter. Let us now

indicate how Mestre uses this evidence to search for elliptic curves of large rank.

The constructing phase of the algorithm is essentially composed of two steps. First,

fix a finite set of primes, and for each prime p in this set, compute an Ep for which

#Ep is maximum. There may be more than one curve Ep which satisfies this condition.

Then, construct a list of curves in which each curve is a lift of each of the Ep.

Recall that we can quantify the maximum possible value of #Ep using Hasse’s

theorem:

Theorem 1.2.2 Let p be any prime and Ep an elliptic curve defined over Fp, then

|p + 1−#Ep| ≤ 2
√

p.

In particular, #Ep can be at most b 2
√

p c+ p + 1.

A proof of Hasse’s theorem can be found in [24, section V.1].

We make two remarks before continuing. First, the number p + 1−#Ep comes up

often enough that we define ap to be p + 1−#Ep. Second, while this theorem does not

guarantee the existence of a curve for which #Ep is b 2
√

p c + p + 1, Serre has proven
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([27]) that in fact this is the case. However, if we take the maximum value of #Ep over

curves containing some fixed non-trivial torsion, then this bound given by Weil may

not be attained (see section 2.1).

1.2.3 The Polynomial Method

Mestre’s polynomial method is distinct from any other method of finding elliptic curves

of high rank because it is the only one which constructs elliptic curves with a prescribed

number of points. The idea hinges on the following key theorem of Mestre ([14]):

Theorem 1.2.3 For any field K, let p(x) ε K[x], p(x) monic with deg p(x) = 2 n,

then there exist polynomials g(x) and r(x) such that

1. g(x), r(x) ε K[x],

2. deg g(x) = n and deg r(x) ≤ n− 1, and

3. p(x) = g(x)2 − r(x).

We prove an analagous theorem, also due to Mestre, in section 3.2.1. Observe

that for any root, α of the polynomial p(x) in the above, we have that g(α)2 = r(α).

Therefore, the curve y2 = r(x) contains the 2n points (αi, g(αi)), where the αi are

the roots of p(x). Furthermore, if each of these roots is in the field K, then since

g(x) ε K[x], these 2n points are K-rational. So, to construct curves with 2n K-rational

points, we simply need to choose αi ε K, 1 ≤ i ≤ 2n, and let p(x) equal the product of

(x− αi).

We will write A = {α1, α2, ..., α2n} for some choice of roots and rA(x) for the

corresponding polynomial given by the theorem. Now, in order to use Theorem 1.2.3

and the previous observation, we need to investigate the relationship between a choice

of A and:

1. the smoothness of y2 = rA(x),

2. the degree of rA(x),

3. the isomorphism class of y2 = rA(x), and
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4. the linear independence of the resulting points.

Mestre has proven that for an appropriate choice of A, the resulting curve y2 =

rA(x) is in fact an elliptic curve [14]. Furthermore, he has produced choices of A

for which the resulting curve is an elliptic curve and the resulting points are linearly

independent. While this shows that it is possible to prove some statements about the

above relationships, we will often rely on experimental results to guide us to high rank

elliptic curves.

The real strength of this method is that it can be used to not only construct elliptic

curves over Q, but that it is equally useful in constructing elliptic curves over different

fields, and in particular over Q(t). This allows us to construct not only single elliptic

curves with many points, but also infinite families of such elliptic curves. The idea is

to construct an elliptic curve over Q(t) with high rank and then specialize to rational

values of t to get elliptic curves defined over the rationals. Furthermore, by sieving

through these curves using the same criteria as in Mestre’s finite field method, we can

try to pick out curves which have even larger rank over Q than they did over Q(t).

1.3 Sieving

Whenever we have a function on elliptic curves for which we understand (or reasonably

believe) some relationship between the values of the function and the rank of the elliptic

curve we can use it as a predictor of curves with high rank. For example if we can

compute an upper bound on the rank of an elliptic curve, we can in the very least weed

out curves of low rank. If we can refine the upper bound to be as sharp as possible,

then it can be an even better predictor. We are not, however, restricted to using upper

bounds. Below we describe two upper bounds and two sums which we use to sieve

through lists of elliptic curves to isolate those that may have high rank.

1.3.1 Descent and Kretschmer’s Bound

Kretschmer’s bound comes from the classical process of descent. We begin by reviewing

some facts about descent. The descent procedure was probably first used by Fermat
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to prove that the rank of the elliptic curve x4 + y4 = z4 defined over the rationals is

zero, but the proof of the Mordell-Weil Theorem gives us the modern form of descent.

Recall that this proof consists of two major parts. Roughly, they are:

1. E(Q)/mE(Q) is finitely generated (the weak Mordell-Weil theorem), and

2. there is a real valued height function on E(Q) which bounds the number of points

of a fixed height and which is “increasing” with respect to the multiplication by

m map on E(Q) for m ≥ 2 (the descent theorem).

Also recall, that while we can prove that E(Q)/mE(Q) is finitely generated, the proof

is ineffective in producing the generators of this group and that this is precisely what

inhibits our finding generators for the whole group E(Q). The descent procedure is

precisely the technique we currently use to come as close as possible to finding the

generators of E(Q)/mE(Q). The procedure rests on the fact that there is an exact

sequence:

0 −→ E(Q)/mE(Q) −→ S(m)(E/Q) −→ qq (E/Q)[m] −→ 0,

where S(m)(E/Q) is the Selmer group and qq (E/Q) is the Shafarevich-Tate group.

The elements of the Selmer group correspond to twists of the elliptic curve E called

homogeneous spaces which are everywhere locally soluble– have a solution over every

completion of the rationals. The non-trivial elements of the Shafarevich-Tate group

catalogue those homogeneous spaces that fail the Hasse principle– contain a solution

over every completion of the rationals, yet do not contain a rational solution.

The descent procedure reduces the problem of finding the generators of E(Q)/mE(Q)

and hence of E(Q) to computing the Selmer group and the Shafarevich-Tate group–

finding a single rational point or proving that no such point exists on each of the

homogeneous spaces. Given this, Kretschmer has proven the following ([11]):

Theorem 1.3.1 Let p be a prime and z2 = g(x) = b1 x4+a x2+b2 define a homogeneous

space, then we have

1. If p does not divide the discriminant of g, then z2 = g(x) is solvable in Qp.
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2. Let µ = νp(a2 − 4 b1 b2). If µ ≥ 1 and p does not divide 6 b1 b2, then z2 = g(x) is

solvable in Qp if and only if

(a) b1 or b2 is a quadratic residue mod p, or

(b) µ is even and

(a
p ) =

 1 if p ≡ 5, 7 mod 8

−1 if p ≡ 1, 3 mod 8.

3. If p divides b1 b2 and not 6 a, then z2 = g(x) is solvable in Qp if and only if

(a) p does not divide gcd(b1, b2), or

(b) p does divide gcd(b1, b2) and at least one of the following is true: νp(b1) is

even, νp(b2) is even, or (a
p ) = 1.

We will denote an upper bound achieved using this theorem by kE . Since this

theorem requires that the homogeneous space be of the form z2 = b1x
4 + ax2 + b2, we

find that we can only use this result for curves which contain a point of order 2. In

section 4.3.2, we give a slightly more detailed account of the particular case of descent

by 2-isogeny.

1.3.2 Bad Reduction and Mazur’s Bound

Mazur gives another bound for the rank of elliptic curves defined over the rationals

with nontrivial torsion. This bound is calculated solely from elementary information

about the curve and in particular from information regarding primes of bad reduction.

Primes of bad reduction fall into two categories: additive and multiplicative. Let

E be an elliptic curve in minimal Weierstrass form and let p be any prime dividing its

discriminant. A prime is said to be of additive reduction if Ep has a node. Note that

the name additive comes from the fact that the set of nonsingular points of Ep(Fp) form

a group and this group is isomorphic to the additive group of Fp. A prime is said to be

of multiplicative reduction if Ep has a cusp. The name multiplicative comes from the

fact that the group of nonsingular points of Ep(Fp) is isomorphic to the multiplicative

group of Fp
∗.
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Let P = (x, y) be a point on the elliptic curve E in Weierstrass form. Mazur has

proven that if P has prime order p and either p ≥ 3, p = 2 with x, y ε Z, or p = 2 with

ν2(x) = 2 and ν2(y) = 3, we have rE ≤ mE,p = b + a−m− e− 1, where a, b and m are

defined as follows:

1. b is the number of primes of bad reduction (of all type).

2. a is the number of primes of additive reduction.

3. m is the number of primes of multiplicative reduction, s, satisfying:

(a) p does not divide the exponent of s in ∆Emin and

(b) s 6≡ 1 mod p.

4. e = 0 if p ≥ 3 and e = 1 if p = 2 and there is a prime of multiplicative reduction

not congruent to 1 modulo 4 satisfying condition 3(a).

Finally, we point out that we may also use ME = min{mE,p | E has a point of order p}

or BE = min{ME , kE} as alternative bounds in this sieving method.

1.3.3 Mestre’s and Nagao’s Sums

While the sums we describe here are used in a way very similar to the upper bounds

above, there are two significant differences. First, these sums can be computed for

curves that have nontrivial torsion. Second, we believe by some theoretical arguments

in addition to any experimental evidence that they are sharper estimates of rank.

Consider the sum:

SE(N) = −
∑
p≤N

p prime

ap − 2
#Ep

log p.

This sum was first used by Mestre in the finite field method described in section 1.2.1.

In fact, the theoretical evidence mentioned here is the same evidence supporting the

idea that elliptic curves with large rank should have lots of points on their reduced

models modulo p, for many primes p.
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Now consider:

sE(N) = − 1
N

∑
p≤N

p prime

ap log p.

This sum was first used by Fermigier and generalized by Nagao to curves defined over

Q(t).

The Birch, Swinnerton-Dyer conjecture does not formally imply that these sums

give a good measure of the rank of an elliptic curve but rather, gives strong support to

this idea. Recall that the L-series related to the elliptic curve E is the function

LE(s) =
∏
p|∆

(1− app
−s)−1

∏
p6 |∆

(1− app
−s + p1−2s)−1.

Recall also that this function converges on the half plane Re(s) > 3/2. A weak version

of the Birch and Swinnerton-Dyer conjecture:

Conjecture 1.3.2 For any elliptic curve E defined over the rationals, the L-series

extends to an entire function and the order of vanishing of L(s) at s = 1 is equal to rE.

We can now present a heuristic for why the Birch, Swinnerton-Dyer conjecture

implies the sums SE(N) and sE(N) should be good indicators of rank for sufficiently

large N . The conjecture first implies that we may write L(s) = (s − 1)r
E · g(s) with

g(1) 6= 0. (In fact the full Birch, Swinnerton-Dyer Conjecture gives a precise value for

g(1) in terms of other data related to the elliptic curve. See [24, section C.16] for more

details.) We then have that the logarithmic derivitave of L(s) is

L′(s)
L(s)

= rE
1

(s− 1)
+

g′(s)
g(s)

.

If we let h(s) = g′(s)/g(s), we see that h(s) is analytic near s = 1, so that

lim
s→1

L′(s)
L(s)

= rE lim
s→1

1
(s− 1)

+ h(1).

It seems reasonable to believe that this limit goes to infinity faster for curves with larger

rank.

Now consider the product, LE(s,N) defined as

LE(s,N) =
∏

p≤N

(1− app
−s + p1−2s)−1.
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This is simply the original L-series with two modifications– we cut off the product at

N and ignore the difference between what happens for primes of good reduction and

primes of bad reduction. We then have,

f(s,N) = log LE(s,N) = −
∑
p≤N

log(1− app
−s + p1−2s).

Therefore,

f ′(s,N) = −
∑
p≤N

app
−s − 2p1−2s

1− app−s + p1−2s
log p.

We see that it is reasonable to think

L′(s)
L(s)

≈ lim
N→∞

f ′(s,N),

and hence that

lim
s→1

L′(s)
L(s)

≈ lim
s→1

lim
N→∞

f ′(s,N).

Now, if we could reverse the order of the limits, we would have that

lim
s→1

L′(s)
L(s)

≈ lim
N→∞

f ′(1, N).

Observe that f ′(1, N) = SE(N). We might then expect that curves with larger rank have

the property that the sum SE(N) converges to infinity faster than those with smaller

rank. This is consistent with what occurs in practice. We discuss this particular sum

further in section 2.1.2.

Note that we can rewrite SE(N) as

SE(N) =
∑
p≤N

p prime

(1− p− 1
#Ep

) log p .

This implies that this sum is larger when #Ep is large for many primes p. This in turn

leads us to believe that #Ep is large for curves with large rank.

Consider the following result of Nagao:

Theorem 1.3.3 (NA3) Let {cp | p prime} be a bounded sequence of non-negative

numbers. If one of the two series

1
N

∑
p≤N

cp log p

or
1

π(N)

∑
p≤N

cp
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converges as N → ∞, where π(N) = the number of primes less than or equal to N ,

then so too does the other and they converge to the same limit.

We present a proof of this theorem (different from the one given by Nagao) in section

2.2.1. Given this result, we may consider (under the appropriate conditions) the sum

sE(N) as an average of the values −ap:

sE(N) =
1

π(N)

∑
p≤N

p prime

(#Ep − p− 1).

It is now clear that this sum should also be large when the rank is large. Furthermore,

Nagao has also shown that we can extend the idea of this average to curves E defined

over Q(t) and in some cases actually prove that this “extended” average converges to

the rank of the elliptic curve E ([22]).

1.4 Computing Rank

The section above explains how we go about isolating curves that have a good chance

of having large rank, but after isolating these curves, we are still left with the task of

actually verifying that what we suspect is true is in fact true. We compute the rank of

an elliptic curve by finding points on the curve which are linearly independent in the

Mordell-Weil group.

If the curve has a point of finite order we can in theory use descent to find linearly

independent points on an elliptic curve. It is, however, often difficult if we are doing

anything other than a 2-descent for elliptic curves defined over the rationals. Also, we

again can only use this technique on curves that have a rational point of finite order.

It is, therefore, necessary that we also be able to find points on the curve by simply

searching (plugging in an x value and testing to see if any of the corresponding y values

lie in the same field) and then find the largest subset of linearly independent points

from them. Recall that we can compute this linearly independent subset by computing

the determinant of the matrix of heights. A more detailed discussion of this process

appears in section 4.2.1.
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Chapter 2

The Finite Field Method

2.1 Finding a Single Elliptic Curve

2.1.1 The Original Method in Detail

Mestre begins with a particular model for an elliptic curve:

E : y2 + y = x3 + a4 x + a6.

This model is particularly nice since distinct pairs a4, a6 determine distinct isomorphism

classes. In other words, if a4 6= a′4 or a6 6= a′6, then the elliptic curve y2+y = x3+a4 x+a6

is not isomorphic to the elliptic curve y2 +y = x3 +a′4 x+a′6. This fact is an immediate

consequence of theorem 1.2.1.

Next, we choose a finite set of primes P . In Mestre’s original implementation of this

technique, he chooses the set of all primes less than or equal to some fixed prime p0,

but one can use any finite set of primes.

For each prime in the set P , we compute the pairs of values (a4, a6) which give a

maximum value of #Ep. As mentioned earlier, Serre has shown that there exists some

pair of values for which #Ep equals b2√pc+ p + 1 ([27]). Also as mentioned, there can

be more than one pair which attains this maximum value and for primes larger than 7,

this appears to always occur. Denote this set of pairs by Cp.

We let MP =
∏

p ε P

p and use the chinese remainder theorem to calculate the set of

pairs

CMP
= {(a4, a6) | 0 ≤ a4, a6 < MP ; for each p ε P, (a4 mod p , a6 mod p) ε Cp}.

Finally, we construct a list of curves

C = {y2 + y = x3 + a4 x + a6 | (a4 mod MP , a6 mod MP ) ε CMP
},
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with a4 negative and a6 chosen to make the discriminant of the curve small (in absolute

value). The former condition exists purely for experimental reasons– curves with this

property have tended to have higher rank. The latter condition is for aesthetic reasons–

whenever we find a curve with a given property, it is nice to find the curve with the

smallest conductor that has that property.

Once the list C has been constructed, we may use any of the applicable sieving

methods discussed earlier. Mestre originally used the sum SE(N)− SE(p0) and found

several curves of rank at least 6, 7, 8 and 9 one curve of rank at least 12. Note that for

each curve in the list C, the value of SE(p0) will be the same. This is clearly true by

construction. Hence we may use the sum SE(N) instead of SE(N)− SE(p0) as Mestre

does.

2.1.2 Varying the Parameters

After varying the parameters in this method– changing the set of primes P , increasing

the lower bound for SE(N) and sE(N), computing these sums for greater values of N

and increasing the size of C by increasing the number of curves per equivalence class

of CMP
– we made two observations.

First, since these changes did not seem to improve or worsen the probability of

finding a high rank elliptic curve, the finite field method does not appear to be well

suited for finding curves with “very” high rank. (For example, rank as high as those

found using the polynomial method which we describe in the next chapter.) Observe

that if the number of curves over Fp which attain the maximum b2√pc+p+1 is at least

2 for all p ≥ 7, then the size of CMP
grows exponentially with each new prime, p, added

to P . Experimentally, we find that this number of curves is an increasing function of

p. Furthermore, MP grows exponentially as well (recall that this is equivalent to the

prime number theorem); so, not only do the number of curves in C grow rapidly, but

the coefficients of each curve grow rapidly as well. Therefore, if it is the case that the

number of primes necessary to find curves of large rank using this method increases

with rank (which is experimentally true), then it would be unreasonable to expect that

this method alone would be able to produce elliptic curves of “very” high rank.
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The second observation we made was regarding the growth of the sum SE(N).

SE(N) appears to be O(log(N)). More importantly, if we let

GE(N) =
1

log N − 2
SE(N),

then it seems to be the case that (rE− limN→∞ GE(N)) < 3
2 . For the first 10,000 curves

in Cremona’s list, we found that for sufficiently large N (N ≈ 155), GE(N) was between

rE and rE − 1.3. In each of the curves found using this finite field method, we found

that the difference between GE(p500), where p500 is the 500th prime, and the number

of linearly independent points found on the curve was less than 1. Similar results hold

for curves found by Fermigier and Nagao (see [4, page 361]).

2.2 More on Sums

2.2.1 Sums over Primes

The goal of this section will be to prove theorem 1.3.3. First, we recall and sketch a

proof of Abel’s Identity.

Theorem 2.2.1 (Abel’s Identity) For any sequence g(n), n ε N, let

G(x) =
∑

0<n≤x

g(n),

and let F be in C1([a, b]) with 0 < a < b. Then we have

∑
a<n≤b

g(n)F (n) = G(b)F (b)−G(a)F (a)−
∫ b

a
G(x)F ′(x) dx.

Sketch of Proof: ∑
a<n≤b

g(n)F (n) =
∫ b

a
F (x) dG(x),

where the right hand side of the equation is a Riemann-Stieljes integral. Now integrate

by parts to get the theorem.

We now restate and present a proof, different from the one given by Nagao in [22],

of theorem 1.3.3.



19

Theorem 2.2.2 Let {cp | p prime} be a bounded sequence of non-negative numbers.

If one of the two series
1
N

∑
p≤N

cp log p

or
1

π(N)

∑
p≤N

cp

converges as N → ∞, where π(N) = the number of primes less than or equal to N ,

then so too does the other and they converge to the same limit.

Proof: Let

g(n) =

 cp if n equals the prime p

0 otherwise,

and let

G(x) =
∑

1<n≤x

g(n).

Then, by Abel’s identity, we have

∑
1<p≤N

cp log p = log N ·G(N)−
∫ N

1

G(x)
x

dx.

If we divide this equation through by N and observe that G(x) = 0 for x < 2, we get

1
N

∑
1<p≤N

cp log p =
log N

N
G(N)− 1

N

∫ N

2

G(x)
x

dx.

Since the cp are positive and bounded, for some positive constant M , we have the

inequality 0 ≤ G(x) ≤ M · π(x) where π(x) is the number of primes between 1 and x.

The prime number theorem gives us the following two equalities:

lim
N→∞

−M

N

∫ N

2

π(x)
x

dx = 0

and

lim
N→∞

log N

N
G(N) = lim

N→∞

1
π(N)

G(N),

which proves the theorem.
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2.2.2 Applications to sE(N) and GE(N)

As mentioned in the introduction, this theorem gives a basis upon which to think of

the sum sE(N) as an average of the values −ap. Unfortunately, the sequence {−ap}

is not in general a bounded, nonnegative sequence and so the theorem does not apply.

However, for elliptic curves for which we can prove that the sequence above satisfies

the conditions of the theorem, we can replace the sum sE(N) with the sum

s′E(N) = − 1
π(N)

∑
p≤N

p prime

ap .

If 0 ≤ −ap ≤ M for some constant M then we have,

s′E(N) ≤ 1
π(N)

∑
p≤N

p prime

M = M.

This means that s′E(N) is a bounded increasing sequence and hence converges. By

theorem 1.3.3 then, we have that sE(N) converges and converges to the same value. In

sections 3.2.5 and 3.4.6, we give some results of Nagao in which these results become

relevant.

Similarly, we cannot in general apply theorem 1.3.3 to the sum GE(N), since we do

not always have that {−ap−2
#Ep

} is a bounded, nonnegative sequence. We have in this

case as well, a sum,

G′
E(N) = −

∑
p≤N

p prime

ap − 2
#Ep

,

which can replace GE(N) when the sequence {−ap−2
#Ep

} satisifies the conditions of theo-

rem 1.3.3. Differing from the situation above, this alone does not give us that the sum

converges.

2.3 Finding Curves with Nontrivial Torsion

2.3.1 Modifying the Method

Just as we can vary the set of primes and the sum used to sieve, we can also vary

the model of the elliptic curve we use in the finite field method. If we use one of
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Tate’s normal forms for curves containing a point of finite order in place of y2 + y =

x3 + a4 x + a6, we can use the finite field method to find curves with nontrivial torsion

of high rank. Furthermore, we can now use the upper bounds discussed earlier during

the sieving phase of the technique. In some cases, computing the upper bound allows

us to give the exact rank of curves rather than just a lower bound on the rank.

Let E0 = E(A,B) be the elliptic curve y2 + y = x3 + A x + B defined over Q(A,B)

and for any a and b rational, let E(a, b) be the specialization of the curve to y2 + y =

x3 + a x + b defined over Q. Let Sp(0) be the set of reduced curves

{E(a, b)p | 0 ≤ a, b ≤ p, E(a, b) an elliptic curve defined over Q}.

Furthermore, let Wp(0) be the maximum value #E(a, b)p over all curves in Sp(0). If

we let wp = b2√pc + p + 1, we have (wp − Wp(E0)) = 0 for all primes, p. Serre has

generalized this statement for curves of higher genus and for curves defined over other

finite fields ([27]). We have found that this seems to also generalize in a different way.

First, we define ET to be the Tate normal form of the elliptic curve with torsion T, with

E0 being the curve for E{0}. This curve is defined over some function field over Q. Let

Sp(T) be the set of reduced curves

{Ep | E is a specialization of ET}.

If we set Wp(T) to be the maximum value #Ep over all curves E in Sp(T), then we

conjecture the following.

Conjecture 2.3.1 Let T be one of the possible subgroups for an elliptic curve defined

over Q. For any prime, p,

(wp − Wp(T)) < |T|,

except when T = Z/2Z and p = 2. Furthermore, for each integer k ε {0, 1, ..., |T| − 1},

there exists a prime p0 with (wp − Wp(T)) = k.

(It is also possible that each value of k is obtained infinitely often, though our calcu-

lations were not performed for enough primes to include this as part of the conjecture.)

We present the following calculations as evidence of this conjecture:
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Value of (wp −Wp(T))

T 0 1 2 3 4 5 6 7 8 9 10 11 total # of primes

Z/2Z 16 13 1 30

Z/3Z 11 13 6 30

Z/2Z⊕ Z/2Z 10 9 6 4 30

Z/4Z 52 54 49 45 200

Z/6Z 33 36 36 38 31 26 200

Z/2Z⊕ Z/4Z 37 38 32 24 19 21 13 16 200

Z/2Z⊕ Z/6Z 16 17 16 20 18 20 16 18 21 16 14 8 200

Each row in the table above shows the distribution of the difference (wp −Wp(T)) for

a given torsion group. For the curves whose Tate normal form is parameterized by two

variables, the distribution is over the first 30 primes and for the curves parameterized

by one variable, the distribution is over the first 200 primes.

It is not yet clear, why this phenominon occurs, but it does loosely imply that it is

more difficult to produce large rank elliptic curves using this method as the size of the

desired torsion subgroup grows. This holds true in practice as is illustrated by the few

curves of large rank produced in the following section and in section 3.5.

2.3.2 Curves with Nontrivial Torsion

We present two curves with nontrivial torsion and moderate rank. Each of these curves

were found by performing the finite field method using the Tate normal form in place

of the form used by Mestre originally. In the case of the curve with a point of order

three, we searched for curves with corresponding sum GE(p500) at least 3 and with the

bound given by Mazur at least 3. We found several curves of rank 3 and one curve of

rank exactly 4. This curve is known to have rank precisely 4 because we were able to

find four linearly independent points and because Mazur’s bound for this curve is 4.

This curve is listed below, together with independent points on the minimal Weierstass

model. We also indicate the point of order 3.
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Tate Form Minimal Form x : Order rank Generators (x)

[-109,0,421,0,0] [1,0,1, [990,−285] : 3 4 [-1957,17397],

-2963740, [-1115,62865],

1963602390] [-1082,63022],

[509,23973]

Similarly, we were able to find a curve of rank 2 with a point of order 4. We found this

curve by again searching for curves with a high corresponding sum GE(p500). However,

in this case, we searched for curves with the additional constraint that the bound given

by Kretschmer was at least 3. Once a curve was found that satisfied these conditions a

descent was performed to find points on the curve. Section 4.2.3 describes this descent

in more detail. While we found many curves of rank at least one, the elliptic curve

below was the only curve found to have rank strictly larger than 1.

Tate Form Minimal Form x : Order rank Generators (x)

[1,-26273, [1,1,1, [−8758, 2 [41552, 7779230],

-26273,0,0] -230098934, 17515] : 4 or [84035/4, 13991581/8]

-1343368714654] 3

Note that we can compute the sign of the functional equation and assuming the

Birch, Swinnerton-Dyer conjecture, compute the rank more precisely. This is discussed

in more detail in section 4.2.4.
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Chapter 3

The Polynomial Method

3.1 The Quartic Model

3.1.1 Alternate Models of Elliptic Curves

Given theorem 1.3.2, we could have defined an elliptic curve defined over K to be the

set of points in projective two space satisfying

Y 2Z + a1 XY Z + a3 Y Z2 = X3 + a2 X2Z + a4 XZ2 + a6 Z3

provided this curve is smooth. We do not have to add the provision that the curve con-

tain a K-rational point since every curve in Weierstrass form contains the point [0, 1, 0]

called the point at infinity. It is often useful, however, to recognize other models of

elliptic curves. This motivated our more general definition of elliptic curves as smooth

curves of genus 1. The projective model above is an example of a degree three, homo-

geneous polynomial in three variables. It is in fact the case that any smooth, degree

three, homogeneous polynomial in three variables containing at least one K-rational

point describes an elliptic curve defined over K.

A less commonly used description of an elliptic curve is the set of points in projective

three space satisfying both

X0X3 = X2
1

and

X2
2 = a4 X2

3 + a3 X3X1 + a2 X0X3 + a1 X1X0 + a0 X2
0 ,

where a4 6= 0. Dehomogenizing at the variable X0, we see that one affine model for this

curve is

y2 = a4 x4 + a3 x3 + a2 x2 + a1 x + a0.
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For this reason, we will refer to this model of an elliptic curve as the quartic model and

the points with X0 6= 0 the affine points. If X0 = 0, then it must be that X1 = 0 and

we see that the points [0, 0,
√

a4, 1] and [0, 0,−√a4, 1] are points on the curve. We call

these points the points at infinity for this model of the curve. By dehomogenizing at

either X0 or X3, we observe that this curve is smooth at each of its points, including the

points at infinity, if and only if the function f(x) = a4 x4 + a3 x3 + a2 x2 + a1 x+ a0 has

no double roots. If f(x) has no double roots, then the curve is smooth and has genus 1.

Therefore, if the coefficients of f(x) lie in a field K and the curve contains a k-rational

point, then this model describes an elliptic curve defined over K. Furthermore, if a4 is

a square in K, then the two points at infinity are K-rational.

These two more general models above give us greater flexibility when trying to

construct elliptic curves of high rank, but it is still necessary to be able to work with

the Weierstrass form of an elliptic curve we construct. As mentioned in the remarks

following theorem 1.2.1, the Riemann-Roch theorem can be used to prove that every

elliptic curve can be put into Weierstrass form. In section 4.1.1, we present a discussion

of why this is necessary and give the transformation which maps the quartic model to

a curve in Weierstrass form.

3.1.2 Divisors

If an elliptic curve, E, is in Weierstrass form, we can take any rational point to be the

identity and the rational points on the curve, E(Q), form a group with the usual chord

and tangent method. Unless otherwise stated, we take the unique point at infinity on

a curve in Weierstrass form to be the identity. A similar geometric group law can be

defined for curves presented in the quartic model.

The construction of this group law follows the same construct as for the group law

for curves in Weierstrass form. For this reason, we first recall some facts about divisors.

A divisor for the elliptic curve E defined over a field K, is a formal finite integer sum

of points on E. Equivalently, it is an element in the free ableian group generated by
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the points on E. Every divisor is of the form:

D =
∑

P ε S

nP (P ),

where the nP are integers and S is some finite set of points in E(K). We use the

notation (P ) when using divisors to make the distinction between a divisor and a sum

in the group E(K). The degree of a divisor of the form above is defined to be

deg(D) =
∑

P ε S

nP .

The set of all divisors for an elliptic curve E, called the divisor group of E and denoted

Div(E), is a group. The set of divisors of degree 0, denoted Div0(E), is a subgroup.

A divisor D is defined over the field K if for every element, σ, in the galois group

of K over K, we have

D = Dσ =
∑

P ε S

nP (P σ).

The group of divisors defined over K is denoted DivK(E). Similarly, the group of

divisors defined over K of degree 0 is denoted Div0
K(E).

A divisor is called principal if it is of the form:

D =
∑

P ε E

ordP (f) (P ),

for some function f ε K(E)∗, where ordP (f) is the order of vanishing or pole of the

function f at the point P . In this case, we write D = div(f) and call D the divisor of

f . Every principal divisor has degree 0 and so it makes sense to consider the quotient

of the group Div0(E) by the subgroup of prinicipal divisors. This quotient group is

called the degree 0 part of the divisor class group and is denoted Pic0(E). Similarly, we

denote the quotient group of Div0
K(E) by its subgroup of principal divisors by Pic0

K(E).

Note that the principal divisors that are defined over K are the divisors of functions

f ε K(E)∗.

Consider the following theorem. (We note that the proof, together with a more in

depth discussion of divisors may be found in sections II.3 and III.3 of [24].)

Theorem 3.1.1 Let E be an elliptic curve defined over K with identity O and let

D =
∑

nP (P ) be a divisor defined over K (with the sum being over some finite set of

points S ⊂ E(K)). Then we have that
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1. Pic0
K(E) ∼= E(K) and

2. D is principal if and only if D has degree 0 and

∑
P ε S

nP P = O

as a sum in E(K).

3.1.3 The Group Law

We now present the group law on the quartic model of an elliptic curve, E, defined over

K. We assume, that the curve is of the form:

X0X3 = X2
1

and

X2
2 = a2 X2

3 + b X3X1 + cX0X3 + d X1X0 + eX2
0 ,

with a, b, c, d, e ε K. This gives that the two points at infinity O = [0, 0,−a, 1] and

O′ = [0, 0, a, 1] are in fact K-rational. Furthermore, we choose O to be the identity of

the group. We let

L[α,β,γ,δ](X0, X1, X2, X3) = α X0 + β X1 + γ X2 + δ X3,

and

lx0 = X1 − x0 X0.

Each of these linear curves intersects the elliptic curve E in 4 points (counting multiplic-

ity). In particular, if R = [1, x0, y0, x
2
0] is an affine point on the curve, lx0 = 0 intersects

E at the points O, O′, R and T = [1, x0,−y0, x
2
0]. Furthermore, for some points P

and Q (neither of which equal to O), the linear curve L[α,β,1,−a](X0, X1, X2, X3) = 0

intersects the curve at the points P,Q,R and O′ when β = (ax2
0−α− y0)/x0. If P and

Q are K-rational, then the function f = L/l ε K(E)∗ and

div(f) = (P ) + (Q)− (T )− (O).

By theorem 3.1.1, we have that T = P + Q in the group E(K).

If we dehomogenize at X0, we can observe the geometry of this group law. We see

that the curve L = 0 defines a parabola and l = 0 defines the vertical line x = x0. If we
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have two K-rational points P and Q (again both not O), we can solve y2 = ax2+βx+α,

for β and α such that the parabola contains the points P and Q. If P = Q, then

we simply require that the parabola be tangent at the point P . This parabola then

intersects the elliptic curve E in one other K-rational point, R. If the point is affine,

then the sum of P and Q is the reflection of this point across the x-axis, T .

If in the above, the point R is not affine, then we have the two following possibilities.

If R = O then the zeroes of L are P,Q,O and O′ each with multiplicity one. Since the

function X0 has a double zero at O and at O′, we have that div(L/X0) = (P ) + (Q)−

(O)− (O′). Therefore, in this case, P +Q = O′. Furthermore, the condition that O and

O′ be on L = 0 implies that Q must be the reflection of P across the x-axis. If R = O′,

then the zeroes of L are P and Q each with multiplicity one and O′ with multiplicity

two. Therefore, we have that div(L/X0) = (P ) + (Q)− 2(O) and so P = −Q.

3.2 Constructing Curves over Q(t)

3.2.1 Two Polynomial Constructions

There are two constructions due to Mestre which produce elliptic curves with a pre-

scribed number of points on the curve. Each of these constructions follow the same

general principal. The first construction is a consequence of theorem 1.2.2, restated

below:

Theorem 3.2.1 For any field K, let p(x) ε K[x], p(x) monic with deg p(x) = 2 n,

then there exist polynomials g(x) and r(x) such that

1. g(x), r(x) ε K[x],

2. deg g(x) = n and deg r(x) ≤ n− 1, and

3. p(x) = g(x)2 − r(x).

The second construction is a consequence of the similar theorem:

Theorem 3.2.2 For any field K, let p(x) ε K[x], p(x) monic with deg p(x) = 3 n,

then there exist polynomials g(x), r1(x) and r2(x) such that
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1. g(x), r1(x), r2(x) ε K[x],

2. deg g(x) = n, deg r1(x) ≤ n− 1 and deg r2(x) ≤ n− 1, and

3. p(x) = g(x)3 + g(x) r1(x) + r2(x).

Proof: If

p(x) = x3n + ... + a1 x + a0,

then

p(
1
x

) =
1 + a3n−1 x + ... + a1 x3n−1 + a0 x3n

x3n
.

Let p1(x) be the numerator of p( 1
x) and let h(x) be the Taylor expansion of p1(x)

1
3

about x = 0. Let g( 1
x) equal the terms of h(x)

xn with non-positive exponent. Then,

g(
1
x

) =
1 + bn−1 x + ... + b1 xn−1 + a0 xn

xn
.

Let g1(x) be the numerator of g( 1
x). Since, h(x)3 = p1(x), g1(x)3 agrees with p1(x) to

at least the degree n term. This implies that p(x) − g(x)3 is at most a degree 2n − 1

polynomial. If we then divide p(x)−g(x)3 by g(x), let r1(x) be the quotient polynomial

and let r2(x) be the remainder polynomial, then we get the theorem.

Now observe that for any root α of p(x), we have

g(α)2 = r(α)

in the first theorem and

g(α)3 + r1(α) g(α) + r2(α) = 0

in the second. So if we replace g(x) in each of the equations with y, then in the first

case we have, that the curve defined by

y2 = r(x),

contains the point (α, g(α)) for any root α of p(x). Similarly, in the second case, we

have that the curve defined by

y3 + r1(x) y + r2(x) = 0
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contains the equivalently defined points. Furthermore, since g(x) ε K[x], if a root, α,

of p(x) is in K, then the resulting point, (α, g(α)), on the curve is K-rational.

Mestre’s idea is to choose 2n or 3n roots of p(x) for some n and then use one of

these theorems to construct the curve

y2 = r(x) or y3 + r1(x) y + r2(x) = 0.

If the roots are chosen properly, then the curves defined by the equations above will be

elliptic curves.

In particular, if we let n = 6 and choose the 12 roots of p(x) in the first theorem,

then the degree of r(x) is no greater than 5. Mestre showed that there were possible

choices of 12 roots for which r(x) in this construction is of degree 4. If in this case, r(x)

has no double roots, then we have that y2 = r(x) describes an elliptic curve. Similarly,

if we let n = 4 and again choose the 12 roots of p(x), then in the second theorem, the

degrees of r1(x) and of r2(x) are each less than or equal to 3. Mestre also showed that

there were possible choices of 12 roots for which r1(x) in this construction is of degree

2. If the resulting curve y3 + r1(x) y + r2(x) = 0 is smooth, then this too describes an

elliptic curve.

3.2.2 Setting up the Construction

We now present one particular way to use theorem 3.1.1 to construct elliptic curves

over the field Q(t). In section 4.3.1 we indicate why we choose this construction over

one using theorem 3.1.2. We let A be the set {a1 + t, a1 − t, ..., a6 + t, a6 − t}, where

ai ε Q for each i. If we let

pA(x) =
∏

αi ε A
(x− αi),

then by theorem 3.1.1 there exist polynomials gA(x) and

rA(x) = r5,A(t) x5 + r4,A(t) x4 + ... + r0,A(t)

such that

pA(x) = gA(x)2 − rA(x).
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We will call the 12 points on the curve y2 = rA(x) arising from this procedure, the

twelve constructed points.

Note that when t = 0, we have pA(x) is a perfect square. Therefore, when t = 0,

rA(x) is identically zero. Furthermore, pA(x) is even in t and so both gA(x) and rA(x)

are even in t as well. This gives that rA(x) is a multiple of t2. Also, for this choice of

roots, the set of rationals {a1, a2, ..., a6} completely determines pA(x), gA(x) and rA(x).

Given these remarks, we define A to be the point (a1, a2, ..., a6) ε Q6, and we let

pA(x) = pA(x),

gA(x) = gA(x)
t2

,

rA(x) = rA(x)
t2

and

rj,A(t) = rj,A(t)
t2

for each j, 0 ≤ j ≤ 5.

Not all choices of A give an elliptic curve. The greatest challenge is choosing the

roots so that r5,A(t) is identically zero. The zeroes of r5,A(t), considered now as a

polynomial in a1, a2, a3, a4, a5 and a6, form a surface in Q6. Currently, there is no

simple description of the rational points on this surface or a parameterization of some

subset known to give elliptic curves of high rank. In the next two sections we describe

how to discover points on this surface that lead to elliptic curves of high rank.

3.2.3 Differentiating Choices of Roots

Our goal is to produce curves of high rank and so we will first require that the roots

we choose be distinct. Therefore, we demand that no two of the ai in A be equal.

Our goal is also to produce many non-isomorphic examples of elliptic curves of large

rank. Therefore, we need to be able to determine when two choices of A giving elliptic

curves, actually give isomorphic elliptic curves. Working toward that end, we give two

definitions.

Definition 3.2.3 Suppose A = (a1, a2, ..., a6) and B = (b1, b2, ..., b6) are such that r5,A

and r5,B are zero. Then we say A ∼ B if there exist α and β in Q, α 6= 0 and σ ε S6

(the symmetric group on six letters), such that for each i,

ai = α bσ(i) + β.
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Definition 3.2.4 Let S be defined as the set of A = [a1, a2, ..., a6] ε P5[Z] such that

1. r5,A(t) = 0,

2. a1 = 0,

3. gcd(a1, a2, ..., a6) = 1 and

4. a1 < a2 < · · · < a6.

We now prove two propositions which summarize how to determine when two choices

of roots produce the same curve.

Propostion 3.2.5 If A = [a1, a2, ..., a6] and B = [b1, b2, ..., b6] are elements of S, then

A ∼ B if and only if ai = b6 − b7−i for each i = 1, 2, ..., 6.

Proof: If ai = b6 − b7−i for each i = 1, 2, ..., 6 then clearly, we have that A ∼ B.

Now note that a1 = b1 = 0 and assume A ∼ B. We then have an α and a β in Q

with α 6= 0, and a σ ε S6 such that

ai = αbσ(i) + β for each i.

σ(i0) = 1 for some i0 and so ai0 = α · 0 + β = β. Also, 0 = αbσ(1) + ai0 so

α = − ai0

bσ(1)
.

Therefore,

ai = ai0 · (1−
bσ(i)

bσ(1)
).

Now since ai > 0 for i > 0, we have that (1 − bσ(i)

bσ(1)
) > 0 for i > 1. This implies that

bσ(i) < bσ(1) for i > 1. Therefore, bσ(1) = b6. Similarly, by rewriting the equivalence

relation as

bσ(i) = b6 · (1−
ai

ai0

),

we have that ai0 = a6. So now we have

ai = a6 −
a6

b6
bσ.
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Since the greatest common divisor of the ai and of the bi must each be 1, it must be that

a6 = b6, so that ai = b6− bσ(i). Finally since a1 < a2 < . . . < a6 and b1 < b2 < . . . < b6,

σ(i) = 7− i.

Propostion 3.2.6 If A ∼ B, and r5,A(t) = r5,B(t) = 0, y2 = rA(x) and y2 = rB(x)

are elliptic curves, then they are isomorphic elliptic curves.

Proof: Clearly, changing the order of the roots has no effect on p(x) and therefore

no effect on g(x) or r(x). Now consider the possibility that A = λB. Then if we

substitute λt for t in the polynomial pA(λx), we get λ12pB(x) and so we have isomorhic

curves. Similarly, if A is a translation of B by a constant d, then the polynomial

pA(x− d) = pB(x).

These two propositions allow us to restrict our attention to a choice of roots repre-

sented by an element of S.

3.2.4 Conditions on rA(x)

If we find an A for which r5,A(t) = 0 and rA(x) has no double roots, then y2 = rA(x)

defines an elliptic curve. (Note that in practice, the curves are always smooth.) Let

us suppose that we have such an A. This elliptic curve will have at least the twelve

constructed points derived from the roots given by A. We now discuss some conditions

on rA(x) which allow us to construct and to identify more points on y2 = rA(x).

Propostion 3.2.7 deg(rj,A(t)) ≤ 8− 2d j
2e for 0 ≤ j ≤ 5.

Proof: Recall that rj,A(t) is even in t and so this condition on the degree is equivalent

to deg(rj,A) ≤ 8− j for 0 ≤ j ≤ 5. This in turn is equivalent to the condition

deg(rj,A) ≤ 10− j for 0 ≤ j ≤ 5.

Observe that the coefficient of xn in p(x) is a polynomial of degree less than or equal to

12−n, so we have immediately that deg(rj,A) ≤ 12−j. Furthermore, pA(x) is a perfect
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square at t = ∞ and so we have that rA(x) = 0 at t = ∞. Therefore, deg(rj,A) ≤ 10−j.

We in fact found experimentally that more is true. Let us denote the coefficient of

tn for any polynomial, f , in t as cn(f). We conjecture the following:

Conjecture 3.2.8 For any choice of A, deg(rj,A(t)) ≤ 6− 2d j
2e for 0 ≤ j ≤ 5,

−2c2(r4,A) = c4(r2,A) = −2c6(r0,A),

and

c2(r3,A) = −c4(r1,A).

This conjecture held true for every A we tested.

If we let ω(x) be the polynomial rA(x) evaluated at t = 0, then we have the following

proposition.

Propostion 3.2.9 Let A ε S and suppose rA(x) satisfies conjecture 3.2.8. Let s(t) ε Q[t]

with d = deg(s), α = cd(s) and β = c0(s).

1. If d = 0, then

rA(s(t)) = rA(β) = c6(r0,A) t6 + · · ·+ ω(β).

2. If d = 1 and α = ±1, then

rA(s(t)) = µ4(β) t4 + µ3(β) t3 + µ2(β) t2 + µ1(β) t1 + ω(β),

for some functions µi(x) ε Q[x]. Furthermore, if we define the function f as

f = 4 · µ4 · µ3 · µ2 − µ2
3 − 8 · µ2

4 · µ1,

then

(a) deg(f)=7 and

(b) f(ai) = 0 for each ai ε A.

3. If d = 1 and α 6= ±1, then

rA(s(t)) = c2(r4,A)(α2 − 1)2 t6 + · · ·+ ω(β).
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4. If d > 1, then

rA(s(t)) = α4c2(r4,A) t4d+2 + · · ·+ ω(β).

Proof: To verify that in each case rA(s(t)) is as stated above, simply plug s(t) into a

general polynomial satisfying conjecture 3.2.8. This also verifies that the degree of f is

7.

It remains to show that f vanishes on A. Let µ(β, t) = rA(t + β). We then have

that

µ(β, t) = µ4(β) t4 + µ3(β) t3 + µ2(β) t2 + µ1(β) t1 + ω(β).

By theorem 3.1.1, there is a polynomial u(t), such that µ(β, t) = u(t)2 − v(t) with

deg(v) ≤ 1. The numerator of the coefficient of t in v is the function f . Since µ(ai, t)

is a square for each ai ε A, we have that v(t) = 0 on A. Therefore, f is 0 on A.

The proposition gives some necessary conditions for there to be additional Q[t]

points on the curve y2 = rA(x). We summarize these conditions in the corollary below.

Corollary 3.2.10 Let A ε S and s(t) ε Q[t]. Suppose rA(x) satisfies conjecture 3.2.8.

1. If rA(β) is a square, then β must be a zero of ω(x).

2. If rA(±t + β) is a square, then there is only one possible value of β outside of A.

3. If rA(s(t)) is a square and c0(s) = β, then ω(β) must be a square.

4. If c2(r4,A) is not a square, then all points in Q[t] × Q[t] on y2 = rA(x) have

x-coordinate equal to ai ± t, ai ε A.

Proof: By proposition 3.2.9,

rA(β) = c6(r0, A) t6 + · · ·+ ω(β).

Since, rA is even in t, this can only be a square if the constant term is 0.

If rA(±t + β) is a square, then the function f defined in proposition 3.2.9 must be

0 at β. Since f(ai) = 0 for each of the six values of A and deg(f) = 7, we have part 2.

Parts 3 and 4 of the corollary follow easily from parts 3 and 4 of proposition 3.2.9.
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Finally, we add that if c2(r4,A) is a square, then we can always parameterize the

points on r4,A(t) = b2. If c2(r4,A) = a2 the parameterization is

t =
c0(r4,A)−m2

2 ·m · a
, m ε Q.

This gives

b =
m2 + c0(r4,A)

2 ·m
.

Therefore, whenever c2(r4,A) is a square, we can make a change of variables so that there

are two points at infinity on the curve y2 = rA(x). In this case we will always choose

one of the points at infinity to be the identity of the Mordell-Weil group. Therefore,

whenever, we have c2(r4,A) a square, we will refer to one of the points at infinity as the

identity.

3.2.5 Nagao’s Sum

The sums sE(N), SE(N) and GE(N) introduced earlier are defined for elliptic curves

defined over the rationals. We would like to have a similar sum for estimating the rank

of an elliptic curve defined over Q(t). Nagao has developed just such a sum ([22]). Let

E be an elliptic curve defined over Q(t) and let Et0 be the curve specialized at the

specific value t0. Let ap(t0) be the value ap for the curve Et0 and consider the sum

Ap(E) =
1
p

∑
t0ε Fp

ap(t0).

This sum is simply an average of the values ap for each possible specialization of the

curve E. Now consider the sum

HE(N) = − 1
N

∑
p≤N

p prime

Ap(E) log p.

As mentioned earlier, under the right conditions this sum is “equivalent” to

H ′
E(N) = − 1

π(N)

∑
p≤N

p prime

Ap(E).

By equivalent we mean as in the statement of theorem 1.3.3. We can then interpret the

sum HE(N) as an average of the values −ap over all specializations and over all primes

less than or equal to N .
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Nagao has shown that for some elliptic curves defined over Q(t), the sum HE(N)

does in fact converge to the rank of the elliptic curve. This gives strong evidence to

suggest that this sum is a good predictor of rank.

3.3 Constructing Curves of Rank 13 over Q(t)

3.3.1 Finding Elements of S

Before we can use any of the information in the preceding section to find curves with

more than the 12 constructed points, we need to find some six-tuples, A, which lie in

S. Our initial procedure for finding A ε S went as follows. Let

A = [0, a2, a3, a4, a5, ε]

and write r5(A) as a polynomial in ε. For each integral root, ε, of this polynomial, test

to see if ε is relatively prime to the ai. By carrying out this procedure for many choices

of ai, we observed that a small number of A which produced an elliptic curve, had the

form

A = [0, a, a + γ, b, c, c + γ].

These particular A stood out because, Nagao’s rank 13 curve over Q(t) was derived

from an A of this form: [0, 25, 57, 104, 116, 148]. For A of this form, we found by direct

calculation that r5(A) is a degree 3 polynomial in γ with γ = b− c− a a root. If we let

γ = b− c− a, then A = [0, a, b− c, b, c, b− a]. If we translate the elements of this A by

− b
2 and reorder, then we see that A is equivalent to the vector

A′ = [
b

2
,− b

2
, a− b

2
,
b

2
− a, c− b

2
,
b

2
− c].

From this representation, we see that rA′(x) is even in x and so r5(A′)=0. However, 6

of the twelve constructed points are negatives of the other 6.

We then let

h(γ) =
r5(A)

γ + c− b + a
.

This is a degree 2 polynomial in γ, with the discriminant a cubic in a. This led to the

following proposition which is proved by simply working out the calculation.
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Propostion 3.3.1 Let

A = [0, a, a + γ, 28b− 24b2, 27b, 27b + γ],

let h(γ) be as defined above and let d0 = (b− 16) · 28 · b2. h(γ) is of degree 2 in γ and

the discriminant of h is

d = d2
0 · (a3 + f2(b) a2 + f1(b) a + f0(b)),

where

f2(b) = 17b2 − 672b + 2304,

f1(b) = 32b4 − 5376b3 + 131072b2 − 589824b and

f0(b) = 256b6 − 12288b5 + 475136b4 − 7864320b3 + 37748736b2.

Therefore, for each value δ on the curve defined by

δ2 = a3 + f2(b) a2 + f1(b) a + f0(b)),

we can factor h(γ) over Q. The two roots of h give rise to the two choice of roots
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described by

A = [0, a3 − 256 b a2 + 16384 b2 a,

a3 − 256 b a2 + (32 b4 − 1024 b3 + 24576 b2) a+

(512 b6 − 20480 b5 + 262144 b4 + (32 δ − 1048576) b3 − 512 δ b2),

(−16 b2 + 256 b) a2 + (4096 b3 − 65536 b2) a+

(−262144 b4 + 4194304 b3),

128 b a2 − 32768 b2 a + 2097152 b3,

128 b a2 + (32 b4 − 1024 b3 − 24576 b2) a + (512 b6 − 20480 b5

+262144 b4 + (32 δ + 1048576) b3 − 512 δ b2)]

and

A′ = [0, a3 − 256 b a2 + 16384 b2 a,

a3 − 256 b a2 + (32 b4 − 1024 b3 + 24576 b2) a+

(512 b6 − 20480 b5 + 262144 b4 + (−32 δ − 1048576) b3 + 512 δ b2),

(−16 b2 + 256 b) a2 + (4096 b3 − 65536 b2) a+

(−262144 b4 + 4194304 b3),

128 b a2 − 32768 b2 a + 2097152 b3,

128 b a2 + (32 b4 − 1024 b3 − 24576 b2) a + (512 b6 − 20480 b5

+262144 b4 + (−32 δ + 1048576) b3 + 512 δ b2)].

for which r5(A) = 0 and r5(A′) = 0.

3.3.2 Examples

By searching, through A of the form given by the preceding section with the added

condition that c2(r4,A) be a square, we have found the following rank 13 curves over

Q(t):
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A x

[0, 87, 164, 264, 375, 452] 7/31 · t + 10848/31

[0, 55, 146, 255, 260, 346] −7/27 · t + 6920/27

[0, 355, 602, 910, 1580, 1827] 19/89 · t + 127890/89

[0, 97, 104, 129, 500, 532] 1/23 · t + 9804/23

[0, 42, 47, 82, 152, 175] 1/21 · t + 410/3

[0, 37, 62, 110, 180, 205] 7/23 · t + 1271/23

The x column is the value of the x-coordinate of the additional point. Note that in

each of these cases, we can parameterize the curve s2 = r4,A(t) so that each of these

curves contains two points at infinity. With one of these points taken to be the identity,

we have found that the remaining 13 points are linearly independent. (In section 4.2.1

we describe how we check for linear independence.)

In most of the curves found to have rank 13 (including Nagao’s curve), we found

that ω(β) factored as the product of a linear factor, ω1, and a cubic, ω2. By looking for

roots of ω1 − a2 · ω2 for some small set of integers a, we found at least one root which

extended to a point on the curve y2 = rA(x). For all but one of the curves found, such

a point was linearly independent of the 12 constructed points. All of the x-coordinates

above represent values of β found this way that were extended to points on the curve.

Kihara has shown that it is possible to find an elliptic curve over whose function field,

Nagao’s curve contains one more point, bringing the rank to 14. Kihara has similarly

extended the rank of curves found by Fermigier and himself to produce infinite families

of curves defined over Q of high rank with nontrivial torsion (see the table in section

1.1.2). Unfortunately, he does not describe his technique, but rather, just gives the

curve.
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3.4 Producing Curves over Q(t) with Nontrivial Torsion

3.4.1 Preliminaries

Nagao has shown that for any elliptic curve of the form

y2 = a x4 + b x2 + c,

if the point (x, y) is taken to be the identity of the group, then (−x,−y) is a point of

order 2 ([20]). Fermigier has used this fact and theorem 3.1.1 to construct a curve of

rank 8 over Q(t) with a point of order 2 ([3]). Kihara has since extended this result in

the same manner as above to a curve of rank 9 ([6]).

We show how to use theorem 3.1.1 to construct curves over Q(t) with points of

order 3 and 6. The construction follows the same general principal as in the preceding

section. We let A be a set of values in Q(t) and form pA(x), the monic polynomial with

exact roots equal to the elements of A. In this case we choose 8 elements to be in A.

This gives a gA(x) of degree 4 and an rA(x) of degree no greater than 3 with

pA(x) = gA(x)2 − rA(x)

as before. If the degree of rA(x) is in fact 3 (and not strictly less than 3) and if rA(x) has

no double roots, then we have that the curve y2 = rA(x) is an elliptic curve. This curve

will contain the eight points (αi, gA(αi)) for each αi ε A. Although this construction

defines a curve with fewer points, the advantage is that we get an elliptic curve for

almost every choice of A.

3.4.2 Curves Containing Points of Order 3

Similar to the general case, we let A = [a1 + t, a1 − t, a2 + t, a2 − t, ..., a4 + t, a4 − t]

and let A = [a1, a2, a3, a4], with each ai ε Q. Let the polynomial pA(x) = pA(x) be the

monic polynomial whose exact roots are the elements of A. Note that we can define

an equivalence relation and a set analagous to those in definitions 3.2.3 and 3.2.4. We

would then get results similar to those of proposition 3.2.5 and 3.2.6. We do not prove

these facts in such generality here. Let us simply observe that without loss of generality,
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we may assume that a1 = 0 and that a2 = 1. We let a3 = c and a4 = d for simplicity.

If we now let rA(x) be as given by theorem 3.2.1, then we have

4
t2
· rA(x) = (4 c3 + (−4 d− 4) c2+

(−4 d2 + 8 d− 4) c + (4 d3 − 4 d2 − 4 d + 4)) x3+

((−4 d− 4) c3 + (8 d2 + 4 d + 8) c2+

(−4 d3 + 4 d2 + 4 d− 4) c+

(−4 d3 + 8 d2 − 4 d)) x2+

((−4 t2 + 4 d) c3 + ((4 d + 4) t2+

(−8 d2 − 8 d)) c2 + ((4 d2 − 8 d + 4) t2+

(4 d3 − 8 d2 + 4 d)) c+

(−4 d3 + 4 d2 + 4 d− 4) t2) x+

(t2 c4 + ((−2 d2 − 2) t2 + 4 d2) c2+

(d4 − 2 d2 + 1) t2).

We set s(x) = 4
t2

rA(x) and examine the conditions placed on the coefficients if we

demand that x = 0 give a point of order 3. There are two conditions that must be

satisfied:

1. s(0) must be a square, and

2. s′(x)2 − 2 · s′′(x) · s(x) evaluated at x = 0, must equal 0.

The first simply guarantees that 0 is the x-coordinate of point on the curve and the

second gives that x = 0 is a point of inflection of y2 = s(x).

Observe that s(0) is the polynomial in t given by

s(0) = (c4 + (−2 d2 − 2) c2 + (d4 − 2 d2 + 1)) t2 + 4 d2 c2.

The discriminant of this polynomial is

∆ = 16 · c2 · d2 · (−c4 + (2 d2 + 2) c2 + (−d4 + 2 d2 − 1)),

which equals

16 · c2 · d2 · (c + d + 1) · (c− d− 1) · (c + d− 1) · (c− d + 1).
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Therefore, we have that s(0) is a square if one of the linear factors is 0. Since, by

replacing c with −c or d with −d, we see that in fact these conditions are equivalent,

we let d = −c− 1.

If we let A = [0, 1, c,−c − 1], then the resulting rA(x) has a lead coefficient of

−8 · c · (c + 1). So then, if we let γ = (−2) · c · (c + 1) and let A = [0, 1, c,−c− 1] · γ, we

have
rA(x)

α2 = x3 + (c2 + c + 1)2 x2−

(t2 − 2 c6 + 6 c5 + 8 c4 + 6 c3 + 2 c2) x + (c2 + c)4 .

where α = 2γ2. We let r(x) = rA(x)
α2 .

In addition to the eighteen points whose x-coordinates are 0,±t, γ± t, γc± t,−γ(c+

1) ± t, we find that the curve y2 = rA(x) contains the six points whose x-coordinates

are −c2,−(c+1)2 and −c2 · (c+1)2. (We remark that these points generate a subgroup

of rank 4 over Q(c, t).)

Now consider the second condition– that there be a point of inflection on the curve

y2 = r(x) at the point P = (0, c2 · (c + 1)2). We define δ3(x) to be

δ3(x) = r′(x)2 − 2 · r′′(x) · r(x).

The condition that P be a point of inflection on y2 = r(x) is equivalent to the condition

that δ3(0) = 0. We have that

δ3(0) = (t2 − 4 · c2 · (c + 1)2 · (c2 + c + 1)) · t2.

Observe that if we can parameterize the solutions to (c2 + c+1) = u2, then we get that

for t = 2 · c · (c + 1) · u, δ3(0) = 0. Since (0, 1) is a point on the curve c2 + c + 1 = u2,

we can parameterize the solutions. Letting m be any rational number, we get that all

solutions to c2 + c + 1 = u2 are described by

c = −2m− 1
m2 − 1

and u = −m2 −m + 1
m2 − 1

.

With this substitution, the curve is defined over Q(m) with twenty four known Q(m)-

rational points. Two of these points, P and −P , are points of order three. By specializ-

ing at m = 10, we determine that the subgroup generated by the remaining twenty two
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points has rank 3– one less than the rank of the curve before the substitution. This,

then gives an infinte family of elliptic curves defined over the rationals of rank at least

3 containing a point of order 3.

3.4.3 Curves with Torsion Subgroup Z/2Z⊕ Z/6Z

If we in the above, we let t = 0, then we see that in this case, we have δ3(0) = 0 as

well. Therefore, the curve y2 = rA(x) contains a point of order three when t = 0.

Furthermore, we find that rA(x) is 0 when x is any one of −c2,−(c+1)2,−c2 · (c+1)2).

This gives

sA(x) = (x + (c + 1)2) · (x + c2) · (x + (c(c + 1))2),

where sA(x) is the function rA(x) evaluated at t = 0. Since, there are three Q(c)-

rational points of order two and one Q(c)-rational point of order three on the curve

y2 = sA(x), by Mazur’s result, it must be that the torsion subgroup of this elliptic

curve is Z/2Z⊕Z/6Z. In fact, we find that each of the remaining six constructed points

is a point of order six.

Consider a point with x-coordinate, a · c2 on the curve y2 = sA(x). We find that

sA(a · c2) = (a + 1)c4 · ((a + 1) c4 + ... + (a + 1)). We would therefore like (a + 1) to be

a square. We let a = b2 − 1. If we let b = 2, then a = 3 and we have that

sA(3c2) = 4 · c4 · (4 c2 + 2 c + 1) · (c2 + 2 c + 4).

If α ε Q, then we have that sA(3c2) is a square whenever c is a root of

(4 c2 + 2 c + 1)− α2 · (c2 + 2 c + 4).

The discriminant of this quadratic polynomial in c is −12(α4 − 5α2 + 1). Therefore, if

we let C be the elliptic curve defined by

C : y2 = −12(α4 − 5α2 + 1),

then we can consider the curve y2 = sA(x) as defined over the function field Q(C). The

curve then contains a point with x-coordinate equal to 3c2. One point on C gives rise to

the value c = 11. With c = 11, the point whose x-coordinate on the curve y2 = sA(x)
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is 3 · 112, is of infinite order. Finally, we found that the curve C contains more than

16 points. By Mazur’s result on possible torsion subgroups, there must be a point of

infinite order on C. For all but finitely many values of c corresponding to points on

C, the specialization map is injective (see [24, section C.20]). Therefore, we have that

there are infinitely many curves defined over Q of rank at least 1 with torsion subgroup

Z/2Z⊕ Z/6Z.

Alternatively, consider a point, Q, with x-coordinate c2 + c. We have that

sA(c2 + c) = (c2 + c + 1) · c2 · (c + 1)2 · (2c + 1)2.

Therefore, if we again let c = (1 − 2m)/(m2 − 1), then the point Q is Q(m)-rational.

With this value of c, the point Q is of infinite order and we have another infinite family

of curves over Q of rank at least 1 whose torsion subgroup is Z/2Z⊕ Z/6Z.

3.4.4 Curves with Torsion Subgroup Containing Z/2Z⊕ Z/2Z

Nagao has proved ([20]) that curves whose affine quartic model is of the form

y2 = a2 x4 + c x2 + e

contain a point of order two. If we choose O to be the identity, then O′ is such a

point. Kihara has proven ([6]) that if e is a square, then the curve in fact contains

three points of order 2. Kihara shows this by giving a birational map that takes the

quartic model to Weierstrass form y2 = f(x), with f(x) a cubic. He observes that f(x)

can be factored completely when e is a square. We prove the same result by examining

the group law on the quartic model. This allows us to prove that e being a square is

not only sufficient but also necessary for the curve to contain three points of order 2.

Examining the group law on the quartic model also allows us to go further and give

conditions for the curve to contain points of order four (see section 3.4.5).

Theorem 3.4.1 An elliptic curve of the form y2 = a2 x4 + c x2 + e defined over K,

with O the identity, has a K-rational point of order 2 in addition to O′ if and only if

e is a square in K. If this is the case, then there are three points of order two: O′,

(0,
√

e) and (0,−
√

e).
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Proof: An affine point P = (x0, y0) is a point of order 2 if and only if P = −P .

Recall from section 3.1.3, that the negative of P is the fourth point of intersection of

L(x, y) = 0 with the elliptic curve, where L(x, y) = 0 is the parabola tangent at O′ and

containing the point P . This parabola is defined by

y = a x2 + (−a x2
0 + y0).

Plugging this value of y into the equation for the elliptic curve yields

(−2 a2 x2
0 + (2 a y0 − c))x2 + (a2 x4

0 − 2 a y0 x2
0 + (y2

0 − e)).

If P is a point of order 2, then x0 should be a double root of this polynomial. This

implies that
(a2 x4

0 − 2 a y0 x2
0 + (y2

0 − e))
(−2 a2 x2

0 + (2 a y0 − c))
− x2

0 = 0.

Since y2
0 = a2 x4

0 + c x2
0 + e, the numerator of this fraction is

x2
0 · (4 a2 x2

0 + (−4 a y0 + 2 c))).

Therefore, we have that either x0 = 0 or

y0 = a x2
0 +

c

2 a
.

If the latter occurs, we may plug this value of y0 back into the equation of the curve

and obtain
c2 − 4 a2 e

4 a2
= 0.

The numerator of this fraction is the discriminant of the polynomial a2 x4 + c x2 + e.

Since this polynomial cannot have a double root, the discriminant must be nonzero.

Therefore y0 cannot be a x2
0 + c

2 a .

If x0 = 0, then we clearly get the statement of the theorem.

We now construct an example of a curve containing three points of order two. Let

Ab = [0, b, 1 + t, 1− t, b + t, b− t]. Let

qAb
(x) =

∏
α ε Ab

(x− α), and let

pAb
(x) = qAb

(x) · qAb
(−x).
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The roots of pAb
(x) are α and −α for each α ε Ab and so pAb

(x) is even in x. If we let

rAb
(x) be as given by theorem 3.2.1, then rAb

(x) is even and so has degree less than or

equal to 4. The degree 4 coefficient of 28 · rAb
(x) is equal to a degree 4 polynomial in

t. The degree 4 coefficient of this polynomial in t is

2112 b4 − 4096 b2 + 2048.

We found that for b = 7/4, this is a square. If we let rt(x) = 232 · rA7/4
, then we have

rt(x) = a(t) x4 + c(t) x2 + e(t), where

a(t) = 156233629696 t4 + 113235197952 t2 − 2288978944

c(t) = −93222600704 t6 + 175675015168 t4 − 308486664192 t2 + 3395820736 and

e(t) = 10070523904 t8 − 757858304 t6 + 22663102464 t4−

852220544 t2 + 12734445409.

We find that the point with t-coordinate equal to −307527185/1807165536 is a point

of infinite order on the curve s2 = a(t). We let K be the function field of the curve

s2 = a(t) and let t0 = −307527185/1807165536. If we let A be A7/4 evaluated at t0,

then we find that the subgroup generated by the points on the elliptic curve y2 = rt0(x)

whose x-coordinates are the nonzero elements of A has rank 5. By theorem 3.4.1,

the points with x-coordinate 0 are points of order 2. Since the specialization map is

injective almost everywhere, the curve y2 = rt(x) defined over Q(K) has rank at least

5 and contains three points of order 2.

We note that one may find other values of b for which this contruction works.

3.4.5 Curves with Torsion Subgroup Containing Z/4Z or Z/2Z⊕ Z/4Z

Observe that we can further examine the group law on the quartic model to compute

what must be true for the torsion subgroup to contain Z/4Z or Z/2Z⊕Z/4Z. If a curve

is to have a point of order four, then it must have a point of order two and so without

loss of generality we can assume the curve is of the form y2 = x4 + c x2 + e with O the

identity. If we demand that P be a point such that 2P = O′, then P is a point of order

four. The group law on the quartic implies that P must be a root of the polynomial

f(x) = x4 + c x2 + e. If f(x) has one root in some field K, then either f(x) has two



48

roots in K or four roots in K depending on whether or not e is a square in K. This

then imposes conditions on the torsion subgroup. We summarize the situation in the

following theorem.

Theorem 3.4.2 Let f(x) = x4 + c x2 + e2 and let E be the elliptic curve defined by

y2 = f(x). Let c and e2 be in K, let α be a root of f(x) and let T be the torsion subgroup

of E(K).

1. If α ε K, then Z/4Z ⊂ T with (±α, 0) points of order four. If e is not in K, then

T = Z/4Z, Z/8Z or Z/12Z.

2. If α ε K and e ε K, then T = Z/2Z⊕Z/4Z or Z/2Z⊕Z/8Z, with (±α, 0), (± e
α , 0)

points of order 4.

If we have that f(x′) = (x′−α)(x′+α)((x′)2−ε2) and the elliptic curve E′ is defined

by (y′)2 = f(x′), then by making the change of variables y′ = α2y and x′ = αx, we see

that E′ is isomorphic to the curve Ee2 defined by:

y2 = (x− 1)(x + 1)(x2 − e2), where e =
ε

α
.

We can now easily construct examples of elliptic curves with torsion subgroup con-

taining Z/4Z or Z/2Z ⊕ Z/4Z by choosing an appropriate value of e2. We have the

following:

1. If we let t = (−m2 + 2)/(2m), then the elliptic curve defined by y2 = (x2 −

1)(x2− 4t2) has torsion subgroup Z/2Z⊕Z/4Z. A point with x-coordinate t2 + 1

is Q(m)-rational and of infinite order.

2. If we let t = (m2+1)/(2m), then the elliptic curve defined by y2 = (x2−1)(x2+3t2)

has torsion subgroup Z/4Z. A point with x-coordinate t is Q(m)-rational and of

infinite order.

3.4.6 On Curves Containing a Point of Order 3

We conclude our discussion of constructing infinite families of elliptic curves defined

over the rationals with a remark regarding curves that contain a point of order three.
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Top has proven ([26]) that the Mordell-Weil group of the elliptic curve defined over Q(t)

defined by

y2 = x3 + (t2 − (β2 + β + 1)3)(x− (β2 + β)2)2

is isomorphic to Z3. We note that this curve has a point of order three over the function

field of the curve defined by t2 − (β2 + β + 1)3 = s2. We have found that the curve

defined over this function field has rank 3. This gives another infinite family of curves

containing a point of order 3. In this case the rank is known to be exactly 3. The

curve given in section 3.4.2 has rank at least 4 over Q(c, t) and only upon specialization

of c and t to make the point of order three rational, do we get the curve defined over

Q(m) of rank at least 3. Without further analysis, it is possible that the elliptic curve

constructed in section 3.4.2, E, has rank strictly greater than 3, while it is known that

the curve constructed from the results of Top does not. However, the sum HE(N)

appears to approach 3 as N → ∞. This gives some indication that the rank of this

curve E is in fact equal to 3.

3.5 Applying to Finding Curves over Q with Nontrivial Torsion

3.5.1 Curves Containing Points of Order 3

From section 3.4.2 we have that the curve

Em : y2 = x3 + a2(m) x2 + a4(m) x + a6(m),

where

a2(m) = (m8 − 4 m7 + 10 m6 − 16 m5 + 19 m4 − 16 m3 + 10 m2 − 4 m + 1),

a4(m) = (−8 m14 + 56 m13 − 154 m12 + 196 m11 − 42 m10 − 252 m9+

408 m8 − 252 m7 − 42 m6 + 196 m5 − 154 m4 + 56 m3 − 8 m2) and

a6(m) = (16 m20 − 160 m19 + 600 m18 − 840 m17 − 639 m16 + 3480 m15−

3100 m14 − 2480 m13 + 6246 m12 − 2480 m11 − 3100 m10 + 3480 m9−

639 m8 − 840 m7 + 600 m6 − 160 m5 + 16 m4)
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contains the point of order three given by

(0, 4 m10 − 20 m9 + 25 m8 + 20 m7 − 58 m6 + 20 m5 + 25 m4 − 20 m3 + 4 m2).

Furthermore, the three points whose x-coordinates are

4 m7 − 22 m6 + 38 m5 − 10 m4 − 34 m3 + 32 m2 − 8 m,

4 m7 − 14 m6 + 14 m5 − 14 m3 + 14 m2 − 4 m and

8 m7 − 24 m6 + 10 m5 + 20 m4 − 18 m3 + 4 m2

are linearly independent points for almost all m ε Q. We will denote a specialization

of this curve at a particular rational value m as Em.

We let S = {a
b ε Q | 1 ≤ b ≤ 10 and 1 ≤ |ab | ≤ 10}. For each m in S, we computed

Mazur’s bound and GEm(p500) for the curve. If both bounds were greater than 3, we

searched the curve for additional points. In this way, we were able to find only one

curve with rank strictly greater than 3. The curve is listed below together with a set

of linearly independent points on the minimal Weierstrass form of the curve.

m rank mE GE(p500) Independent points

9/2 ≥ 4 7 5 [5393740, 9871250290],

[9662620, 27873061810],

[3619660, 3903245170],

[-4525988, 467348146].

Note that the value listed above for GE(p500) is actually a rounded off value and

this is in fact what was used in the sieving process. This is true in the folowing sections

as well.

3.5.2 Curves with Torsion Subgroup Z/2Z⊕ Z/6Z

From section 3.4.3 we have that the curve

Em : y2 = (x− α(m))(x− β(m))(x− γ(m)),
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where

α(m) = −4 m6 + 4 m5 + 7 m4 − 8 m3 − 2 m2 + 4 m− 1,

β(m) = −m8 + 4 m7 − 2 m6 − 8 m5 + 7 m4 + 4 m3 − 4 m2, and

γ(m) = −4 m6 + 20 m5 − 33 m4 + 20 m3 − 4 m2,

contains the points of order six whose x-coordinates are

4 m7 − 10 m6 − 4 m5 + 20 m4 − 4 m3 − 10 m2 + 4 m,

−8 m6 + 24 m5 − 10 m4 − 20 m3 + 18 m2 − 4 m and

4 m11 − 38 m10 + 128 m9 − 167 m8 − 4 m7 + 202 m6 − 148 m5 + 7 m4 + 20 m3 − 4 m2.

Em contains a point of infinite order whose x-coordinate is

−2 m7 + 5 m6 + 2 m5 − 10 m4 + 2 m3 + 5 m2 − 2 m.

We have found by sieving using Kretschmer’s bound, the following curves defined

over Q. In some cases we were able to count the number of homogeneous spaces con-

taining a rational solution and show that the Shafarevich-Tate group was trivial from

this count alone. In other cases, we were not able to compute the Shafarevich-Tate

group. For these curves, by finding the points on the elliptic curve corresponding to the

points on each homogeneous space, we achieved a better lower bound on the rank than

given by counting alone. For each curve we list a set of linearly independent points on

the minimal Weierstrass form of the curve found. See section 4.3.4 (and section 4.2.3)

for more details on how this sieving was performed.

m rank kE GE(p500) Independent points

15
2 3 3 3 [17863890, 1223609769360],

[111724800, 120095583300],

[443454915/4, 749348661795/8]

46
5 ≥ 3 6 4 [109909065880/9, 1585766951606270/27],

[9578699246, -364178333488588],

[111508906300/9, 2934207966602830/27]
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3.5.3 Curves with Torsion Subgroup Containing Z/2Z⊕ Z/2Z

In section 3.4.4, we found an elliptic curve y2 = rt(x) with the lead term of rt(x) being

a(t). If we let C be the curve defined by s2 = a(t), then we found that y2 = rt(x)

defined over Q(C) has three points of order 2. The curve can be written in Weierstrass

form as

Et : y2 = (x− α(t)) · (x− β(t)) · (x + β(t)),

where

α(t) = −93222600704 t6 + 175675015168 t4 − 308486664192 t2 + 3395820736

and

β(t) = 200704 s t4 − 7552 s t2 + 225694 s.

We let

x1(t, s) = −540672 s t4 − 1622016 s t3 + (2 s2 − 1755584 s) t2+

(4 s2 − 20096 s) t + (2 s2 + 235298 s),

x2(t, s) = −540672 s t4 − 2838528 s t3 + (2 s2 − 3178048 s) t2+

(7 s2 − 911008 s) t + (49/8 s2 + 81634 s), and

x3(t, s) = −200704 s t4 + 2852480 s t2 + (49/8 s2 + 81634 s).

The curve C is itself an elliptic curve and contains the point P = [49/176, 10427592/121]

of infinite order on C. Specializing at the point P does not yield a smooth curve, but

2P = [−307527185/1807165536, 553304883862791998/16524891082953] does. Upon

specialization at 2P , we find that the five points x1(t, s), x1(−t, s), x2(t, s), x2(−t, s),

and x3(t, s) are linearly independent. Unfortunately, the points on C in the subgroup

generated by P were the only points we could find on C. The values of t and s cor-

responding to nP for n > 2 are quite large and make searching for additional points

very difficult. We had similar failure when trying to perform a descent. We point out

however, that Mazur’s bound for this curve is 38.

3.5.4 Curves with Torsion Subgroup Z/4Z or Z/2Z⊕ Z/4Z

We have found the following curves by sieving in the same manner as above, beginning

with the curves given in section 3.4.2, 3.4.5 and in section 3.4.3.
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m rank kE GE(p500) Independent points

(Z/4Z ⊂ T) y2 = x3 + (−6 m4 − 4 m2 − 6) x2+

(9 m8 + 60 m6 + 118 m4 + 60 m2 + 9) x

43
5 3 3 4 [-199919, 216785257],

[83533, 157017965],

[-429467, 28455035]

25
7 3 ≤ r ≤ 4 4 5 [-14431, 12552913],

[-40747, 8774675],

[30053, 14651075]

(Z/2Z⊕ Z/4Z ⊂ T) y2 = x3 + (−m4 − 6 m3 + 3 m2 + 12 m− 4) x2+

(4 m7 + 8 m6 − 20 m5 − 32 m4 + 40 m3 + 32 m2 − 32 m) x

41
5 3 ≤ r ≤ 4 3 4 [-354245,95315220],

[-178502, 127300446],

[825620284/1681, 9695052447120/68921]

43
7 3 3 3 [-416110, 208228410],

[-452650, 181068750],

[1131518900/1849, 19439056350000/79507]

23
9 3 ≤ r ≤ 5 4 5 [-12693, 438281],

[-9413, 988091],

[7977269/529, 17186141403/12167]
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Chapter 4

Algorithms and Code

Unless otherwise stated, all the code represented here is written in the language GP.

The program uses the C library of functions PARI. We used GP version 1.39 on an

ultrasparc processor running the solaris 2.0 operating system. Some minor changes

have been made to make the code more readable, but otherwise it is the exact code used

to perform all calculations presented. As mentioned later, since GP is an interpreted

language, the speed of the algorithms would be greatly improved by implementing the

code in a compiled language.

4.1 Weierstrass Form

4.1.1 The Quartic Model to Weierstrass Form

This set of functions transforms a quartic of the form: a2x4 + bx3 + cx2 + dx + e = y2

to Weierstrass form. The functions also move the points originally on the quartic

to the newcurve. In the code below, q is the vector [a, b, c, d, e]. Note that the first

component is a and not a2. ecurve gives the 5-tuple representing the elliptic curve:

[a1, a2, a3, a4, a6].

ecurve(q)=

[ 0, q[3], 0, q[2]*q[4]-4*q[1]^2*q[5]

q[2]^2*q[5]+q[1]^2*q[4]^2-4*q[1]^2*q[3]*q[5] ]

The function newxy takes a point, xy=[xy[1],xy[2]], on the quartic model and returns

a point on the elliptic curve in Weierstrass form given by ecurve. eptz performs newxy

on a list of points.
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newxy(q,xy) =

x1=xy[1];

y1=xy[2];

[ -2*q[1]*y1+2*q[1]^2*x1^2+q[2]*x1,

4*q[1]^2*x1*y1+q[2]*y1-4*q[1]^3*x1^3-

3*q[1]*q[2]*x1^2-2*q[1]*q[3]*x1-q[1]*q[4] ];

eptz(q,manyxy) = vector(length(manyxy),j,newxy(q,manyxy[j]));

We give a geometric interpretation of the transformation given by ecurve. The

parabola which is tangent at the point O′ is described by

y = a x2 +
b

2a
x + γ.

The intersection of this parabola with the elliptic curve defined by the quartic model

consists of the points O′ with multiplicity two and two other points. Therefore, the

polynomial in x, f(x)− y2, is a quadratic. The two other points are rational only when

the discriminant is a square. (Note that when the two points are rational that they are

inverses of each other.) The discriminant, written as a polynomial in γ is the following:

−8 a γ3 + 4 c γ2 +
8 e a2 − 2 d b

a
γ +

(−4 e c + d2) a2 + e b2

a2
.

If we multiply through by a2 and make the change of variables γ = −x/(2a), then we

get the polynomial:

g(x) = x3 + c x2 + (−4 e a2 + d b) x + ((−4 e c + d2) a2 + e b2).

The curve y2 = g(x) is precisely the curve given by ecurve. (Note that the two points

that correspond to a given x are inverses as expected.)

4.1.2 Minimal Weierstrass Form and Laska’s Algorithm

The algorithms used to compute Mazur’s bound, the rank of a subgroup generated by

a set of points and ap (and hence the sums for sieving) all require an elliptic curve

to be in minimal Weierstrass form. We use an algorithm due to Laska to perform



56

this task. Laska’s algorithm requires the curve to have integral coefficients and so our

first function, makeintegral does just that. The two functions that follow, laska and

aiprimes, perform Laska’s algorithm precisely as given in [12].

Recall that if u = 1/n and r = s = t = 0, then the transformation defined in

theorem 1.2.1 takes the curve

[a1, a2, a3, a4, a6] to [n a1, n
2 a2, n

3 a3, n
4 a4, n

6 a6].

makeintegral computes the minimal u necessary to make each coefficient in the latter

curve an integer.

makeintegral(eevec,u,den1,den2,den3,den4,den5,dens,primez,maxexp) =

u=1;

den1=vec(factor(denom(eevec[1])));

den1=[den1[1]~,den1[2]~];

den2=vec(factor(denom(eevec[2])));

den2=[den2[1]~,vector(length(den2[2]),j,ceil(den2[2][j]/2))];

den3=vec(factor(denom(eevec[3])));

den3=[den3[1]~,vector(length(den3[2]),j,ceil(den3[2][j]/3))];

den4=vec(factor(denom(eevec[4])));

den4=[den4[1]~,vector(length(den4[2]),j,ceil(den4[2][j]/4))];

den5=vec(factor(denom(eevec[5])));

den5=[den5[1]~,vector(length(den5[2]),j,ceil(den5[2][j]/6))];

dens=[den1,den2,den3,den4,den5];

primez=den1[1];

for(j=2,5,primez=setunion(primez,dens[j][1]));

primez=vector(length(primez),j,

[primez[j],vector(5,jj,setsearch(dens[jj][1],primez[j]))]);

for(j=1,length(primez),

maxexp=0;

pj2=primez[j][2];

for(jj=1,5,
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if(pj2[jj]!=0,maxexp=max(maxexp,dens[jj][2][pj2[jj]]),));

u=u*primez[j][1]^(-maxexp));

[chell(smallinitell(eevec),[u,0,0,0]),[u,0,0,0]];

laska(eevec,u,evec,c4,c6,gev,pjev,ejev,tmpai,uev) =

mi=makeintegral(e);

e=mi[1];

u=mi[2];

uev=1;

c4=e[10];

c6=e[11];

gev=vec(factor(gcd(c4,c6)));

tmpai=[1];

for(jev=1,length(gev[1]),

pjev=gev[1][jev];

ejev=floor(gev[2][jev]/4);

while(ejev,if(c4%(pjev^(4*ejev))+c6%(pjev^(6*ejev)),

ejev=ejev-1,

if(pjev==2,tmpai=aiprimes(2,ejev,c4,c6,evec);

uev=tmpai[1]*uev;

ejev=0,

if(pjev==3,if(tmpai[1]==1,

tmpai=aiprimes(3,ejev,c4,c6,evec);

uev=uev*tmpai[1];

ejev=0,

tmpai3=aiprimes(3,ejev,c4,c6,evec);

if(tmpai3[1]==1,,uev=uev*tmpai3[1];

tmpai=[1];

ejev=0)),

uev=uev*pjev^ejev;
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tmpai=[1];

ejev=0)))));

if(tmpai[1]==1,preai=aiprimes(uev,1,c4,c6,evec),preai=tmpai);

p2=preai[2];

[ preai[3],

p2[1]*u, p2[2]*u^2, p2[3]*u, p2[4]*u^3] ];

aiprimes(p23,expont,c4ev,c6ev,e,ansa1,xu,yu,u23,

r23,s23,t23,a1p,a2,a2p,a3,a3p,a4,a4p,a6,a6p) =

if(expont,a1=e[1];a2=e[2];a3=e[3];a4=e[4];a6=e[5];

u23=p23^expont;

xu=c4/u23^4;

yu=c6/u23^6;

a1p=xu%8;

a2p=(-a1p-yu)%3;

a2p=a2p/2*(5-3*a2p);

if(a1p==0,if(yu%8==0,a3p=(yu/8)%4,

ans=aiprimes(p23,expont-1,c4,c6,e)),

if(a1p==1,a3p=(a2p+(xu-1)/8)%2,

ans=aiprimes(p23,expont-1,c4,c6,e)));

if(ans,ans,

a4p=(xu-(a1p+4*a2p)^2+24*a1p*a3p)/(-48);

a6p=(yu+(a1p+4*a2p)^3-36*(a1p+4*a2p)*(a1p*a3p+2*a4p)+216*a3p)/(-864);

s23=(u23*a1p-a1)/2;

r23=(u23^2*a2p-a2+s23*a1+s23^2)/3;

t23=(u23^3*a3p-a3-r23*a1)/2;

if(denom(a5p)!=1 || denom(a4p)!=1 || denom(a3p)!=1 ||

denom(a2p)!=1 || denom(a1p)!=1, aiprimes(p23,expont-1,c4,c6,e),

if(u23^4*a4p-(a4-s23*a3+2*r23*a2-

(t23+r23*s23)*a1+3*r23^2-2*s23*t23)==0 &&
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u23^6*a6p-(a6+r23*a4+r23^2*a2+r23^3-

t23*a3-t23^2-r23*t23*a1)==0,

[p23^expont,[u23,r23,s23,t23],[a1p,a2p,a3p,a4p,a6p]],

aiprimes(p23,expont-1,c4,c6,e)))),

[1,[1,0,0,0],e]);

4.2 Computing Rank and Searching for Points

4.2.1 Code for Computing Rank of a Subgroup

We employ two methods for estimating rank. The method we discuss here is used to

give only a lower bound on the rank. We compute the rank of the subgroup generated

by a set of points. In order to get upper bounds on the rank we use the bounds given

by Mazur and Kretschmer. In the case of computing Kretschmer’s bound, we may also

use the results of that computation to produce a lower bound on the rank. (See section

4.2.3 below.)

Recall that there is a function, ĥ, called the canonical height, which defines a positive

definite quadratic form on the real vector space R⊗ E(Q). This canonical height then

defines a symmetric bilinear form, called the canonical height pairing, in the usual way:

< P, Q >= ĥ(P + Q)− ĥ(P )− ĥ(Q).

We then have that, given a set of points, {P1, P2, ..., Pn}, if we let M be the matrix

(< Pi, Pj >), the determinant of M is 0 if and only if the points are linearly dependent

in the Mordell-Weil group. We call the matrix M , the height matrix for the points

{P1, P2, ..., Pn}. We have further that < P,P >= 0 if and only if P is a point of finite

order. We may use these facts to compute the rank of the subgroup generated by a

given set of points.

Given an n×n matrix M and a vector v = [i1, i2, ..., ik], k ≤ n, let M ′ be the matrix

(aij), with i and j both in v. The function matdet below, computes the determinant of

the matrix M ′ for a given M and v. Given an elliptic curve e and a set of points, pts,

computepts computes the rank r of the subgroup generated by pts and a set of r linearly
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independent points in this subgroup. Note that while theoreticaly, the determinant is

exactly 0 when the points are linearly dependent, the existence of precision error requires

us to test for approximate zeroes.

matdet(M,v) = det(matextract(M,v,v));

computepts(e,pts) =

alist=[];

v=[];

M=mathell(e,pts);

olddetvalue=.1;

for(j=1,length(pts),

detvar=abs(matdet(M,concat(v,j)));

if(detvalue>olddetvalue,v=concat(v,j);

olddetvalue=detvalue*1.5,));

[length(v), extract(pts,v)];

4.2.2 Code for Computing Mazur’s Bound

The code below follows the formula outlined in section 1.3.2. We let fe be the elliptic

curve and plist be the list of primes, p, for which the curve has a point of order p.

mbound takes these two values as input. plist is first ordered and fe is replaced by its

minimal Weierstrass form. We then factor the minimal discriminant and for each p in

plist, we compute Mazur’s bound relative to p. This is done by bound2 for the prime

2 and by bound for all other primes. mbound returns the minimum of all the bounds

computed. In the functions bound and bound2 we use the fact that a prime p of bad

reduction is additive if and only if p | c4.

mbound(fe,plist,bnd) =

plist=set(plist);

fd=vec(factor(abs(fe[12])));
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if(plist[1]==2,

bnd=bound2(fe,2,fd);

plist=extract(plist,vector(length(plist)-1,j,j+1)),

bnd=10^10);

for(j=1,length(plist),bnd=min(bnd,bound(fe,plist[j],fd)));

bnd;

bound(fe,p,fd,b,a,m) =

b=length(fd[1]);

for(j=1,b,

if(fe[10]%fd[1][j],

if(fd[2][j]%p,

if(fd[1][j]%p!=1,m=m+1,),),

a=a+1));

a+b-1-m;

bound2(fe,p,fd,b,a,m,e) =

b=length(fd[1]);

for(j=1,b,

if(fe[10]%fd[1][j],

if(fd[2][j]%p,

if(fd[1][j]%p!=1,m=m+1,);

if(fd[2][j]%4!=1,e=1,),),

a=a+1));

a+b-1-m-e;
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4.2.3 Code for Computing Kretschmer’s Bound

In many cases we were not able to find enough linearly independent points on an elliptic

curve to come close to the bounds or estimates given by Mazur’s bound or the sum

GE(N). In these cases, if the elliptic curve contained a point of order two, we used the

descent procedure and Kretschmer’s theorem 1.3.1 to compute the Selmer group.

Given an elliptic curve, E, defined by y2 = x3+a x2+b x, let E′ be the curve defined

by y2 = x3− 2a x2 +(a2− 4b) x. Then for points P written as [x, y, z] in E(Q), we have

the degree 2 isogeny ϕ,

ϕ : E(Q) −→ E′(Q) by ϕ(P ) =

 [y2, y(x2 − b), x2] if P 6= [0, 1, 0], [0, 0, 1]

[0, 1, 0] otherwise.

Recall that there is a dual isogeny which we denote ϕ′ which maps E′ to E and that

the composition of these two maps is multiplication by 2 on the appropriate curve.

Furthermore, we have the homomorphism α : E(Q) −→ Q∗/(Q∗)2 defined by

α([0, 1, 0]) = 1,

α([0, 0, 1]) = b, and

α([x, y, 1]) = x.

A similar map α′ from E′(Q) to Q∗/(Q∗)2 exists as well. For each divisor, d of b, we

have the homogeneous space

Hd : z2 = d x4 + a x2 +
b

d
.

The image of α in Q∗/(Q∗)2 is precisely the set consisting of 1, b and those d for which

Hd has a rational solution (x0, z0), x0 6= 0. (Note that given a point (x0, z0) on Hd, we

get the point (d x2
0 , d x0 z0) on E.) Kretschmer’s theorem 1.3.1 gives us a way to decide

if Hd is everywhere locally soluble for a given d and hence a way to compute the Selmer

group S = Sϕ(E/Q). The image of α sits inside this Selmer group and similarly, the

image of α′ sits inside the Selmer group S′ = Sϕ′(E′/Q). Since we have the relation:

2rE =
|α(E(Q))| · |α′(E′(Q))|

4
,

we get an upper bound on the rank of E by computing the two Selmer groups S and

S′.
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The function totalpadics below computes for a curve E, the isogenous curve E′ and

hands these two curves off to the function padics. The function padics then computes

the homogeneous spaces Hd which are elements of the Selmer group by first checking

to see if Hd has a real point, then by checking the conditions given in Kretschmer’s

theorem. We then use the relation above to give an upper bound on the rank. By

searching for points on each the homogeneous spaces returned, we can also provide a

lower bound. Note that |α(E(Q))| and |α′(E′(Q))| are powers of 2. This allows us

to deduce that some of the homogeneous spaces for which we could not find rational

points, must have rational points.

padics(aa,bb,vfa,vfb,pcheck1,pcheck2,v1j,p1l,p2l,ctr,hss,cb1,cb2,

gcdb1b2,ctr,fb1,fb2,openps,divb,b1s,kb,sfb1,sfb2)=

vfb=vec(factor(abs(bb)));

vfa=vec(factor(abs(aa^2-4*bb)));

pcheck1=setminus(setminus(vfb[1]~,vfa[1]~),[2,3]);

pcheck2=[];

for(j=1,length(vfa[1]),v1j=vfa[1][j];

if(v1j==2||v1j==3||setsearch(vfb[1]~,v1j),,

pcheck2=concat(pcheck2,[[v1j,vfa[2][j]%2]])));

p1l=length(pcheck1);

p2l=length(pcheck2);

openps=[];

for(j=1,p2l,if(pcheck2[j][2]==1,

openps=concat(openps,pcheck2[j][1]),

if(round(((kro(aa,pcheck2[j][1])*pcheck2[j][1])%8)/8),,

openps=concat(openps,pcheck2[j][1]))));

divb=divisors(bb);

b1s=[];

for(j=1,length(divb),if(issqfree(divb[j]),

tmpb=[divb[j],bb/divb[j]];
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if(aa>0,b1s=concat(b1s,[tmpb,-tmpb]),

if(bb<0,b1s=concat(b1s,[tmpb,-tmpb]),

b1s=concat(b1s,[tmpb]))),));

hss=[];

for(j=1,length(b1s),

cb1=b1s[j][1];cb2=b1s[j][2];

fb1=0;fb2=0;

ctr=min(length(openps),1);

while(ctr>0 && ctr<=length(openps),

kb=kro(cb1,openps[ctr]);

ctr=ctr*kb+kb);

if(ctr<0,,

gcdb1b2=gcd(cb1,cb2);

ctr=min(p1l,1);

while(ctr>0 && ctr<=p1l,

if(gcdb1b2%pcheck1[ctr],ctr=ctr+1,

if(kro(aa,pcheck1[ctr])+1,ctr=ctr+1,

if(fb1,,fb1=vec(factor(cb1)));

sfb1=setsearch(fb1[1]~,pcheck1[ctr]);

if(sfb1,sfb1=fb1[2][sfb1]%2,);

if(sfb1-1,ctr=ctr+1,

if(fb2,,fb2=vec(factor(cb2)));

sfb2=setsearch(fb2[1]~,pcheck1[ctr]);

if(sfb2,sfb2=fb2[2][sfb2]%2,);

if(sfb2-1,ctr=ctr+1,ctr=-1))))));

if(ctr<0,,

if(cb2%3==2,if(set([cb1,aa]%3)==[0,2],,

hss=concat(hss,cb1*x^4+aa*x^2+cb2)),

hss=concat(hss,cb1*x^4+aa*x^2+cb2))));

hss;
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totalpadics(fe,vfe,aa,bb,daa,dbb,ans,rub) =

aa=vfe[2];

bb=vfe[3];

daa=-2*aa;

dbb=aa^2-4*bb;

ans1=padics(aa,bb);ans2=padics(daa,dbb);

ans=[ans1,ans2];

rub=floor(log(length(ans1)*length(ans2))/log(2)-2);

[ans,rub];

4.2.4 Rank and the Sign of the Functional Equation

We make one final comment regarding the computation of rank. Recall that the Birch,

Swinnerton-Dyer conjecture also includes the statement that the L function for an

elliptic curve satisfies a functional equation. There is also the conjecture that the sign

of this functional equation can be used to predict the parity of the rank. In particular,

it is conjectured that

(−1)r = −
∏
p|∆

εp,

where the εp are the local factors. If p is a prime of multiplicative reduction, then we

have that εp = −(−c6
p ), where (a

b ) is the Jacobi symbol. If we compute this product,

we may in some cases be able to reduce the possibilities for the rank of a given curve.

We carried out this calculation for all curves with no additive reduction and found that

if we assume the parity conjecture, we have the following.

1. The curve in section 2.3.2 with torsion subgroup Z/4Z has rank 2.

2. The curve in section 3.5.1 with torsion subgroup Z/3Z has rank 5 or 7.

4.2.5 Code for Searching for Points

Searching for points on an elliptic curve is perhaps the most speed critical algorithm

of those presented here. We implemented this search in the language gp, but since this



66

is not a compiled language, our implementation suffers from the deficiencies inherent

in an interpreted language. For this reason, we present the algorithm as pseudo-code

(which should be implemented in some compiled language such as C).

The pseudo-code below assumes that we are given a curve in the form y2 = f(x).

The algorithm searches for values of x near some base value x0 which gives f(x) a

square. In particular, the x-coordinates are chosen from the set

{a

b
ε Q | b1 ≤ b ≤ b2, |x0 −

a

b
| ≤ n}.

In practice, we have n much greater than b2 − b1 and so we do the following:

search(f,b1,b2,x0,n,pts) =

for b=b1 to b2,

compute S(b)=the set of least reduced residues for b;

for each k in S(b),

for j=(x0-n-1) to (x0+n-1),

let a=j*b + k;

if f(a/b) is a square, then add the point to pts.

4.3 The Polynomial Method and the Quartic Model

4.3.1 Choosing a Polynomial Construction

Throughout Chapter 3, we use theorem 3.2.1 to construct elliptic curves of large rank.

We choose to use theorem 3.2.1 as opposed to theorem 3.2.2 for two simple reasons.

First, it is easier to search and test for squares than it is to search and test for roots of

a cubic. Theorem 3.2.2 would have produced curves of the form f(x, y) = 0, where in

general f(x, y) is a cubic with both y3 and x3 terms appearing. Searching for points on

this curve is more difficult than curves of the form y2 = f(x). Furthermore, the quartic

model has the advantage of giving the possibility of two additional points– the points

at infinity. This advantage, and hence the extra points, would be lost by using theorem

3.2.2
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4.3.2 Code for the Polynomial Construction

The function mestrep below, computes the polynomial whose roots are the elements of

the vector v passed as argument of the function. This corresponds to what we called

pA(x) in chapter 3. mestreg first computes tay = the complete Taylor expansion of√
pA(1/x) and then extracts the Laurent expansion from this. The resulting polynomial

corresponds to gA(x). Similarly, mestrer corresponds to rA(x). The final function below,

mestrert is simply the function mestrer for the special choice of roots given in section

3.2.2.

mestrep(v) = prod(1,j=1,length(v),x-v[j])

mestreg(v,tay) =

tay=taylor((x^length(v)*subst(mestrep(v),x,1/x)))^(1/2),x);

poly(extract(vec(tay),vector(length(v)/2+1,j,j)),x)

mestrer(v) = vec(mestreg(v)^2-mestrep(v))

mestrert(v,pts) =

pts=concat(v+vector(length(v),j,t),v-vector(length(v),j,t));

[mestrer(pts)/t^2,pts]

4.3.3 Code for the Group Law

Throughout this section we let the elliptic curve E be defined by y2 = f(x), where f(x)

is a quartic with lead coefficient a2. In the code below, fun corresponds to this f and

lda corresponds to this a.

We begin with the code for doubling a point. A parabola that contains the point O′

is of the form y = a x2+β x+α. The functions beta and alpha compute the β and α such

that the parabola is also tangent at the point P = (x1, y1). This point is represented

by pt=(pt[1],pt[2]) in the code. yydouble gives the parabola described above. qdouble

finds the fourth point of intersection by computing the root of (f(x) − y2)/(x − x1)2.
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The returned point, 2P , is then the reflection of this fourth point of intersection across

the x-axis.

alpha(pt,fun,lda) = lda*pt[1]^2-beta(pt,fun,lda)*pt[1]-pt[2]

beta(pt,fun,lda) = 2*lda*pt[1]-(subst(deriv(fun,x),x,pt[1])/(2*pt[2]))

yydouble(pt,fun,lda)= lda * x^2 - beta(pt,fun,lda) * x - alpha(pt,fun,lda)

qdouble(pt,fun,lda,fyy,yyt,x3) =

yyt=yydouble(pt,fun,lda);

fyy=(fun-yyt^2)/(x-pt[1])^2;

x3=-compo(fyy,1)/compo(fyy,2);

[x3,-subst(yyt,x,x3)]

Similarly, the functions below do the same but with different parabolas. yyneg gives

the parabola containing P and tangent at O′. The negative of the point P is then given

by qneg. yysum gives the parabola that passes through P1 and P2. Note that P1 and

P2 are such that the x-coordinate of P1 not equal to the x-coordinate of P2.

yyneg(pt,fun,lda) =

lda * x^2 +

compo(fun,4)/(2*lda) * x -

lda*pt[1]^2 + pt[2] - compo(fun,4)/(2*lda)*pt[1]

qneg(pt,fun,lda,fyy,yyt,x3) =

yyt=yyneg(pt,fun,lda);

fyy=(fun-yyt^2)/(x-pt[1]);

x3=compo(fyy,1)/compo(fyy,2);

[x3,subst(yyt,x,x3)]



69

yysum(pt1,pt2,fun,lda) =

lda * x^2 +

((x1+x2)*(-lda)+(1/(x1-x2)*y1-y2/(x1-x2))) * x +

(-x2*x1*(-lda)+(-x2/(x1-x2)*y1+y2*x1/(x1-x2)))

qsum(pt1,pt2,fun,lda,fyy,yyt,x3) =

yyt=yysum(pt1,pt2,fun,lda);

fyy=(fun-yyt^2)/((x-pt[1])(x-pt[2]));

x3=compo(fyy,1)/compo(fyy,2);

[x3,-subst(yyt,x,x3)]

4.3.4 Code for Sieving

The functions sieve and sieve2 below search for curves with nontrivial torsion for which

the sum GE(500) is high. The function G computes GE(N). In the case of the function

sieve we also look for curves with high Mazur bound. In the case of sieve2 we look for

curves with high Kretschmer bound.

The elliptic curve, ec, is assumed to be defined over Q(m) and sieve specializes the

curve to values of m with numerator between n1 and n2 and denominator between d1

and d2. Known points are passed to the function as pts and once a curve is found with

high sum (≥ mingbound) and high Mazur bound (≥ minmbound), the function searches

for additional points on the curve. The search for points is done on two different models

of the curve and if the rank of the subgroup generated by all found and known points

is larger than rnk the curve is accepted. We note that the function rprimevec simply

returns the least reduced residues for a given n.

Similarly, sieve2 specializes the curve ec defined over Q(m) at many values m and

finds curves with large sum and Kretschmer bound. In addition, sieve2 also does a

rudimentary search over the homogeneous spaces found to be everywhere locally soluble.

From these points, we find the corresponding points on the elliptic curve and compute

a lower bound on the rank as well.
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sieve(ec,n1,n2,d1,d2,pts,plist,mingbound,minmbound,rnk,

ptsm,ecm,rdl,rd,mm,ans) =

for(dz=d1,d2,

rd=rprimevec(dz);

for(numctr=n1-1,n2-1,

for(rr=1,length(rd),

mm=(rd[rr]+numctr*dz)/dz;

ecm=subst(ec,m,mm);

ptsm=subst(pts,m,mm);

ecm=[ecm,makeintegral(ecm)];

ecm=[ecm[1],ecm[2],laska(ecm[2][1])];

ecms=smallinitell(ecm[3][1]);

bnds=round(G(ecms,gn));

if(bnds>=mingbound,

bnds=[bnds,mbound(ecms,plist)];

if(bnds[2]>=minmbound,

ptsm=concat(ptsm,

search(x^3+ecm[1][2]*x^2+ecm[1][4]*x+ecm[1][5],0,1,100));

ptsm=chptell(ptsm,ecm[2][2]);

ptsm=concat(ptsm,

search(x^3+ecm[2][1][2]*x^2+ecm[2][1][4]*x+ecm[2][1][5],0,1,100));

ptsm=chptell(ptsm,ecm[3][2]);

ecms=initell(ecms);

cps=computepts(ecms,ptsm);

ptsm=cps[3];

if(cps[1]>rnk,

ans=concat(ans,[[ecm[1],ecm[3][1],ptsm,ecm[3][2],bnds,

cps[1]]]),),),))));

ans;
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sieve2(ec,n1,n2,d1,d2,p1,mingbound,mindbound,rnk,gn,tmp,cps,

ecm,funecm,rdl,rd,mm,ans,b1,b2,tatesh1,tatesh2,ptsm) =

ans=[];

for(dz=d1,d2,

rd=rprimevec(dz);

rdl=length(rd);

for(numctr=n1-1,n2,

for(rr=1,rdl,

mm=(rd[rr]+numctr*dz)/dz;

ecm=subst(ec,m,mm);

ptsm=[subst(p1,m,mm)];

ecm=[ecm,prelaska(ecm)];

ecm=concat(ecm,[laska(ecm[2][1])]);

ecm=[ecm[1],ecm[2],[initell(ecm[3][1]),ecm[3][2]]];

ptsm=chptell(ptsm,ecm[2][2]);

funecm=x^3+ecm[2][1][2]*x^2+ecm[2][1][4]*x;

bnds=round(G(ecm[3][1],gn));

if(bnds>=mingbound,

bnds=[bnds,totalpadics(funecm)];

if(bnds[2][2]>=mindbound,

if(min(bnds[1],bnds[2][2])>=rnk,

b1=0;tatesh1=[];

for(j=1,length(bnds[2][1][1]),

tmp=hssearch(bnds[2][1][1][j],5001,4999,1,1);

if(length(tmp),b1=b1+1;

b2=compo(bnds[2][1][1][j],5);

ptsm=concat(ptsm,[[b2*tmp[1][1]^2,b2*tmp[1][2]*tmp[1][1]]]),

tatesh1=concat(tatesh1,bnds[2][1][1][j])));

b2=0;tatesh2=[];

for(j=1,length(bnds[2][1][2]),
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tmp=hssearch(bnds[2][1][2][j],5001,4999,1,1);

if(length(tmp),b2=b2+1,tatesh2=concat(tatesh2,bnds[2][1][2][j])));

b1=(ceil(log(max(b1,1))/log(2))+ceil(log(max(b2,1))/log(2)))-2;

cps=computepts2(ecm[3][1],chptell(ptsm,ecm[3][2]));

b1=max(b1,cps[1]);

ans=concat(ans,[[b1,mm,cps[3],cps[2],

[tatesh1,tatesh2],

[length(bnds[2][1][1]),length(bnds[2][1][2])],

vector(5,j,ecm[2][1][j]),

bnds[1],bnds[2][2]]]),),),))));

ans;

G(ecms,N) =

1/(log(prime(N))-2)*sum(0.,j=1,N,

log(prime(j))*(1-(prime(j)-1)/(prime(j)+1-apell(ecms,prime(j)))));

rprimevec(n,ans) =

ans=[1];

if(n<101,ans=primevec[n],

for(j=2,n-1,if(gcd(j,n)==1,ans=concat(ans,j),)));

ans;

4.4 The Finite Field Method

4.4.1 Two Types of Tate Normal Forms

There are essentially two categories of Tate normal forms we consider– ones parame-

terized by one variable and ones parameterized by two variables. Elliptic curves that

contain a point of order three are parameterized by two variables and elliptic curves

that contain a point of order 4 are parameterized by two variables. The algorithm for

searching for these curves follows the outline given in section 2.1.1.
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In each case, the algorithm computes a list of curves defined over Fp in Tate normal

form which maximize the number of points on the curve in Fp. The routine mchinese

then computes a list of curves in Tate normal form modulo the product of every prime

used in the previous step. This list of curves has the property that each curve reduced

modulo p gives a curve with maximal #Ep. This list of curves is then passed on to the

sieving routines. The sieving routines used are analagous to those described in section

4.3.4. The only distinction is that here we are sieving over lifts of the curves in the list

given by mchinese rather than sieving over curves parameterized by some subset of the

rationals.

4.4.2 Finding Curves with Points of Order 3

prepv(v) = [0,v[1]^2,0,v[1]*8*v[3],16*v[3]^2];

funell(v) = x^3+v[2]*x^2+v[4]*x+v[5];

gform(a1,a3)=[a1,0,a3,0,0];

gform2(a1,a3,ec) =

ec=gform(a1,a3);

if(smallinitell(ec)[12]==0,[a1,a3,0],

[a1,a3,smallinitell(laska(ec)[1])]);

mx(n,p)=if(n==0,,p=prime(n));

matrix(p,p-1,a1index,a3index,gform2(a1index-1,a3index));

precurves(n,mxn,apj,pj,mxn133,maxpj,goodcurves,allgoodcurves) =

allgoodcurves=[[2,1,[[mod(1,2),mod(1,2)]]]];

for(j=2,n,

pj=prime(j);

maxpj=-ceil(2*sqrt(pj));
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goodcurves=[];

for(a1i=1,pj,for(a3i=1,floor(pj/2),

mxn133=mxn[a1i,a3i][3];

if(mxn133==0,,

apj=-apell(mxn[a1i,a3i][3],pj);

if(apj>=maxpj,if(apj>maxpj,

goodcurves=[mod([a1i-1,-a3i],pj),mod([a1i-1,a3i],pj)];

maxpj=apj,

goodcurves=concat(goodcurves,

[mod([a1i-1,-a3i],pj),mod([a1i-1,a3i],pj)])),))));

allgoodcurves=concat(allgoodcurves,

[[pj,floor(2*sqrt(pj))-maxpj,goodcurves]]));

allgoodcurves;

curves(n) = precurves(n,mx(n));

subchinese(clist,n,k,cval,ckl,ck) =

k=k+1;

ckl=clist[k][3];

ck=length(ckl);

if(k<n,for(j=1,ck,subchinese(clist,n,k,

[chinese(cval[1],ckl[j][1]),chinese(cval[2],ckl[j][2])])),

for(j=1,ck,anslist=concat(anslist,[[chinese(cval[1],ckl[j][1]),

chinese(cval[2],ckl[j][2])]])));

mchinese(clist,anslist,n) =

if(anslist,,anslist=[]);

n=length(clist);

for(j=1,length(clist[1][3]),
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subchinese(clist,n,1,[clist[1][3][j][1],clist[1][3][j][2]]));

anslist;

4.4.3 Finding Curves with Points of Order 4

prepv(v) = [0,-8*v[2]+1,0,16*v[2]^2,0];

funell(v) = x^3+v[2]*x^2+v[4]*x+v[5];

gform(c) = [1,c,c,0,0];

gform2(c,ec) =

ec=gform(c);

if(smallinitell(ec)[12]==0,[c,0],

[c,smallinitell(laska(ec)[1])]);

t4(c,ec) =

ec=smallinitell([1,c,c,0,0]);

if(ec[12]==0,[c,0],[c,smallinitell(laska(ec)[1])]);

vctr(n,p) =

if(n==0,,p=prime(n));

vector(p,j,t4(j));

curves4(n,vctrn,apj,pj,vctrn2,maxpj,goodcurves,allgoodcurves) =

if(vctrn,,vctrn=vctr(n));

allgoodcurves=[];

for(j=1,n,

pj=prime(j);

maxpj=-ceil(2*sqrt(pj));
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goodcurves=[];

for(cj=1,pj-1,

vctrn2=vctrn[cj][2];

if(vctrn2==0,,

apj=-apell(vctrn2,pj);

if(apj>=maxpj,if(apj>maxpj,

goodcurves=[mod(cj,pj)];maxpj=apj,

goodcurves=concat(goodcurves,[mod(cj,pj)])),)));

allgoodcurves=concat(allgoodcurves,

[[pj,floor(2*sqrt(pj))-maxpj,goodcurves]]));

allgoodcurves;

subchinese4(clist,n,k,cval,ckl,ck) =

k=k+1;

ckl=clist[k][3];

ck=length(ckl);

if(k<n,for(j=1,ck,subchinese4(clist,n,k,

chinese(cval,ckl[j]))),

for(j=1,ck,anslist=concat(anslist,chinese(cval,ckl[j]))));

mchinese(clist,anslist,n) =

if(anslist,,anslist=[]);

n=length(clist);

for(j=1,length(clist[1][3]),

subchinese4(clist,n,1,clist[1][3][j]));

anslist;
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[2] Stefane Férmigier. Un exemple de courbe elliptique définie sur Q de rang ≥ 19.
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