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Suggested Exercises

Mathematics is not about numbers, equations, computations, or algorithms: it is about under-
standing. – William Paul Thurston

LMFDB - Day 1

Exercise 1. A number field K is a finite degree field extension of Q. The discriminant ∆K of K over Q
(which is, more precisely, the discriminant ∆(OK) of the ring of integers OK of K) serves as a measure, in
a sense, of the arithmetic complexity of the field K (in that it keeps track of the primes of Z that ramify
in OK). For example, K = Q(i) = {a + bi : a, b ∈ Q} is a finite extension of Q of degree 2 (we say K/Q
is a quadratic extension), and the discriminant of K over Q is −4. There is one quadratic extension of Q
of discriminant −3, and this is the smallest discriminant (in absolute value) among all of the quadratic
extensions of Q.

Your task: Use the LMFDB to build a table with the number fields of smallest discriminant for each
degree d = 2, . . . , 10.

Exercise 2. Let G be a finite group. The inverse Galois problem is the following open problem: for each
finite group G, is there a finite Galois extension K of Q such that Gal(K/Q) ∼= G? For example, the
extension Q(i)/Q has Galois group Gal(Q(i)/Q) ∼= Z/2Z.

Your task: Use the LMFDB to build a table with all the finite groups G (up to isomorphism) up to order
10, and then find Galois extensions K/Q of the smallest possible discriminant such that Gal(K/Q) ∼= G.
(Hint: you can also use groupnames.org to find the list of groups you need.)

Exercise 3. Let E/Q be an elliptic curve defined over Q. The Mordell–Weil theorem says that E(Q),
the set of rational points on E (points on E with rational coefficients), has the structure of a finitely
generated abelian group, and therefore E(Q) ∼= E(Q)tors⊕ZRE/Q , where E(Q)tors is a finite abelian group
formed by the points of finite order, and RE/Q ≥ 0 is an integer called the rank and it represents the
number of generators of the group of infinite order. A theorem of Mazur (which proves a conjecture
of Levi and Ogg) shows that E(Q)tors is one of 15 groups (up to isomorphism). The conductor of an
elliptic curve measures, in a sense, the arithmetic complexity of an elliptic curve. For example, the curve
E : y2 + xy + y = x3 − 2731x− 55146 has conductor 14 with E(Q)tors ∼= Z/2Z and RE/Q = 0.

Your task: Use the LMFDB to build a table of elliptic curves with each of possible 15 torsion groups
(up to isomorphism) with the smallest possible conductor.

Your more challenging task: Use the LMFDB to build a table of elliptic curves with each of possible
15 torsion groups (up to isomorphism) with the smallest possible discriminant in the tables.

Another task: Find elliptic curves with each possible torsion group and rank, that appear in the
LMFDB, with the smallest possible conductor.

Exercise 4. The primes that divide the conductor of an elliptic curve are called the bad primes of E/Q
(that is, primes of bad reduction). If the conductor E is a prime number, then E has bad reduction
exactly at one prime.

Your task: Use the LMFDB to build a table of elliptic curves with prime conductor (and smallest
possible discriminant among curves in the tables with said conductor).

https://en.wikipedia.org/wiki/Inverse_Galois_problem
https://people.maths.bris.ac.uk/~matyd/GroupNames/


SAGEMATH - Day 2

Exercise 5. Let a,N be positive integers that are relatively prime. By Dirichlet’s theorem on arithmetic
progressions, there are infinitely many primes p ≡ a mod N .

1. Write a function πa,N (X) in SageMath that counts how many primes p ≡ a mod N there are up to
X (so your function is analogous to prime pi but only counting primes in a congruence class). You
can find how to build functions here.

2. Plot your prime counting function π1,5(X) for (a,N) = (1, 5) and up to X = 10000.

3. Plot the quotient of π1,5(X) and x/ log(x). The limit is known. Can you estimate the limit?

Exercise 6. Let π′(X) =

bXc∑
n=2

1

log(n)
. Write a Sage function that gives the values of π′(X) and plot it

together with the prime-counting function π(X) and x/ log(x) (in different colors!). Draw a separate plot
of the quotients π(X)/(x/ log x) and π(X)/π′(X).

Exercise 7. Let Li(X) =

∫ bXc
2

1

log t
dt. Write a Sage function that gives the values of Li(X) and plot it

together with the prime-counting function π(X), our π′(X) from the previous problem, and x/ log(x) (all
in different colors!). What function seems to be the best approximation of π(X)? Draw a separate plot
of the quotients π(X)/(x/ log x) and π(X)/π′(X) and π(X)/Li(X).

Exercise 8. Can you find elliptic curves E and E′ over a finite field Fp (resp. Fq) such that

1. E(Fp)[3] ∼= Z/3Z⊕ Z/3Z,

2. E′(Fq)[5] ∼= Z/5Z⊕ Z/5Z.

Here E(Fp)[n] is the n-torsion subgroup of E(Fp), so it is the subgroup of all points in E(Fp) of order
dividing n.

Exercise 9. Let φn(x) be the polynomial

(xn − 1)/(x− 1) = xn−1 + xn−2 + · · ·+ x+ 1.

When n = p is prime, the polynomial φp(x) is irreducible over Q (can you prove this?). Let p = 7, let
q 6= 7 be another prime, and let Qq be the field of q-adic numbers, and let Qq[x] be the polynomial ring
in one variable with coefficients in Qq. Depending on q, the polynomial φ7(x) factors in different ways in
Qq[x] (irreducible, product of two cubics, etc).

Your taks: use Sage to find primes such that φ7(x) factors in different ways over Qq[x]. Can you
characterize the primes that make φ7(x) factor in each possible way over Qq[x]?

Exercise 10. Let F = Q(ζ32) be the 32-th cyclotomic field. Use the Galois group functionality in Sage
to describe all the quadratic extensions K of Q that are contained in F . That is, find all K/Q quadratic
with K ⊆ F . How many are there? Then, find all the cyclic quartic extensions L/Q contained in F , that
is, find all L/Q with Gal(L/Q) ∼= Z/4Z such that L ⊆ F .

https://doc.sagemath.org/html/en/tutorial/programming.html


MAGMA - Day 3

Note: your institution may be able to provide a Magma student license for you, thanks to the Simons
Foundation Magma agreement (click here). Otherwise, you can use the Magma online calculator (click
here).

Exercise 11. Let n ≥ 1 be an integer. We will say that an n-tuples of (odd) primes T = (p1, . . . , pn) is a

Legendre n-tuple if

(
pi
pj

)
=

(
pj
pi

)
= 1 for all 1 ≤ i < j ≤ n, where

( ·
·
)

is the Legendre quadratic residue

symbol.

1. Show that, for any fixed n ≥ 2, there are infinitely many Legendre n-tuples.

2. Use Magma to find 10 Legendre n-tuples, for each of n = 2, 3, 4, 5.

3. Let n be fixed, and let T = (p1, . . . , pn) be a Legendre n-tuple. We define the height of T by
ht(T ) = |p1 · p2 · · · pn|. What is the Legendre 6-tuple of primes with the smallest height?

Note: these n-tuples are related to a research paper on elliptic curves.

Exercise 12. Let n be an integer with 1 ≤ n ≤ 15. Use the LMFDB to find a number field Kn such
that the class group of K is n, with smallest possible discrimiant (in the database). Then, use Magma
to describe the ring of integers OK of K, and find prime ideals (in terms of a basis of OK) that generate
the class group Cl(K). (For those n where there is more than one abelian group isomorphism class, e.g.,
n = 4, include a number field for each class.)

Exercise 13. Use Magma to find concrete examples (polynomial equations) of projective curves defined
over Q of genus 0, 1, 2, 3, 4, 5. (Hint: LMFDB can also be helpful here.) Can you find models that are the
“smallest” in some sense? Describe your notion of “small model”.

Exercise 14. If you have read Chapters 1-3 of Silverman’s “The Arithmetic of Elliptic Curves”, use
Magma to replicate the proof of Theorem 3.1.(a) for the concrete case of C : x3 + y2 = 2 and O = (1, 1).
That is, find a Weierstrass equation for C by computing bases of the appropriate Riemann–Roch spaces
L(n · O) to find a linear relation from which you can deduce the coefficients of a Weierstrass form.

http://magma.maths.usyd.edu.au/magma/simons/
http://magma.maths.usyd.edu.au/calc/
http://magma.maths.usyd.edu.au/calc/
https://production.wordpress.uconn.edu/alozano/wp-content/uploads/sites/490/2014/01/ALP-2-23-07.pdf


MAGMA - Day 4

Exercise 15. Let Q(µ3∞) be the 3-th cyclotomic tower, that is, the compositum of all cyclotomic fields
Q(ζ3n) for n ≥ 1, where ζ3n is a primitive 3n-th root of unity. Let K3,∞ be the unique Z3-extension inside
Q(µ3∞), so that Gal(K3,∞/Q) ∼= Z3, the 3-adic integers, which is a compositum of number fields Kn over
Q such that Kn ⊆ Kn+1 ⊆ K3,∞ ⊆ Q(ζ3∞) and Gal(Kn/Q) ∼= Z/3nZ. Use Magma to find equations that
define K1, K2, and K3. (Try also to do the same for p = 5 instead of p = 3.)

Exercise 16. Let C be the hyperelliptic curve y2 = x5 + x4 + 1 defined over F5. Use Magma to compute
the zeta function ζC(z) of C, and verify the Riemann Hypothesis (in the sense of the Weil conjectures)
for this zeta function.

Exercise 17. Find an elliptic curve E/Q of rank 0 (over Q) and an integer d, such that the quadratic
twist Ed of E has rank ≥ 3. (Note: if E : y2 = x3 +Ax+B then Ed is given by y2 = x3 + d2Ax+ d3B.)

Exercise 18. Find an elliptic curve E/Q with E(Q)tors ∼= Z/5Z and rank ≥ 2. Then, use Magma to
verify the Birch and Swinnerton-Dyer conjecture numerically for E/Q.

Exercise 19. Find an elliptic curve E/Q with rank ≥ 5. Then, use Magma to verify the Birch and
Swinnerton-Dyer conjecture numerically for E/Q.


