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1. Introduction

Galois theory is about field extensions with “a lot” of automorphisms. Our goal in these
lectures is to extend Galois theory from finite extensions to infinite-degree extensions. It
turns out that the Galois correspondence for infinite-degree extensions runs into problems:
there are mappings in both directions as in the finite case, from intermediate fields to sub-
groups of the Galois group and vice versa, but it is no longer a bijection: there are too many
subgroups, so more than one subgroup can have the same fixed field. This was discovered
in an example by Dedekind in 1901, who wrote [1, p. 15] that the situation could be fixed
by making an infinite Galois group into a “stetige Mannigfaltigkeit” (continuous manifold).
Krull [2], in 1928, proposed how to use topology to rescue the Galois correspondence, and
this viewpoint is essential in how infinite Galois groups are studied today.

2. Review of finite Galois theory

For an extension of fields L/K, write Aut(L/K) for the K-automorphisms of L: these
are the isomorphisms L→ L that fix each element of K. When L/K is a finite extension,

(1) every α ∈ L is algebraic over K: f(α) = 0 for some nonzero f(X) ∈ K[X],
(2) the group Aut(L/K) is finite with size ≤ [L : K].

Example 2.1. Aut(Q(i)/Q) = {α 7→ α, α 7→ α}.

Example 2.2. Aut(Q( 3
√

2)/Q) is trivial, even though [Q( 3
√

2) : Q] = 3.

Example 2.3. Aut(Q( 4
√

2)/Q) has size 2 even though [Q( 4
√

2) : Q] = 4: the automorphisms
send 4

√
2 to ± 4

√
2 and both fix

√
2, so Aut(Q( 4

√
2)/Q) = Aut(Q( 4

√
2)/Q(

√
2)).

The following properties turn out to be equivalent for a finite extension L/K:

(1) |Aut(L/K)| = [L : K],
(2) L is a splitting field over K of a separable polynomial in K[X],
(3) The only elements of L fixed by Aut(L/K) are the elements of K,
(4) L/K is both separable (every element of L has a separable minimal polynomial over

K) and normal (every irreducible polynomial in K[X] that has a root in L splits
completely over L).

When these properties hold, L/K is called a Galois extension and we write Aut(L/K)
as Gal(L/K), calling it the Galois group of L over K.

Example 2.4. Consider K = Q and L = Q(
√

2,
√

3). We have [L : Q] = 4 and L is the
splitting field over Q of (X2−2)(X2−3), which is separable. Therefore L/K is Galois. The
Galois group Gal(L/Q) is isomorphic to {±1}×{±1} by associating to each automorphism
σ in the Galois group the pair of signs by which it affects the square roots of 2 and the
square roots of 3 (in a definite order, to pin down the isomorphism to {±1} × {±1}.
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Example 2.5. (Cyclotomic extensions) Consider K = Q and L = Q(ζm) where ζm is a

root of unity of order m (e.g., ζm = e2πi/m in C). Extensions generated by a root of unity
are called cyclotomic (“circle-dividing”). All the roots of unity of order m are ζam where
(a,m) = 1, so L is a splitting field over Q of Xm − 1, which has distinct roots, so L/Q is
Galois. It turns out that [L : Q] = ϕ(m), so the roots of unity with order m are all roots
of the same minimal polynomial over Q (called the mth cyclotomic polynomial).

Since a is only determined from ζam as an integer modulo m, the condition (a,m) = 1 when
ζam has order m amounts to saying a ∈ (Z/mZ)×. Therefore Gal(Q(ζm)/Q) ∼= (Z/mZ)×

by σ 7→ a(σ) mod m where σ(ζm) = ζ
a(σ)
m . (If one root of unity of order m is sent to a

particular power by σ, all other mth roots of unity are sent to the same power.)
Note: Over base fields other than Q, the roots of unity of order m may have smaller

degree than ϕ(m), e.g., R(ζm) = C when m ≥ 3, so [R(ζm) : R] is 2 when m ≥ 3.

Example 2.6. Let K = Q and L = Q( 4
√

2, i). Here [L : Q] = 8 and a Q-automorphism
σ : L → L is determined by σ( 4

√
2) and σ(i). The first value has at most four choices (the

four roots of X4−2) and the second value has at most two choices (the two roots of X2+1).
Therefore |Aut(L/Q)| ≤ 8. All 8 options work: L is the splitting field over Q of X4 − 2,
which is irreducible and separable over Q. By looking at elements of Gal(L/Q) by how
they permute the four different fourth roots of 2, the 8 permutations of the four roots make
Gal(L/Q) isomorphic to the dihedral group of order 8.

Example 2.7. For an odd prime p, let L = Q( p
√

2, ζp) where ζp is a nontrivial pth root
of unity. This is the splitting field over Q of Xp − 2, which is irreducible (and separable,
as we’re in characteristic 0). The elements σ of Gal(L/Q) are determined by the values of
σ(ζp) and σ( p

√
2):

σ(ζp) = ζa(σ)p , σ(
p
√

2) = ζb(σ)p
p
√

2,

where a(σ) ∈ (Z/pZ)× and b(σ) ∈ Z/pZ. Composition of two automorphisms σ and τ in
Gal(L/Q) affects the exponents on ζp in the same way that the matrices(

a(σ) b(σ)
0 1

)
multiply:

σ(τ(ζp)) = σ(ζa(τ)p ) = σ(ζp)
a(τ) = (ζa(σ)p )a(τ) = ζa(σ)a(τ)p

and

σ(τ(
p
√

2)) = σ(ζb(τ)p
p
√

2) = σ(ζp)
b(τ)σ(

p
√

2) = (ζa(σ)p )b(τ)ζb(σ)p
p
√

2 = ζa(σ)b(τ)+b(σ)p
p
√

2.

This matches the equation(
a(σ) b(σ)

0 1

)(
a(τ) b(τ)

0 1

)
=

(
a(σ)a(τ) a(σ)b(τ) + b(σ)

0 1

)
.

Therefore Gal(L/Q) is isomorphic to the matrix group {( a b0 1 ) : a ∈ (Z/pZ)×, b ∈ Z/pZ}.

For a finite Galois extension L/K, the Galois correspondence associates to each subgroup
H of Gal(L/K) the intermediate field LH = {α ∈ L : σ(α) = α for all σ ∈ H}, where
K ⊂ LH ⊂ L, and to each intermediate field E the subgroup Gal(L/E), which fixes E.
This is illustrated by the following field diagram.
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L ←→ {id.}

E ←→ H

K ←→ G

H = Gal(L/E), E = LH = {α ∈ L : σ(α) = α for all σ ∈ H}.

Theorem 2.8 (Galois). Let L/K be a finite Galois extension with G = Gal(L/K). The
inclusion-reversing mappings E 7→ Gal(L/E) and H 7→ LH between the intermediate fields
between K and L and the subgroups of G are inverses of each other and satisfy the following
properties when E and H correspond (E = LH , H = Gal(L/E)):

(a) |H| = [L : E] and [E : K] = [G : H],
(b) two intermediate fields E and E′, with corresponding subgroups H and H ′, are iso-

morphic over K if and only if H and H ′ are conjugate subgroups of G; in particular,
Gal(L/σ(E)) = σGal(L/E)σ−1 for σ ∈ G,

(c) E/K is Galois if and only if H C G, in which case the restriction map G →
Gal(E/K), where σ 7→ σ|E, is surjective with kernel H, so G/H ∼= Gal(E/K).

In (2.1) we indicate the relations of part a in a diagram, where E = LH and H =
Gal(L/E) correspond to each other. Because inclusion relations are reversed, the group
diagram appears upside-down, with the larger subgroups near the bottom (having a fixed
field that is closer to K).

(2.1)

L {1}∣∣∣ ∣∣∣[L:F ]

E H∣∣∣ ∣∣∣[F :K]

K G

Part (c) of Theorem 2.8 explains why normal field extensions get their name: in the context
of a finite Galois extension L/K, where every intermediate field is separable over the base
field, the intermediate fields that are normal (equivalently, Galois) over the base are those
whose corresponding subgroups in Gal(L/K) are normal subgroups.

3. Infinite-degree Galois extensions and a problem

We want to relax the condition on field extensions L/K being finite, but keep them
algebraic: each element of L should be the root of a nonconstant polynomial in K[X].

Example 3.1. Three algebraic extensions of Q that are not finite extensions are the com-
posite of all quadratic fields

Q(
√
−1,
√

2,
√

3,
√

5,
√

7, . . . ),

the p-power cyclotomic extension

Q(ζp∞) =
⋃
n≥1

Q(ζpn)

where ζpn = e2πi/p
n
, and the algebraic closure Q.
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Even when an algebraic extension L/K has infinite-degree, it has a built-in finiteness:
every finite set of elements of L lies in a finite subextension of K. That is, every algebraic
extension is a union of finite extensions.

Theorem 3.2. For an algebraic extension L/K, the following properties are equivalent:

(1) L =
⋃
i Li, with each Li/K a finite Galois extension,

(2) L is the splitting field over K of a set of separable polynomials in K[X],

(3) LAut(L/K) = K,
(4) L/K is both separable (every element of L has a separable minimal polynomial over

K) and normal (every irreducible polynomial in K[X] that has a root in L splits
completely over L).

Proof. Exercise 3.2. �

Definition 3.3. We call an algebraic extension L/K Galois if it satisfies the conditions in
Theorem 3.2.

Example 3.4. All three field extensions of Q in Example 3.1 are Galois over Q.

Definition 3.5. When L/K is a Galois extension, we set its Galois group Gal(L/K) to be
the group of all K-automorphisms of L.

When L/K is an infinite Galois extension, it is often impossible to write down concrete
formulas for elements of Gal(L/K). What we can do is indicate how we want an auto-
morphism to look on a subfield and then know it can be extended (in many ways) to an
automorphism in Gal(L/K) by using Zorn’s lemma; see Corollary A.2. For instance, the
conjugation automorphism in Gal(Q(

√
2)/Q) where a+b

√
2 7→ a−b

√
2 can be extended (or

“lifted”) all the way up to an element of Gal(Q/Q), but it’s hopeless to expect any kind of
general formula for elements of Gal(Q/Q) other than the identity and complex conjugation.

The following two examples are about infinite-degree Galois extensions L/K where all
the elements of Gal(L/K) have concrete descriptions.

Example 3.6. The group Gal(Q(
√
−1,
√

2,
√

3,
√

5,
√

7, . . . )/Q) is the countable direct
product (not direct sum!) of copies of {±1}, each factor being a choice of sign by which an
automorphism affects

√
−1 or

√
p for a prime p.

Example 3.7. For prime p, since Q(ζp∞) =
⋃
n≥1 Q(ζpn) we can describe an element σ

of Gal(Q(ζp∞)/Q) by indicating what σ looks like on each field Q(ζpn). By finite Galois
theory, Gal(Q(ζpn)/Q) ∼= (Z/prZ)× by σ(ζpn) = ζanpn for some integer an mod pn where
(an, p) = 1.

Q(ζp∞)
...

Q(ζp3)

Q(ζp2)

Q(ζp)
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Each σ gives us a list of numbers an mod pn in (Z/pnZ)×, but they are not independent
of each other: there is a compatibility condition between them: from ζp

pn+1 = ζpn we have

σ(ζp
pn+1) = σ(ζpn) =⇒ σ(ζpn+1)p = ζanpn =⇒ (ζ

an+1

pn+1 )p = ζanpn =⇒ ζ
an+1
pn = ζanpn ,

so an+1 ≡ an mod pn . Two examples of this are (i) an = a for a common integer a and

(ii) an = 1 + p+ · · ·+ pn−1.
Conversely, a list of an mod pn ∈ (Z/pnZ)× for all n ≥ 1 where an+1 ≡ an mod pn for all

n leads to an automorphism σ in Gal(Q(ζp∞)/Q); see Exercise 3.5.

Finite-degree Galois extensions have finite Galois groups. For infinite-degree Galois ex-
tensions, the Galois group is always infinite.

Theorem 3.8. If L/K is an infinite-degree Galois extension then Gal(L/K) is an infinite
group.

Proof. We’ll prove the contrapositive. If Gal(L/K) is finite, say of order m, then each α ∈ L
has degree at most m over K, so there is a uniform upper bound on the degrees over K of
all elements of L. That implies L/K is finite by [6, Chap. VII, Lemma 4.8]. �

Theorem 3.9. If L/K is a Galois extension then for each α ∈ L, the roots of its minimal
polynomial over K are {σ(α) : σ ∈ Gal(L/K)}.

Proof. Since L/K is Galois, there is a finite Galois extension F/K inside L that contains
α. By finite Galois theory the K-conjugates of α are {ϕ(α) : ϕ ∈ Gal(F/K)}. Corollary
A.2 says that for ϕ ∈ Gal(F/K), ϕ(α) = σ(α) for some σ ∈ Gal(L/K), so {ϕ(α) : ϕ ∈
Gal(F/K)} ⊂ {σ(α) : σ ∈ Gal(L/K)}. Conversely, for σ ∈ Gal(L/K)} and f(X) the
minimal polynomial of α over K, the equation f(α) = 0 implies f(σ(α)) = 0 (the coefficients
of f(X) are in K and thus are not changed by σ), so σ(α) is a K-conjugate of α. �

Watch out: that Gal(L/K) may be an infinite set does not make {σ(α) : σ ∈ Gal(L/K)}
infinite: that set is always finite since it’s the K-conjugates of α; it has enormous repetitions
in it. For example if c ∈ K then {σ(c) : σ ∈ Gal(L/K)} = {c}. An analogue in finite Galois
theory is that {σ(α) : σ ∈ Gal(L/K)} can have size smaller than |Gal(L/K)|, but in a finite
extension there will be some elements (primitive elements) for which L = K(α) and then
the number of K-conjugates is [L : K]. For infinite Galois extensions that never happens.

We now explain, using Examples 3.6 and 3.7 why there are too many subgroups of these
Galois groups to have a one-to-one correspondence between subgroups of the Galois group
and intermediate fields.

Example 3.10. Let L = Q(
√
−1,
√

2,
√

3,
√

5,
√

7, . . . ), so Gal(L/Q) =
∏
{±1}, a count-

able direct product of the group {±1}. This is an abelian group where each non-identity
element has order 2. The group Gal(L/Q) is uncountable (why?), so Gal(L/Q) has un-
countably many subgroups of order 2. At the same time, L has only countably many
subfields of each 2-power degree over Q. Therefore the subfields of L and the subgroups of
Gal(L/Q) do not have the same cardinality.

Example 3.11. In Example 3.7 use p = 2: set L = Q(ζ2∞) =
⋃
r≥1 Q(ζ2n). Then

Gal(Q(ζ2n)/Q) ∼= (Z/2nZ)×.
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Q(ζ2∞) = L
...

Q(ζ8)

Q(ζ4) = Q(i)

Q(ζ2) = Q

For odd a in Z, let σa ∈ Gal(L/Q) by ζ2n 7→ ζa2n for all r. We’ll use a = 5 and a = 13:

σ5(ζ2n) = ζ52n , σ13(ζ2n) = ζ132n .

Let H = 〈σ5〉 and H ′ = 〈σ13〉. The cyclic subgroups H and H ′ in Gal(L/Q) are not the
same: if they were equal then the generator σ13 of H ′ would be one of the generators σ±15
of H, which would mean (when applied to ζ2n)

ζ132n = ζ5
±1

2n ,

so 13 ≡ 5±1 mod 2n for all n. Thus 13 = 5±1, which is incorrect.
Even though H 6= H ′, let’s see that LH = LH

′
! Set Ln = Q(ζ2n). Then

Gal(Ln/Q) ∼= (Z/2nZ)× by σa(ζ2n) = ζa2n .

Q(ζ2n) = Lr
...

Q(ζ4) = Q(i)

Q(ζ2) = Q

Since 5, 13 ≡ 1 mod 4, σ5 and σ13 both fix i, so Q(i) is in both LH and LH
′
.

For n ≥ 2, it turns out that 〈5 mod 2n〉 = 〈13 mod 2n〉 in (Z/2nZ)× and both subgroups
have index 2 (see Exercise 3.8). Since those two subgroups are the same, the subfields of Ln
that are fixed by 5 mod 2n and by 13 mod 2n (as elements of Gal(Ln/Q), acting as the 5th
and 13th power on ζ2n) are the same and by the finite Galois correspondence that common
fixed field has degree 2 over Q. Since Q(i) is known to be fixed and it has degree 2, it is the

whole fixed field. Notice this field Q(i) is independent of n: LHn = Q(i) and LH
′

n = Q(i)

for all n ≥ 2. Every element of L is inside some Ln, so LH = Q(i) = LH
′
.

We have met two different subgroups of Gal(L/Q) with the same fixed field, so the Galois
correspondence breaks down. The particular example of this in Example 3.11 was essentially
discovered by Dedekind [1] in 1901, although he used odd primes instead of the prime 2
(Exercise 3.9).

To fix the Galois correspondence for infinite-degree Galois extensions, Krull defined a
topology on Galois groups so that there is a one-to-one correspondence between intermediate
fields and closed subgroups of the Galois group. (For a finite Galois extension this topology
turns out to be discrete, which is why it’s unnecessary to use topology when learning finite
Galois theory.) The topology is defined in Section 4. Intuitively, what it means for two
automorphisms σ and σ′ in Gal(L/K) to be “close” in this topology is that σ = σ′ on a finite
subextension F/K with large degree: the larger the degree, the “closer” the automorphisms
because a larger finite extension F/K in L covers more of L.

Exercises.
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1. Let L = Q({ p
√

2 : p ≥ 3 prime}). Show Aut(L/Q) is trivial How does the group
Aut(L/Q) change if we include p = 2? What if L = Q({ n

√
2 : n ≥ 3 odd})?

2. Prove Theorem 3.2.
3. When L/K is Galois and E is an intermediate field between L and K, show L/E is

Galois.
4. Work out the calculation of Gal(L/Q) in Example 3.6.
5. In Example 3.7, show to each list of numbers an mod pn ∈ (Z/pnZ)× for n ≥ 1 such

that an+1 ≡ an mod pn for all r that there is an automorphism σ ∈ Gal(Q(ζp∞)/Q)
such that σ(ζpn) = ζanpn for all n.

6. Fill in details in Example 3.10: why does the Galois group in that example have
uncountable many subgroups and why does the field L have only countably many
subfields?

7. In Example 3.11, show the subgroups H and H ′ have trivial intersection.

8. For an integer a, if a ≡ 1 mod 4 and a 6≡ 1 mod 8 then prove (i) a2
k ≡ 1 mod 2k+2

and a2
k 6≡ 1 mod 2k+3 for k ≥ 0 and (ii) the subgroup of (Z/2nZ)× generated by a

can be described as follows:

〈a mod 2n〉 = {x mod 2n : x ≡ 1 mod 4} = ker((Z/2nZ)× → (Z/4Z)×)

for n ≥ 2, where the map (Z/2nZ)× → (Z/4Z)× is reduction, and 〈a mod 2n〉 has
index 2 in (Z/2nZ)×.

For example, a = 5 and a = 13 fit the initial hypotheses mod 4 and mod 8, so
they generate the same subgroup of (Z/2nZ)× for all n ≥ 2, and also for n = 1 by
a direct check.

9. Let p be an odd prime.
(a) For an integer a, if a ≡ 1 mod p and a 6≡ 1 mod p2 (e.g., a = 1 + p or

a = 1 + (p− 1)p), then prove (i) ap
k ≡ 1 mod pk+1 and ap

k 6≡ 1 mod pk+2 for k ≥ 0
and (ii) the subgroup of (Z/pnZ)× generated by a can be described as follows:

〈a mod pn〉 = {x mod pn : x ≡ 1 mod p} = ker((Z/pnZ)× → (Z/pZ)×)

for n ≥ 1, where the map (Z/pnZ)× → (Z/pZ)× is reduction, and 〈a mod pn〉 has
index p− 1 in (Z/pnZ)×.

(b) Use (a) to give an analogue of Example 3.11 in Gal(Q(ζp∞)/Q): find two
different cyclic subgroups of the Galois group with the same fixed field.

4. The topology on Galois groups

As mentioned at the end of the previous section, the key idea behind the topology that
we will put on Gal(L/K) is to think of two elements of Gal(L/K) as being close if they are
equal on a large finite extension of K inside L. Before we define the topology, let’s see that
the concept of automorphisms in Gal(L/K) being equal on a field intermediate between L
and K has an algebraic interpretation in terms of lying in a common left coset.

Lemma 4.1. Let L/K be a Galois extension with G = Gal(L/K).

(1) For σ ∈ G and an intermediate field E between L and K, the coset σGal(L/E) is
all automorphisms of G that look like σ on E: σGal(L/E) = {τ ∈ G : τ |E = σ|E}.

(2) If F/K is a finite extension inside L then Gal(L/F ) has index [F : K] in Gal(L/K).

It makes sense to talk about the “Galois” group Gal(L/E) because L is genuinely Galois
over E: see Exercise 3.3.
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Proof. (1) For ϕ ∈ Gal(L/E) and α ∈ E, (σϕ)(α) = σ(ϕ(α)) = σ(α). Thus σϕ = σ on
E. Conversely, suppose τ ∈ G satisfies τ |E = σ|E . Let ϕ = σ−1τ ∈ G, so τ = σϕ. For
α ∈ E, τ(α) = σ(α), so σ−1(τ(α)) = α, or ϕ(α) = α. Therefore ϕ fixes all elements of E,
so ϕ ∈ Gal(L/E) and τ = σϕ ∈ σGal(L/E).

(2) The index of Gal(L/F ) in Gal(L/K) is the number of left cosets or the number of
right cosets. (It’s the same number since inversion gives an intrinsic bijection between left
and right cosets: (gH)−1 = H−1g−1 = Hg−1.) We’ll use the left coset perspective because
of part 1. To say σGal(L/F ) = τ Gal(L/F ) means σ = τ on F : σ and τ define the same
field homomorphism F → L fixing K. Since F/K is a finite separable extension inside the
Galois extension L/K, the number of field homomorphisms F → L that fix K is [F : K].
(Concretely this can be explained with the primitive element theorem: F = K(α) for some
α. Therefore the number of field homomorphisms K(α) → L that fix K is the number of
K-conjugates of α in L. Since L/K is Galois, the number of K-conjugates of α in L is the
degree of the minimal polynomial of α over K, which is [K(α) : K], and that’s [F : K].)
Therefore the number of left cosets of Gal(L/F ) in Gal(L/K) is [F : K]. �

To help you follow the notation, we will write “E” for an arbitrary intermediate field
between L and K (“E” for “extension of K”) and we will write “F” for a finite intermediate
field extension of K inside L (“F” for “finite”).

Definition 4.2. For σ ∈ Gal(L/K), a basic open set around σ or a basic open neighborhood
of σ is a coset σGal(L/F ) where F/K is a finite extension. A nonempty subset U of
Gal(L/K) is open when each element of U is contained in a basic open set inside of U : for
each σ ∈ U , σGal(L/F ) ⊂ U for some finite extension F/K inside of L.

To check your understanding of the terminology here, every open set around the identity
contains Gal(L/F ) for some finite extension F/K in L. Indeed, open sets are defined to be
unions of basic open sets and the basic open sets around the identity are defined to be the
subgroups Gal(L/F ).

Equivalently, by Lemma 4.1, a basic open set of σ in Gal(L/K) is the set of all elements
of Gal(L/K) that look like σ on some finite extension F/K inside L. The intuition here is
that a “small” open set around σ is all the automorphisms in Gal(L/K) that equal σ on a
“big” finite extension of K inside L. Note that F ⊂ F ′ ⇒ Gal(L/F ′) ⊂ Gal(L/F ), so being
equal to σ on a bigger subfield corresponds to a smaller open set around σ.

Theorem 4.3. The open sets in Gal(L/K) as described above, along with the empty set,
define a topology on Gal(L/K).

Proof. A nonempty open set in Gal(L/K) is a union of cosets σi Gal(L/Fi) as σi and Fi
vary. A union of open sets is a union of a union of such cosets, which is still a union of such
cosets, so an arbitrary union of open sets is open (the case of the empty set is trivial).

If U1, . . . , Un are finitely many open sets, we want to show U1 ∩ · · · ∩Un is open. We can
assume the intersection is not empty. Let σ be in the intersection. Since each Ui is open
and contains σ, there are finite extensions F1, . . . , Fn of K in L such that σGal(L/Fi) ⊂
Ui. The composite field F := F1 · · ·Fn is a finite extension of K containing each Fi, so
Gal(L/F ) ⊂ Gal(L/Fi) for i = 1, . . . , n. Thus σGal(L/F ) ⊂ Ui for i = 1, . . . , n, so
σGal(L/F ) ⊂

⋂n
i=1 Ui. We showed each element of

⋂n
i=1 Ui is contained in a basic open set

inside the intersection, so the intersection is open. �

The topology we have defined on Gal(L/K) is called its Krull topology. Let’s see what it
means in two earlier examples.
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Example 4.4. For Q(
√
−1,
√

2,
√

3,
√

5,
√

7, . . . )/Q, which has Galois group a countable
product of copies of {±1}, the Krull topology on this product is the product topology where
each factor {±1} has the discrete topology (Exercise 4.1). Make sure you understand that
the product topology on a direct product of infinitely many discrete spaces that are not
1-point sets is not discrete!

Example 4.5. For Q(ζp∞)/Q, which has for its Galois group the sequences {an mod pn}
in
∏
n≥1 (Z/pnZ)× with compatibility condition an ≡ an−1 mod pn−1 for n ≥ 2, two such

compatible sequences {an mod pn} and {bn mod pn} are “close” if the nth terms are equal
for a set of early values of n: that is what it means for the automorphisms associated to these
two sequences to be the same function on some Q(ζpn). For instance, in Gal(Q(ζ5∞)/Q),
the sequences

(2 mod 5, 2 + 3 · 5 mod 52, 2 + 3 · 5 + 52 mod 53, . . .)

and
(2 mod 5, 2 + 3 · 5 mod 52, 2 + 3 · 5 + 4 · 52 mod 53, . . .)

are equal in the first two components, and the automorphisms they define on Q(ζ5∞)/Q
are equal on Q(ζ52) but not on Q(ζ53).

Every finite extension F/K in L can be enlarged to a finite Galois extension F̃ /K in L, so

every basic open set σGal(L/F ) contains σGal(L/F̃ ). Therefore when dealing with a basic
open neighborhood of an automorphism σ, by shrinking it we can assume the F defining
the basic open neighborhood of σ is Galois over K. This will be used in the next theorem
to prove continuity of multiplication and inversion for the Krull topology on Gal(L/K).

Theorem 4.6. The topology on Gal(L/K) has the following properties.

(1) the operations of multiplication Gal(L/K)×Gal(L/K)→ Gal(L/K) and inversion
Gal(L/K)→ Gal(L/K) are continuous.

(2) when Gal(L/K) is finite, the topology is discrete.
(3) Gal(L/K) is Hausdorff.

The second property explains why topology is irrelevant to finite Galois theory.

Proof. (1) Recall in topology that continuity of a function f : X → Y can be described in
two ways: a global way that says the inverse image of each open set in Y is open in X,
and a local way (continuity at each point) that says for each x in X and open set V in Y
containing f(x), there is an open set U around x in X such that f(U) ⊂ V . When the
topology is generated by a basis of open sets (such as the basic open sets in Gal(L/K), which
are analogous to the open balls in a metric space), it suffices to take for V an open set from
the basis since all (nonempty) open sets are unions of open sets in the basis. We will check
continuity of multiplication and inversion using the pointwise description of continuity.

To show multiplication m : Gal(L/K)×Gal(L/K)→ Gal(L/K) is continuous at a point
(σ, τ) ∈ Gal(L/K)×Gal(L/K), its product is στ in Gal(L/K) so we pick a basic open set
στ Gal(L/F ) for a finite extension F/K, where by making F larger (but still finite over K)
we can suppose F/K is a finite Galois extension. The set σGal(L/F ) × τ Gal(L/F ) is an
open set around (σ, τ) in the product Gal(L/K)×Gal(L/K): it is all pairs (f, g) such that
f = σ on F and g = τ on F . Then fg = στ on F : for α ∈ F , g(α) = τ(α) and both are still
in F (since F/K is Galois!), and thus f(g(α)) = σ(τ(α)), so (f ◦ g)(α) = (σ ◦ τ)(α) for all
α ∈ F . Thus m(σGal(L/F )× τ Gal(L/F )) ⊂ στ Gal(L/F ), so multiplication is continuous
at (σ, τ). This was proved for all (σ, τ), so multiplication on Gal(L/K) is continuous.
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To show inversion i : Gal(L/K)×Gal(L/K) is continuous, pick σ ∈ Gal(L/K). A basic
open set around σ−1 in Gal(L/K) is σ−1 Gal(L/F ) for some finite extension F/K, and just
as in the previous paragraph we can suppose F/K is Galois by passing to a smaller basic
open set around σ−1. If f ∈ σGal(L/F ) then f = σ on F . Since F/K is Galois, f and
σ are automorphisms of F and thus their equality on F implies equality of their inverses
on F : f−1 = σ−1 on F . That shows f−1 ∈ σ−1 Gal(L/F ), so inversion is continuous at σ.
Since σ was arbitrary in Gal(L/K), inversion is continuous on Gal(L/K).

(2) If Gal(L/K) is finite then L/K is a finite extension by Theorem 3.8, in which case for
each σ ∈ Gal(L/K) the set {σ} = σGal(L/L) is a basic open set around σ in Gal(L/K).

(3) Let σ and τ be two different elements of Gal(L/K), so there is an α ∈ L such that
σ(α) 6= τ(α). The number α is contained in a finite extension F of K, such K(α). Then
σ|F 6= τ |F since σ and τ are different at α, so σGal(L/F ) 6= τ Gal(L/F ). Different cosets of
a subgroup are disjoint, so σGal(L/F ) and τ Gal(L/F ) are disjoint basic open sets around
σ and τ . That proves Gal(L/K) is Hausdorff.

�

We are now ready to prove Krull’s theorem that the Galois correspondence works for all
intermediate fields and closed subgroups of the Galois group.

Theorem 4.7 (Krull). Let L/K be Galois and set G = Gal(L/K), equipped with the Krull
topology. Associate to each intermediate field E the subgroup Gal(L/E) of G and associate
to each subgroup H of G the intermediate field LH = {α ∈ L : h(α) = α for all h ∈ H}.

(1) For all E, Gal(L/E) is a closed subgroup of G.
(2) For all H, Gal(L/LH) is the closure of H in G.
(3) (Galois correspondence) The mappings E 7→ Gal(L/E) and H 7→ LH are inclusion-

reversing bijections between the intermediate fields in L/K and the closed subgroups

of Gal(L/K), and they are inverses of each other: LGal(L/E) = E and Gal(L/LH) =
H when H is closed.

(4) For an arbitrary subgroup H ⊂ G, LH = LH .

Although finite Galois theory appears to be a special case of this theorem (with the
topology being discrete by Theorem 4.6), in fact our proofs of both (2) and (3) will rely on
finite Galois theory. Therefore our approach to Theorem 4.7 is more like a generalization
of finite Galois theory to infinite-degree Galois extensions.

Proof. (1): To prove Gal(L/E) is closed in G, we’ll show its complement is open. There
is nothing to check if Gal(L/E) = G, so suppose there is some σ ∈ G − Gal(L/E), which
means σ is not the identity on E: σ(α) 6= α for some α ∈ E.

There is a finite extension F/K inside L containing α. Then σGal(L/F ) is a basic open
set around σ and it is disjoint from Gal(L/E): everything in σGal(L/F ) acts on F the
same way σ does, which means everything in σGal(L/F ) moves α, whereas everything
in Gal(L/E) fixes α, since α ∈ E. We have shown each element of G that is not in
Gal(L/E) has a basic open set around it that is disjoint from Gal(L/E), so the complement
of Gal(L/E) in G is open. Thus Gal(L/E) is closed. That completes the proof of (1).

(2): We have H ⊂ Gal(L/LH) since each element of H fixes LH (the elements of H fix
the elements of L fixed by H). Let H denote the closure of H in G = Gal(L/K). Since
Gal(L/LH) is closed by (1), from H ⊂ Gal(L/LH) we get H ⊂ Gal(L/LH). To prove
this containment is an equality, pick σ ∈ G −H. We will show σ 6∈ Gal(L/LH): σ moves
something in LH .
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Since σ 6∈ H and H is closed, some basic open set around σ in G is disjoint from H:

(4.1) σGal(L/F ) ∩H = ∅
for some finite extension F/K in L, and by replacing F with a finite Galois extension of K in
L containing F 1 we shrink the basic open set σGal(L/F ), which preserved the disjointness
condition in (4.1) while letting us suppose F/K is Galois.

Claim: For a finite Galois extension F/K in L that fits the condition (4.1), there is an
α ∈ F that is fixed by all of H while being moved by σ.

We’ll prove this claim by contradiction. If there’s no such α, that means whenever an
α ∈ F satisfies h(α) = h for all h ∈ H, also σ(α) = α. In other words, σ|F fixes the fixed

field of H in F . Writing H|F for {h|F : h ∈ H}, the fixed field of H in F is FH|F . The
automorphism σ|F and group H|F belong to the finite Galois group Gal(F/K). By finite
Galois theory, an automorphism ϕ in a finite Galois group whose fixed field contains the
fixed field of a subgroup M must lie in M : the fixed field of ϕ is the fixed field of 〈ϕ〉, and
if the fixed field of 〈ϕ〉 contains the fixed field of M then the Galois correspondence implies
〈ϕ〉 is contained in M , so ϕ ∈ M . Therefore σ|F ∈ H|F : there’s some h ∈ H such that
σ|F = h|F . That means h ∈ σGal(L/F ). But in (4.1), σGal(L/F ) is disjoint from H, and
thus is disjoint from H, so we have a contradiction and this proves the claim.

By the claim, which is now proved, there is some α ∈ F such that σ(α) 6= α and h(α) = α
for all h ∈ H. This means α ∈ LH and α is moved by σ, so σ 6∈ Gal(L/LH).

(3): Just as in finite Galois theory, it is easy to see that E 7→ Gal(L/E) and H 7→ LH

reverse inclusions and that E ⊂ LGal(L/E) and H ⊂ Gal(L/LH). For closed H, we have
Gal(L/LH) = H by (2).

It remains to show the containment E ⊂ LGal(L/E) is an equality. We will show each α
in L−E is not in LGal(L/E), meaning α is not fixed by Gal(L/E): if α 6∈ E then σ(α) 6= α
for some σ ∈ Gal(L/E). This is analogous to what we did in (2) to show the containment
H ⊂ Gal(L/LH) is equality.

Since L/E is Galois (Exercise 3.3), there is a finite Galois extension of E inside L that
contains α, say M . By finite Galois theory, since [E(α) : E] > 1 there is an E-conjugate
β of α inside M with β 6= α and β = ϕ(α) for some ϕ ∈ Gal(M/E). There is a lifting of
ϕ : M → M to σ : L → L by Corollary A.2 (K there is M here), so σ ∈ Gal(L/E) and
β = σ(α), so σ(α) 6= α. This completes the proof of the Galois correspondence.

(4) To prove LH = LH for an arbitrary subgroup H we could use the Galois correspon-

dence: (2) implies Gal(L/LH) = H and Gal(L/LH) = H since H is its own closure, so

Gal(L/LH) = Gal(L/LH), so by the Galois correspondence LH = LH . We could also argue

more directly as follows. Clearly LH ⊂ LH , and to prove LH ⊂ LH we want to show that if
α ∈ L satisfies h(α) = α for all h ∈ H then σ(α) = α for all σ ∈ H. For each σ ∈ H, every
basic open set around σ contains an element of H, by the meaning of lying in the closure
H. For an α ∈ LH , let F be a finite extension of K containing α (e.g., F = K(α)) and
use the basic open set σGal(L/F ): this contains some h ∈ H, so h|F = σ|F , which means

σ(α) = h(α) = α. Thus every element of LH is fixed by H, so LH ⊂ LH . �

1Recall by Theorem 3.2 that one of the equivalent properties of L/K being a Galois extension is that it
is a union of finite Galois extensions, so there is a finite Galois extension of K in L containing a primitive
element for F/K, which puts F into a finite Galois extension of K in L. Or pass to the splitting field over K
in L of the minimal polynomials of a finite set of field generators for F over K: that is a “Galois closure” of
F over K, a standard term in finite Galois theory that has nothing to do with the topological term “closure”.
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Remark 4.8. Notice that there is no topology or limit concept being imposed on the
fields or on the automorphisms: the fields are just abstract fields and the automorphisms in
Gal(L/K) are just abstract field automorphisms of L fixing all of K. The topology is being

put on Gal(L/K) but does not change its elements in any way. When we showed LH ⊂ LH ,
there was no “argument by continuity” involving limits is a profound way. The proof just
applied the basic notions of general topology to our purely algebraic setting. This is not like
what happens with Banach spaces or Hilbert spaces where the notion of linear functional is
restricted from abstract linear functionals to continuous linear functionals, and by cutting
down the possible linear functionals a nice duality theory is achieved. For infinite Galois
theory the possible automorphisms of the field L are not being restricted at all.

The following corollary extends some further aspects of the Galois correspondence from
the finite-degree case to the infinite-degree case. Parts of the corollary are purely algebraic
as in the finite case, while other parts acquire a topological aspect by involving closures of
subgroups.

Corollary 4.9. Let L/K be a Galois extension and G = Gal(L/K).

(1) For two closed subgroups H and H ′ of G, LH∩H
′

= LHLH
′

and LH ∩LH′ = L〈H,H
′〉,

where 〈H,H ′〉 is the closure of the subgroup 〈H,H ′〉 generated by H and H ′ in G.
(2) For two intermediate fields E and E′, Gal(L/EE′) = Gal(L/E) ∩ Gal(L/E′) and

Gal(L/E ∩ E′) = 〈Gal(L/E),Gal(L/E′)〉.
(3) For σ ∈ G and a subgroup H, LσHσ

−1
= σ(LH).

(4) For σ ∈ G and an intermediate field E, Gal(L/σ(E)) = σGal(L/E)σ−1.

Proof. (1) By the Galois correspondence, LHLH
′

is LH
′′

where H ′′ = Gal(L/(LHLH
′
)). A

composite field like LHLH
′

is the smallest field containing both fields, LH and LH
′

in this
case. By the inclusion-reversion bijection from the Galois correspondence, the subgroup of
G fixing LHLH

′
has to be the largest closed subgroup contained in both subgroups, which

means the largest closed subgroup of the intersection H ∩H ′. Since H and H ′ are closed,
H ∩H ′ is closed and thus H ∩H ′ is the subgroup fixing LHLH

′
.

The field LH ∩LH′ is the largest field contained in both fields, LH and LH
′
. By the Galois

correspondence, the subgroup of G fixing LH ∩ LH′ is smallest closed subgroup containing
both subgroups, which means the smallest closed subgroup containing H and H ′. That is
〈H,H ′〉.

(2) Write H as Gal(L/E) and H ′ as Gal(L/E′), so E = LH and E′ = LH
′
. Now use (1)

and the Galois correspondence.
(3) For α ∈ L, we have (σhσ−1)(α) = α for all h ∈ H if and only if h(σ−1(α)) = σ−1(α)

for all h, which is the same as σ−1(α) = LH , or α ∈ σ(LH). Thus LσHσ
−1

= σ(LH). Notice
this argument involves no topology at all.

(4) This is equivalent to (3) in the same way (2) is equivalent to (1), namely by the Galois
correspondence. It can also be proved in a direct way similar to the proof of (3), making
no use of topological concepts. Details are left to the reader. �

The following theorem shows how to interpret “open” and “closed” for subgroups of a
Galois group. In particular, while finite Galois theory says the subgroups that are normal
correspond to intermediate extensions that are Galois over the base field, for infinite Galois
theory we have to append the label “open” or “closed” to the subgroups (depending on
whether you want Galois extensions of K inside L that are finite or arbitrary).
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Theorem 4.10. Let L/K be a Galois extension.

(1) The closed subgroups of Gal(L/K) are Gal(L/E) for intermediate field extensions
E/K in L.

(2) The open subgroups of Gal(L/K) are Gal(L/F ) for finite extensions F/K in L.
(3) The closed normal subgroups of Gal(L/K) are Gal(L/E) where E is a Galois ex-

tension of K in L. Equivalently, a closed subgroup H of Gal(L/K) is normal if and
only if LH/K is a Galois extension.

(4) The open normal subgroups of Gal(L/K) are Gal(L/F ) where F is a finite Galois
extension of K in L. Equivalently, an open subgroup H of Gal(L/K) is normal if
and only if LH/K is a finite Galois extension

Proof. (1) Theorem 4.7(1) tells us that every Gal(L/E) is closed. Conversely, if H is a
closed subgroup of Gal(L/K) then the Galois correspondence tells us H = Gal(L/E) where
E = LH is the subfield of L fixed by H.

(2) If F/K is a finite extension then Gal(L/F ) is open by the definition of basic open
sets in the Krull topology. Conversely, if H is an open subgroup of Gal(L/K) then H
contains a basic open set around the identity, so Gal(L/F ) ⊂ H for some finite extension
F/K in L. Writing H as Gal(L/E) (so really E = LH), the Galois correspondence turns
the containment Gal(L/F ) ⊂ Gal(L/E) into the reverse containment E ⊂ F . Thus K ⊂
E ⊂ F , so F/K being finite implies E/K is finite too.

(3) Closed subgroups look like Gal(L/E) for an intermediate field E between K and L.
For this to be a normal subgroup means σGal(L/E)σ−1 = Gal(L/E) for all σ ∈ Gal(L/K).
Just as in finite Galois theory, it is straightforward to show σGal(L/E)σ−1 = Gal(L/σ(E)),
so Gal(L/E) is a normal subgroup when Gal(L/E) = Gal(L/σ(E)) for all σ ∈ Gal(L/K).
By the Galois correspondence, this equality is the same as σ(E) = E for all σ. Thus every
element of E has all of its K-conjugates in E (Theorem 3.9), so E/K is a normal field
extension. Also E/K is separable since L/K is separable, so E/K is normal and separable,
which is one of the equivalent descriptions of being a Galois extension in Theorem 3.2.

The equivalent description of (3) as closed subgroup H being normal if and only if LH/K
is a Galois extension follows from the Galois correspondence by writing an intermediate
field (uniquely) as LH for a closed subgroup H, so Gal(L/E) = Gal(L/LH) = H.

(4) Combine (2) and (3). �

In the Krull topology on Gal(L/K) we had defined the basic open sets around an auto-
morphism σ to be σGal(L/F ) for finite extensions F/K in L, so Theorem 4.10 tells us that
we can describe the basic open sets around σ as σH for open subgroups H.

Corollary 4.11. A subgroup of Gal(L/K) in the Krull topology is open if and only if it is
closed with finite index.

Proof. Theorem 4.10(2) tells us an open subgroup of Gal(L/K) has the form Gal(L/F ) for
a finite extension F/K. This is closed by Theorem 4.10(1) because F is an intermediate
field, and it has finite index by Lemma 4.1(2). �

For some infinite Galois groups, such as Gal(Q(ζp∞)/Q), every subgroup with finite index
is open. There are infinite Galois groups in which non-open finite-index subgroups exist,
such as in Gal(Q(

√
−1,
√

2,
√

3, . . .)/Q), but every known construction of such subgroups
uses Zorn’s lemma and thus no “real” examples of non-open finite-index subgroups of an
infinite Galois group have ever been written down.
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Corollary 4.12. For a subset S of Gal(L/K), its closure S is
⋂
H SH, where H runs over

the open subgroups of Gal(L/K) and SH = {sh : s ∈ S, h ∈ H}. We also have S =
⋂
N SN

where N runs over the open normal subgroups of Gal(L/K).

Proof. We have S ⊂ SH for each open subgroup H, so S ⊂
⋂
H SH. We will show the

intersection is closed and then that every closed set containing S contains the intersection,
so the intersection is the smallest closed subset of Gal(L/K) containing S, which is precisely
how the closure S is defined (or at least it’s one of the ways the closure of a subset is defined
in topology).

By Theorem 4.10, every open subgroup H of Gal(L/K) is closed with finite index. There-
fore each sH for s ∈ S is closed (multiplication by an element is a homeomorphism, so it
sends closed sets to closed sets). Since SH =

⋃
s∈S sH is a union of cosets of H and H has

finitely many (left) cosets, SH is a finite union of closed sets and therefore SH is closed.
Being closed is preserved under arbitrary intersections, so

⋂
H SH is closed. .

Now let S ⊂ C for a closed set C in Gal(L/K). We will show
⋂
H SH ⊂ C. Pick

g ∈
⋂
H SH. To show g ∈ C, suppose g 6∈ C. Then, because G − C is open, a basic open

set around g is contained in G − C: gH0 ⊂ G − C for some open subgroup H0. By the
definition of g we have g ∈ SH0 too, say g ∈ s0H0 for some s0 ∈ S. Thus gH0 and s0H0

both contain g, which makes these left cosets of H0 identical. However, s0H0 meets S (it
contains s0), which is contained in C, while gH0 is disjoint from C. That’s a contradiction,
so g ∈ C.

We mentioned before Theorem 4.6 that every Gal(L/F ) for a finite extension F/K con-

tains some Gal(L/F̃ ) for a finite Galois extension F̃ /K, so each open subgroup H of
Gal(L/K) contains an open normal subgroup N . Therefore in the intersection

⋂
H SH,

each SH contains some SN , so
⋂
H SH =

⋂
N SN , where N runs over the open normal

subgroups of Gal(L/K). �

Example 4.13. For a subgroup H of Gal(L/K), H =
⋂
N HN where N runs over the open

normal subgroups of Gal(L/K). Since N is normal, the set HN is a subgroup of Gal(L/K),
and if H is open then each HN is open: every element hn of HN is contained in the coset
Hn, which is open and in HN . In this case, writing the closure H as the intersection of
open subgroups HN is analogous in R to writing a closed interval [a, b] as an intersection
of open intervals (a− ε, b+ ε), except in R such intervals are not subgroups.

Exercises.

1. When we describe Gal(Q(
√
−1,
√

2,
√

3, . . .)/Q) as a countable direct product of
copies of {±1}, prove that the Krull topology on this group is its product topology
where each factor {±1} has the discrete topology.

2. When Gal(L/K) is given the Krull topology, show for each closed normal subgroup
N of Gal(L/K) that its fixed field LN is a Galois extension of K. Is this still true
when N is an arbitrary normal subgroup of Gal(L/K)?

3. Let L/K be a Galois extension. Show the Galois action mapping Gal(L/K)×L→ L
where (σ, α) 7→ σ(α) is continuous, where Gal(L/K) has the Krull topology, L is
considered to be a discrete topological space, and Gal(L/K) × L has the product
topology.
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5. Further properties of the Krull topology

Theorem 5.1. The topology on a Galois group Gal(L/K) is totally disconnected: the only
nonempty connected subsets are points.

Proof. Let C be a nonempty connected subset of Gal(L/K) and pick σ ∈ C. We will show
C = {σ}.

Let H be an open subgroup of Gal(L/K), so σH is an open set containing σ. Since
H is an open subgroup, it is also closed (Corollary 4.11). Therefore σH is both open
and closed, so the disjoint union σH ∪ (G − σH) is a covering of G by two disjoint open
sets. Since C is connected and contains σ, like σH does, we get C ⊂ σH. Letting H vary,
C ⊂

⋂
H σH, where H in the intersection runs over all open normal subgroups of Gal(L/K).

This intersection is {σ}, so C = {σ}. �

When L/K is Galois and E is an intermediate field, L/E is Galois (Exercise 3.3) and the
Galois group Gal(L/E) gets two topologies: its subspace topology from being a subset of
Gal(L/K) and its own Krull topology. It’s natural to ask if these topologies agree.

Theorem 5.2. If L/K is Galois and E is an intermediate field, then the subspace topology
on Gal(L/E) as a subset of Gal(L/K) equals the Krull topology on Gal(L/E).

Proof. An open subset of Gal(L/E) for its subspace topology in Gal(L/K) is U ∩Gal(L/E)
where U is open in Gal(L/K) for the Krull topology. To show U ∩ Gal(L/E) is open for
the Krull topology on Gal(L/E), we will show each element of U ∩Gal(L/E) is contained
in a basic open set for the Krull topology on Gal(L/E) that is also in U ∩ Gal(L/E). (If
the intersection is empty then it’s obviously open for the Krull topology on Gal(L/E).)

Pick σ ∈ U ∩Gal(L/E). Since U is open for the Krull topology on Gal(L/K), U contains

σGal(L/F ) = {τ ∈ Gal(L/K) : τ = σ on F}

for some finite extension F/K. The intersection of this basic open set with Gal(L/E) is

{τ ∈ Gal(L/K) : τ = σ on F and τ fixes E} = {τ ∈ Gal(L/E) : τ = σ on F}.

Since σ fixes E, to say a τ ∈ Gal(L/E) satisfies τ = σ on F is the same thing as τ = σ on
EF , so

{τ ∈ Gal(L/E) : τ = σ on F} = {τ ∈ Gal(L/E) : τ = σ on EF} = σGal(L/EF ).

Thus

σGal(L/EF ) ⊂ U ∩Gal(L/E),

and EF is a finite extension of E since F is a finite extension of K (a subfield of E). Thus
U ∩ Gal(L/E) contains a basic open set for the Krull topology on Gal(L/E) around each
point in it, so this intersection is open for the Krull topology on Gal(L/E).

Now let V be an open subset of Gal(L/E) for its Krull topology. To show V is also open
for the subspace topology that Gal(L/K) gives Gal(L/E), we may assume V 6= ∅. Pick
σ ∈ V , so σGal(L/F ) ⊂ V for some finite extension F/E. (See the field diagram below,
with F ′ to be defined soon.)
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L

F

E

F ′

K

Write F = E(α) and set F ′ = K(α).2 Then F ′/K is a finite extension and

σGal(L/F ′) = {τ ∈ Gal(L/E) : τ |F ′ = σ|F ′} = {τ ∈ Gal(L/E) : τ(α) = σ(α)}.
This set is {τ ∈ Gal(L/K) : τ(α) = σ(α)}∩Gal(L/E) = σGal(L/K(α))∩Gal(L/E), which
is an open subset of Gal(L/E) for its subspace topology in Gal(L/K). Thus V is open for
the subspace topology of Gal(L/E) being inside Gal(L.K). �

So far the properties we have established about the Krull topology (group operations
are continuous, which subgroups are open or closed, total disconnectedness, etc.) have not
needed any genuinely hard results from topology. The property of the Krull topology in the
next theorem is different, and its method of proof leads to an alternative way of thinking
about what the Krull topology means. To set the stage, first we prove a lemma about the
relation of Gal(L/K) and Gal(F/K) when F is a finite Galois extension of K inside of L.

Lemma 5.3. If L/K is a Galois extension and F/K is a finite Galois extension inside L,
then the restriction mapping Gal(L/F )→ Gal(F/K) is a continuous homomorphism when
we give the finite group Gal(F/K) the discrete topology.

Proof. First we show restricting the domain of automorphisms from L to F is a homomor-
phism from Gal(L/K) to Gal(F/K). For σ and τ in Gal(L/K) and α ∈ F ,

(στ)|F (α) = (στ)(α) = σ(τ(α)) = σ(τ |F (α)) = σ|F (τ |F (α)),

where we can use the notation for “restrictions to F” on σ and τ because F/K is Galois,
so that when α ∈ F also τ(α) ∈ F . Thus (στ)|F = σ|F τ ||F for all σ and τ in Gal(L/K).

To show the restriction mapping Gal(L/K)→ Gal(F/K) is continuous, where the finite
group Gal(F/K) has the discrete topology, amounts to saying the inverse image of every
point of Gal(F/K) is open (since all 1-element subsets of Gal(F/K) are open). Each
ϕ ∈ Gal(F/K) has a lifting to an automorphism of L: ϕ = σ|F for some σ ∈ Gal(L/K)
by Corollary A.2 (that uses Zorn’s lemma). The inverse image of ϕ under the restriction
from L to F is all the elements of Gal(L/K) that restrict on F to be ϕ. Since ϕ = σ|F , the
inverse image of ϕ is

{τ ∈ Gal(L/F ) : τ |F = ϕ} = {τ ∈ Gal(L/F ) : τ |F = σ|F } = σGal(L/F ),

2We could replace the single primitive element α for F/E by a finite set of field generators and the
argument that follows would be essentially unchanged.
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which is (by definition) a basic open set in Gal(L/K). �

Theorem 5.4. For a Galois extension L/K, the Krull topology on Gal(L/K) is compact.

Proof. We are going to embed Gal(L/K) as a closed subset of a product of compact spaces
having the product topology, so the compactness of Gal(L/K) will follows from (i) com-
pactness of product spaces using the product topology (Tychonoff’s theorem) and (ii) com-
pactness of closed subsets of compact spaces. Mathematically, (i) is a lot harder than (ii).

Since L is covered by finite Galois extensions of K, every σ ∈ Gal(L/K) is determined
by how it looks on the finite Galois extensions of K in L. Therefore we define

(5.1) f : Gal(L/K)→
∏
F

Gal(F/K) where σ 7→ (σ|F )F ,

where the fields F on the right side run over finite Galois extensions of K and the F -
component of f(σ) is simply the restriction of σ to the field F . The product space in
(5.1) is both a group and a topological space: each Gal(F/K) is a group, so the product
space is a group using componentwise operations, and each Gal(F/K) is finite, so we give
Gal(F/K) the discrete topology (what else?) and give the product of these discrete spaces
the product topology. (An infinite product of discrete spaces is hardly ever discrete in the
product topology, e.g.,

∏
n≥1{±1} is not discrete in the product topology when each {±1}

has the discrete topology.)
We will show the following properties of f :

(1) f is injective,
(2) f is a homomorphism and continuous,
(3) f has a closed image in the product space,
(4) f is an open mapping to its image (f sends open sets in Gal(L/K) with the Krull

topology to open sets in f(Gal(L/K)) equipped with the subspace topology).

(1) The function f is injective since L is covered by finite Galois extensions: if f(σ) = f(τ)
then σ|F = τ |F for all finite Galois extensions F/K in L. That means σ = τ on all finite
Galois extensions of K in L, and since L is a union of such extensions of K, σ = τ on L.

The function f is usually not surjective, since general elements of the product space in
(5.1) have no connection between their different components, while elements of the product
space that are in the image of f have compatibilities between different components: if F
and F ′ are two finite Galois extensions of K in L and σ ∈ Gal(L/K), then σ|F and σ|F ′ have
to be the same on F ∩ F ′: (σ|F )|F∩F ′ = (σ|F ′)F∩F ′ = σ|F∩F ′ . Therefore the F -component
and F ′-component of f(σ) restrict on F ∩ F ′ to the (F ∩ F ′)-component of f(σ). For a
general term (gF ) in the product space in (5.1), there is no reason gF ∈ Gal(F/K) and
gF ′ ∈ Gal(F ′/K) need to restrict on F ∩F ′ to the automorphism gF∩F ′ on F ∩F ′. (In fact,
the image of f is precisely those (gF ) where gF and gF ′ restrict to gF∩F ′ on F ∩ F ′ for all
finite Galois extensions F and F ′ of K in L. See Exercise 5.1.)

(2) Because f is a mapping to a product space, the following basic properties of product
spaces will be useful: a function G→

∏
iGi from a group to a direct product of groups is a

homomorphism if and only if each of its component functions G→ Gi is a homomorphism,
and a function X →

∏
iXi from a topological space to a product of topological spaces

with the product topology is continuous if and only if each of its component functions
X → Xi is a continuous. In the setting of (5.1), the component functions are the restriction
maps Gal(L/K)→ Gal(F/K). When the finite group Gal(F/K) has the discrete topology,
this restriction map is a continuous homomorphism by Lemma 5.3. Therefore (5.1) is a
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continuous homomorphism when the product in (5.1) has the product topology with each
component Gal(F/K) having the discrete topology. (Because f is a homomorphism, we
could have proved f is injective by checking its kernel is trivial instead of the argument
used in (1) with pairs σ and τ , but the proof with σ and τ is not really any different than
a proof with kernels.)

(3) This proof will be similar to the proof in Theorem 4.7(1) that Gal(L/E) is closed in
Gal(L/K) for each intermediate field E between K and L.

We’ll show f(Gal(L/K)) is closed in
∏
F Gal(F/K) by showing the complement is open.

Pick (gF ) in
∏
F Gal(F/K) that is not in the image of f . (If f is surjective, which happens

very rarely, namely when L/K is Galois of prime degree, there is no (gF ), but also that
means there is nothing to check.) Elements in the image of f satisfy a compatibility among
their components: f(σ) has its component σ|F and σ|F ′ restrict on F ∩ F ′ to its (F ∩ F ′)-
component σ|F∩F ′ for all finite Galois extensions F and F ′ of K in L. Therefore to say
(gF ) is not in the image of f requires that for some F0 and F ′0, gF0 in Gal(F0/K) and gF ′0
in Gal(F ′0/K) do not both restrict on F0 ∩ F ′0 to gF0∩F ′0 .

Now we define an open set around (gF ) that does not meet the image of f . Set

U =

{
(hF ) ∈

∏
F

Gal(F/K) : hF0 = gF0 , hF ′0 = gF ′0 , hF0∩F ′0 = gF0∩F ′0

}
,

which is all elements of the product space with the same components at F0, F
′
0, and F0∩F ′0

as (gF ). What U contains are all the elements of the product space with the same incom-
patibility that (gF ) has at F0, F

′
0,and F0 ∩ F ′0. This guarantees that U does not intersect

the image of f . At the same time, U is open in the product topology on
∏
F Gal(F/K)

since we are imposing a condition in only finitely many components (three components)
and the condition in those components defines an open subset of the component because all
components have the discrete topology (so all subsets, in particular all 1-element subsets,
are open in each component). Thus the complement of f(Gal(L/K)) in

∏
F Gal(F/K) is

open, so f(Gal(L/K)) is closed in
∏
F Gal(F/K).

(4) Since each open set in Gal(L/K) is a union of basic open sets, it suffices to show f
sends each (nonempty) basic open set in Gal(L/K) to an open set in

∏
F Gal(F/K). (Here

we use injectivity of f : f(
⋃
Ui) =

⋃
f(Ui) since f is injective.) For σ ∈ Gal(L/K), every

basic open set around σ in Gal(L/K) contains a basic open set σGal(L/F0) where F0 is a
finite Galois extension of K (this just reflects the fact that finite extensions of K in L can be
enlarged to finite Galois extensions of K in L), so by shrinking down to such basic open sets
we may suppose F0 is Galois over K. Since σGal(L/F0) = {τ ∈ Gal(L/K) : τ |F0 = σ|F0},
f(σGal(L/F0)) can be described as a subset of

∏
F Gal(F/K) in the following way:

(5.2) f(σGal(L/F0)) = f(Gal(L/K)) ∩

{σ|F0} ×
∏
F 6=F0

Gal(F/K)

 .

The right side of (5.2) is all f(τ) where τ ∈ Gal(L/K) and τ looks like σ on F0, which is the
same as saying τ ∈ σGal(L/F0). That explains why the right side equals the left side. If you
look at the right side, the product piece is the subset of

∏
F Gal(F/K) having F0-component

σ|F0 . That is an open set in the product topology. Intersecting this with f(Gal(L/K))
defines an open set in f(Gal(L/K)) using the subspace topology on f(Gal(L/K)). Therefore
f(σGal(L/F0)) is open in the subspace topology on f(Gal(L/K)).
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By properties (1) and (2),f is isomorphic to its image in
∏
F Gal(F/K) as a group. By

(2), (3), and (4), f is homeomorphic to its image (when it is given the subspace topology)
as a topological space. The product

∏
F Gal(F/K) is compact by Tychonoff’s theorem and

f(Gal(L/K)) is closed in this product by (3), so f(Gal(L/K)) is compact. Because f is a
homeomorphism between Gal(L/K) and f(Gal(L/K)), Gal(L/K) is compact in the Krull
topology. �

The proof of Theorem 5.4 uses the definition of the Krull topology, but otherwise it uses
almost nothing else about topological features of the Krull topology. It gives us a new
way to describe the Krull topology: rather than directly defining open sets in Gal(L/K),
map Gal(L/K) to

∏
F Gal(F/K) by σ 7→ (σ|F )F , which is injective, and then topologize

Gal(L/K) by giving its image in
∏
F Gal(F/K) the subspace topology from the product

topology, and then pulling back this topology to Gal(L/K) using its embedding into the
product space. Theorem 5.4 tells us this is exactly the Krull topology, but we could have
simply (re)define the Krull topology to be the topology resulting from this “pullback from
being subspace of product space” point of view.

Many earlier theorems we proved directly with the Krull topology can be seen as conse-
quences of its compactness and the behavior of product spaces in topology and topological
groups (see Appendix B). Here are some examples.

(1) The group operations on Gal(L/K) are continuous (Theorem 4.6(1)): each group
Gal(F/K) with the discrete topology is a topological group, a product of topological
groups is a topological group when using the product topology, and a subgroup of
a topological group is a topological group when using the subspace topology.

(2) When L/K is finite, its topology is discrete (Theorem 4.6(2)):
∏
F Gal(F/K) has

finitely many components when L/K is finite, each with the discrete topology, so
this finite product has the discrete topology. A subset of a discrete topological space
has the discrete topology as its subspace topology.

(3) The topology on Gal(L/K) is Hausdorff (Theorem 4.6(3)): a product of Hausdorff
spaces is Hausdorff and a subset of a Hausdorff space is Hausdorff in the subspace
topology.

(4) A subgroup of Gal(L/K) is open if and only if it is closed with finite index (Corollary
4.11): in a compact topological group, a subgroup is open if and only if it is closed
with finite index (Corollary B.18).

(5) The topology on Gal(L/K) is totally disconnected (Theorem 5.1): each Gal(F/K)
with the discrete topology is totally disconnected, a product of totally disconnected
topological spaces is totally disconnected, and a subset of a totally disconnected
space is totally disconnected in the subspace topology.

There is something genuinely special about the topology on infinite Galois groups that is
not shared by topologies on more familiar groups like R and S1: the identity element has
a neighborhood basis of open subgroups. In R and S1, a small neighborhood of the identity
no nontrivial subgroups, but in Gal(L/K) every open set around the identity contains
some Gal(L/F ) for a finite extension F/K, which is an open subgroup. We also know,
by enlarging F to a finite Galois extension of K, that every open subgroup of Gal(L/K)
contains an open normal subgroup. It turns out this property, as well as the description of
closures in Corollary 4.12 and the total disconnectedness in Theorem 5.1, are consequences
of a few topological properties of infinite Galois groups and don’t need the interpretation
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of certain subgroups of Gal(L/K) as Galois groups. The following theorem illustrates this,
and assumes you have read a bit about topological groups in Appendix B.

Theorem 5.5. Let G be a compact Hausdorff topological group in which the identity element
has a neighborhood basis of open subgroups.

(1) For g ∈ G,
⋂
H gH = {g}, where the intersection runs over open subgroups of G.

(2) Every open subgroup of G contains an open normal subgroup of G.
(3) For each subset S of G, its closure S can be described as

⋂
H SH and as

⋂
N SN ,

where H runs over open subgroups and N runs over open normal subgroups.
(4) The topology on G is totally disconnected.

Note that (1) can be considered as a special case of (3) with S = {g}: an open subgroup H
in a topological group is closed (being the complement of the union of the nontrivial cosets
of H, which are all open), so each gH is closed and therefore

⋂
H gH is closed, so having

this equal {g} means {g} is a closed set. Also, the Hausdorff property of the topological

group G implies {g} is closed by Theorem B.10, so {g} = {g}.

Proof. (1) If g′ 6= g in G then there are disjoint open sets U and U ′ such that g ∈ U and
g′ ∈ U ′. Then e ∈ g−1U and g−1U is open. Since e has a neighborhood basis of open
subgroups, there is an open subgroup H0 ⊂ g−1U , so gH0 ⊂ U . Therefore g′ 6∈ gH0, so
g′ 6∈

⋂
H gH, so the only element in

⋂
H gH is g.

(2) Let H be an open subgroup of G. Since G is compact, H has finitely many left cosets,
say g1H, . . . , gnH. Let G act on its left cosets G/H by left multiplication: `g(giH) = ggiH
for i = 1, . . . , n. This group action of G on G/H defines a homomorphism g 7→ `g from G to
the symmetric group Sn by keeping track of how `g permutes the left coset representatives:
`g(giH) = gπ(i)H for a permutation π in Sn. Let N be the kernel of this action of G on
G/H, so N CG. To say n ∈ N means ngiH = giH. In particular, nH = H, so n ∈ H: the
normal subgroup N is contained in H. Moreover, ngiH = giH is equivalent to ngi ∈ giH,
so n ∈ giHg−1i . Thus N =

⋂n
i=1 giHg

−1
i . This is an intersection of finitely many subgroup

that are each open (since H is open and G is a topological group, all conjugate subgroups
to H are open), so N is open in G. Thus H contains the open normal subgroup N .

(3) In the proof of Corollary 4.12, the only properties we needed about Gal(L/K) are
that its open subgroups are closed with finite index, the identity has a neighborhood basis
of open subgroups (so each σ in Gal(L/K) has a neighborhood basis of cosets σH for open
subgroups H), and every open subgroup contains an open normal subgroup. Using (2) and
Corollary B.18), these properties are true for the topological groups in the hypothesis of
this theorem. Therefore the proof of Corollary 4.12 carries over to all such groups.

(4) In the proof of Theorem 5.1 we needed to know that open subgroups of Gal(L/K) are
closed and that

⋂
H σH = {σ} where H runs over the open subgroups of Gal(L/K). This

property is true for all topological groups fitting the hypotheses of this theorem by (1), so
the proof of Theorem 5.1 carries over to all such groups.

�

Abstracting the situation further, a set of characterizing topological features of the Krull
topology on a Galois group are that it is (i) compact, (ii) Hausdorff, and (iii) totally dis-
connected. Topological groups with these properties can be built out of finite groups in
a similar way to the identification of Gal(L/K) with a closed subgroup of the product of
finite (Galois) groups in (5.1). Such groups are called profinite groups, a name introduced
by Serre that comes from the longer term “projective limit of finite groups.” (The term
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“inverse limit” is also used as a synonym for “projective limit”.) Profinite groups are an
important class of compact topological groups that are quite unlike more classical compact
groups studied in analysis (orthogonal groups, unitary groups, etc.). All Galois groups, with
their Krull topology, are profinite groups, and just as all finite groups can be shown to arise
as a Galois group of some finite Galois extension (with no control over the choice of base
field!), all profinite groups arise as the Galois group of some Galois extension. Therefore
profinite groups are precisely the kinds of topological groups occur as Galois groups.

Exercises.

1. For a Galois extension L/K, show the image of Gal(L/K)→
∏
F Gal(F/K) in (5.1)

is all (gF ) ∈
∏
F Gal(F/K) such that (gF )F∩F ′ = gF∩F ′ (gF ′)F∩F ′ = gF∩F ′ for all

finite Galois extensions F and F ′ of K inside L.
2. Read about topological groups in Appendix B and prove that if {Gi} are topological

groups their product group
∏
iGi, with componentwise operations, is a topological

group using the product topology.

Appendix A. Extending field embeddings

The theorem below about extending field homomorphisms to larger fields is usually proved
in the finite-degree case by using induction on the field degree. For infinite-degree extensions,
that method o longer works and instead we will rely on Zorn’s lemma.

Theorem A.1. Let L/K be a Galois extension and ϕ : E → L be a K-homomorphism of
an intermediate field. There is an extension of ϕ to a K-automorphism L→ L.

This theorem is purely algebraic and relies on Zorn’s lemma (equivalently, the axiom of
choice), so it is rather nonconstructive. The extension of ϕ to L is very far from unique.

Proof. We will use Zorn’s lemma. Let S be the set of pairs (E′, ϕ′) where E′ is an interme-
diate field between E and L and ϕ′|E = ϕ. For instance (E,ϕ) ∈ S, so S 6= ∅. Since ϕ fixes
all elements of K, so does each ϕ′.

L L

E′

ϕ′
88

E

ϕ

@@

K

Partially order S by declaring (E′, ϕ′) ≤ (E′′, ϕ′′) if E′ ⊂ E′′ and ϕ′′|E′ = ϕ′. For a
totally ordered subset {(Ei, ϕi)}i∈I in S, an upper bound can be produced as follows. Let

Ẽ =
⋃
i∈I Ei, so E ⊂ Ẽ ⊂ L. It is left to the reader to check that Ẽ is a field: use the total

orderness of the Ei’s as subsets of L. To extend ϕ to a homomorphism Ẽ → L we’ll “patch
together” every ϕi : Ei → L.

Define ϕ̃ : Ẽ → L by ϕ̃(x) = ϕi(x) when x ∈ Ei. If x is also in Ej , let’s check ϕi(x) =
ϕj(x) so the definition of ϕ̃(x) is independent of the choice of Ei containing x. Since our
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subset of S is totally ordered, either (Ei, ϕi) ≤ (Ej , ϕj) or (Ej , ϕj) ≤ (Ei, ϕi). In the first
case, ϕj restricts to ϕi on Ei, so ϕj(x) = ϕi(x). The argument in the second case is the
same. For x ∈ E, we can view x in an arbitrary Ei and we get ϕ̃(x) = ϕi(x) = ϕ(x) since

ϕi|E = ϕ by the definition of S, so ϕ̃|E = ϕ. To prove ϕ̃ : Ẽ → L is a field homomorphism,

pick x and y in Ẽ. They are each in some Ei and by total ordering they are in a common
Ei. Therefore x + y ∈ Ei, so ϕ̃(x + y) = ϕi(x + y) = ϕi(x) + ϕi(y) = ϕ̃(x) + ϕ̃(y), and

similarly for multiplication. Also ϕ̃(1) = ϕ(1) = 1. Thus (Ẽ, ϕ̃) is in S and is an upper
bound on all the (Ei, ϕi)’s.

Now we can apply Zorn’s lemma: S has a maximal element (M,σ). That is, M is a
field between E and L with a homomorphism σ : M → L such that σ|E = ϕ and there is
no extension of σ to a homomorphism from a larger intermediate field to L. We want to
prove (i) M = L, so the original homomorphism ϕ extends up to L, and (ii) σ : L → L is
an automorphism of L.
M = L. We argue by contradiction. Suppose M 6= L, so there is an α ∈ L with α 6∈M .

The fields M and σ(M) are isomorphic by σ. We will find a β in L that plays a role “above”
σ(M) analogous to α “above” M so that σ : M → L can be extended to M(α) → L by
using σ on M and sending α to β.

Let f(X) ∈M [X] be the minimal polynomial of α over M and let g(X) be the minimal
polynomial of α over K, so f(X) | g(X) in M [X] and deg f = [M(α) : M ] > 1. The field
σ(M) is K-isomorphic to M by σ, so applying σ to polynomial coefficients makes a ring
isomorphism M [X]→ σ(M)[X]. Therefore the image of g(X), say gσ(X), is irreducible in
σ(M)[X]. (An isomorphism between two UFDs, such as M [X] and σ(M)[X], has to map
irreducible elements to irreducible elements.)

Since g(X) | f(X) in M [X] and the coefficients of f(X) are all in K, which is fixed
pointwise by σ, applying σ to coefficients shows gσ(X) | f(X) in (σ(M))[X]. Consider both
divisibility relations as taking place in L[X]. Since L/K is Galois, and f(X) is irreducible
in K[X] with root α ∈ L, f(X) splits completely in L[X]. Therefore its factor gσ(X) splits
completely in L[X]. That proves gσ(X) has a root in L. Let β be a root of gσ(X) in L.
Evaluating polynomials at α gives a field isomorphism M [X]/(g(X)) → M(α) and evalu-
ating polynomials at β gives a field isomorphism (σ(M))[X]/(gσ(X)) ∼= (σ(M))(β). The
ring isomorphism M [X] → (σ(M))[X] by acting σ on coefficients induces an isomorphism
M [X]/(g(X))→ (σ(M))[X]/(gσ(X)), and putting these field isomorphisms together shows

M(α) ∼= M [X]/(g(X))→ σ(M)[X]/(gσ(X)) ∼= (σ(M))(β)

where the overall isomorphism, say σ′, sends M to σ(M) by σ an α is mapped to β.
Thus (M,σ) ≤ (M(α), σ′) in S, which is impossible by maximality of (M,σ), so M = L.
σ : L→ L is an automorphism of L.
Field homrmophisms are always injective, so we just need to show σ is surjective. Pick

α ∈ L. We want to show α ∈ σ(L). We’ll consider how σ behaves on the finite set of
K-conjugates of α ∈ L.

Let f(X) ∈ K[X] be the minimal polynomial of α over K. Since L/K is Galois and
α ∈ L, f(X) splits completely in L[X]. When f(x) = 0 for an x ∈ L, applying σ to the
equation tells us f(σ(x)) = 0 (the coefficients of f(X) are in K, which is fixed pointwise
by σ). Therefore σ sends the finite set of roots of f(X) (the K-conjugates of α) to itself.
An injective function from a finite set to itself is surjective, so α = σ(r) for some root r of
f(X). �

Corollary A.2. Let L/K be a Galois extension.
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(1) Every K-isomorphism ϕ : E → E′ between two intermediate fields between K and L
extends to a K-automorphism σ : L→ L.

(2) If E/K is Galois then the restriction homomorphism Gal(L/K)→ Gal(E/K) where
σ 7→ σ|E is surjective.

Proof. (1) View ϕ : E → E′ as a field homomorphism ϕ : E → L with image E′. By
Theorem A.1, there is a K-automorphism σ : L→ L extending ϕ, meaning σ(x) = ϕ(x) for
all x ∈ E.

(2) If E/K is Galois inside L/K, then for each ϕ ∈ Gal(E/K), part (1) with E′ = E
tells us there is σ ∈ Gal(L/K) such that σ = ϕ on E, which is another way of saying
σ|E = ϕ. �

Appendix B. Topological groups

Infinite Galois groups have a topology that makes the group law and inversion continuous
(Theorem 4.6(1)). There are many other groups with a topology in which the group law
and inversion are continuous, such as Rn with its usual topology and the general linear

and orthogonal matrix groups GLn(R) and On(R) with their topologies as subsets of Rn2
.

In the 19th century mathematicians began to study groups that are also real manifolds,
for which the group law and inversion are smooth functions. These are called Lie groups.
Infinite Galois groups are not Lie groups3. The development of number theory in the first
half of the 20th century led to more examples of groups having a notion of continuity on
them that are not manifolds (the adeles and ideles of a number field). A unifying concept
for groups on which the group operation is continuous (rather than smooth), which includes
both arbitrary Galois groups and Lie groups as special cases, is a topological group. In this
appendix we review some basic properties of such groups.

Definition B.1. A topological group is a group G with a topology on it for which the
multiplication operation G × G → G, where (x, y) → xy, and the inversion operation
G→ G, where x 7→ x−1 are both continuous.

Example B.2. Under addition, R and Rn with their usual (Euclidean) topology are topo-
logical groups.

Example B.3. An arbitrary group G equipped with the discrete topology is a topological
group. In particular, finite groups are topological groups when they have the discrete
topology.

Example B.4. A Galois group with the Krull topology is a topological group.4

Remark B.5. We need to include continuity of inversion in the definition of a general
topological group. There are examples of groups with a topology for which multiplication
is continuous but inversion is not.

3An infinite Galois group is totally disconnected with a topology that is not discrete, while a Lie group
is totally disconnected only if it has the discrete topology.

4In the chapter of Lang’s Real and Functional Analysis about integration on locally compact groups, his
examples of topological groups start off with Lie groups like C× or SLn(R) and end with Gal(Q/Q) with the
Krull topology and the p-adic numbers, after which he writes “If you don’t know these last two examples,
don’t panic; forget about them. They won’t be used in this book.” If you don’t know about Gal(Q/Q) with
the Krull topology then do panic, since understanding that topology is part of the point of these notes.
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The key topological feature of a topological groupG is its homogeneity: the neighborhoods
of the identity and the neighborhoods of every other element in G look the same. (This
is visually clear when G = Rn.) The reason is that left multiplication by each g ∈ G is
a continuous function `g : G → G with a continuous inverse (namely left multiplication by
g−1), so `g is a homeomorphism that sends the identity element to g. Right multiplication
by g is also a homeomorphism of G taking e to g, which need not be the same as left
multiplication by g whenG is non-abelian. Homogeneity in a topological group often reduces
arguments about neighborhoods of arbitrary points to neighborhoods of the identity. The
reason is that U is a neighborhood of g if and only if g−1U is a neighborhood of the identity.
(More generally, if {Ui} is a fundamental system of neighborhoods of the identity in G then
for each g ∈ G, {gUi} is a fundamental system of neighborhoods of g.)

To appreciate homogeneity, we use it to prove a theorem on closures and a theorem on
continuity of homomorphisms.

Theorem B.6. Let H be a subgroup of a topological group G. Its closure H is a subgroup,
and if H is normal in G then H is normal in G.

Proof. This could be proved with a direct use of the definition of closure: g ∈ H when every
open subset of G that contains g intersects H. Instead we will give a proof using a property
of closures and homogeneity:

• if a subset C is closed, then gC and Cg are closed for each g ∈ G,
• the closure A of a subset A is the smallest closed subset containing it: if A ⊂ C and
C is closed then A ⊂ C.

To prove H is a subgroup we want to show HH ⊂ H and H
−1

= H.
Since H is a subgroup, HH ⊂ H ⊂ H. Thus for each h ∈ H, hH ⊂ H, so H ⊂ h−1H.

The set h−1H is closed since H is closed, so H ⊂ h−1H. Thus hH ⊂ H for all h ∈ H, so
HH ⊂ H.

To improve this to HH ⊂ H, pick y ∈ H to get Hy ⊂ H, so H ⊂ Hy−1. Since Hy−1 is
closed, H ⊂ Hy−1. Thus Hy ⊂ H, and since y was arbitrary in H we get HH ⊂ H. (Try
to reprove that now on your own.)

For inversion, H ⊂ H ⇒ H−1 ⊂ H−15 so H ⊂ H−1. Since inversion is a homeomorphism,

H
−1

is closed, so H ⊂ H−1. Taking inverses once more gives us H
−1 ⊂ H, so H

−1
= H.

Now suppose H C G. To prove H C G we want to show gHg−1 = H for all g ∈ G, and
from basic group theory it suffices to show gHg−1 ⊂ H for all g ∈ G.

Since H C G, gHg−1 = H ⊂ H, so H ⊂ g−1Hg. The set g−1Hg is closed in G since H
is, so H ⊂ g−1Hg. Thus gHg−1 ⊂ H. Since g is arbitrary in G, H CG. �

The following theorem shows how topological properties of a homomorphism between
topological groups reduces to checking the property at the identity.

Theorem B.7. Let f : G→ H be a homomorphism between topological groups.

1) The map f is continuous if and only if f is continuous at the identity in G: for
each open set V around the identity in H there’s an open set U around the identity
in G such that f(U) ⊂ V .

2) The map f is open if and only if f is open at the identity in G: for each open set U
in G containing the identity, f(U) contains an open set around the identity in H.

5This is not like inequalities: 0 < a < b⇒ 1/b < 1/a, but A ⊂ B ⇒ f(A) ⊂ f(B) for functions.
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Proof. 1) If f is continuous then it is continuous at the identity in G. Conversely, suppose
f is continuous at the identity in G. To prove f is continuous at each g ∈ G, pick an
open set V in H around f(g). Then f(g)−1V is an open set around the identity in H, so
continuity at the identity implies there’s an open set U around the identity in G such that
f(U) ⊂ f(g)−1V . Thus f(gU) = f(g)U ⊂ V , so gU is an open set around g in G whose
image lies in V .

2) If f is an open map then it is open at the identity in G. To prove the converse, suppose
f is open at the identity in G. Pick a nonempty open set U in G and choose g ∈ U . Then
g−1U is an open set containing the identity in G, so f(g−1U) = f(g)−1f(U) contains an
open set around the identity in H, so using left multiplication by f(g) shows f(U) contains
an open set around f(g). Therefore f(U) is open. �

To apply Theorem B.7, it suffices to check the conditions on a fundamental system of
neighborhoods around the identity in G. Of course it is crucial in Theorem B.7 that we
are working with homomorphisms. A random function on a topological group can’t have
its continuity verified by looking only at its behavior near the identity.

Definition B.8. A function f : G → H between topological groups is called an isomor-
phism of topological groups when f is an isomorphism of groups and a homeomorphism of
topological spaces.

Example B.9. The exponential function ex is an isomorphism between the topological
groups R under addition and (0,∞) under multiplication.

It’s important to keep in mind the difference between an isomorphism of groups and an
isomorphism of topological groups. For a function between topological groups to be an
isomorphism it has to be an isomorphism both algebraically and topologically: a group
isomorphism and a homeomorphism. While a bijective homomorphism between groups is a
group isomorphism (that is, the inverse map is automatically a homomorphism), in topology
a bijective continuous map need not be a homeomorphism: the inverse map might not be
continuous. Equivalently, the original map might not be an open map.

For example, if X is a non-discrete topological space and Xd is the same set as X but it is
equipped with the discrete topology, then the identity map Xd → X is a continuous bijection
that is not a homeomorphism. If we write down a continuous homomorphism G → H
of topological groups, prove it is surjective, and call the kernel N , then the induced map
G/N → H is a group isomorphism and it is continuous (using the quotient topology on G/N ,
of course), but we are not automatically guaranteed that this map is a homeomorphism.
In order to prove a continuous group isomorphism is a topological group isomorphism, we
need to show the map is open (or equivalently, closed).

Since a continuous bijection from a compact space to a Hausdorff space is closed, when
we are dealing with compact Hausdorff topological groups, the subtlety above does not
occur: a bijective continuous homomorphism G→ H from a compact topological group to
a Hausdorff topological group is a homeomorphism and thus is an isomorphism of topological
groups.

Theorem B.10. Let G be a topological group with identity e.

(1) The topology of G is discrete if and only if {e} is an open subset.
(2) The topology of G is Hausdorff if and only if {e} is a closed subset.

Proof. 1) By definition, a topological space is discrete when all of its subsets are open, which
is equivalent to all of its one-element subsets being open.
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In particular, if {e} is open then {g} is open for each g ∈ G by homogeneity; the converse
is obvious.

2) If G is Hausdorff, then every point is a closed subset, so in particular {e} is closed.
Conversely, if {e} is closed then every point in G is closed by the homogeneity of G. To
conclude that G is Hausdorff, it suffices to separate e and an arbitrary element g 6= e by
disjoint open sets. (Here is why that suffices: given distinct x and y in G, if U and U ′ are
open sets separating e and xy−1, then Uy and U ′x are open sets separating y and x.)

First we show that for a neighborhood N of e in G there is a “symmetric” neighborhood
U of e such that U = U−1 (U is symmetric) and UU ⊂ N . Since the multiplication map
m : G×G→ G is continuous, there are open sets U1 and U2 around e such that m(U1×U2) ⊂
N . Let U ′ = U1 ∩ U2, which is also an open neighborhood of e, so m(U ′ × U ′) ⊂ N . Set
U = U ′ ∩ U ′−1, so U = U−1 and m(U × U) = UU ⊂ U ′U ′ ⊂ N .

Returning to the task of separating e and g by open sets, since G − {g} is an open
neighborhood of e the previous paragraph tells us there is an open set U containing e such
that U = U−1 and UU ⊂ G−{g}. Then U ∩gU = ∅: if u1 = gu2 with u1 and u2 in U , then
g = u1u

−1
2 ⊂ UU−1 = UU ⊂ G − {g}, which is a contradiction. Since e ∈ U and g ∈ gU ,

the sets U and gU separate e and g by disjoint open sets. �

Corollary B.11. If f : G → H is a continuous homomorphism of topological groups and
H is Hausdorff then ker f is a closed normal subgroup of G.

Proof. The kernel of f is the inverse image of the identity in H. The identity is closed in
H since H is Hausdorff, so its inverse image under f is closed in G, and that inverse image
is ker f . �

When G is a topological group and N is a normal subgroup, the reader should check that
the group G/N is a topological group in the quotient topology.

Corollary B.12. Let G be a topological group and N be a normal subgroup. The group
G/N , with the quotient topology, is discrete if and only if N is open in G and G/N is
Hausdorff if and only if N is closed in G.

Proof. The identity element in G/N is the “point” N of G/N (the overline in this proof
denotes reduction mod N , not topological closure) and the inverse image of this point under
the quotient map G → G/N is the subset N of G. From the definition of the quotient
topology, {N} is open in G/N if and only if its inverse image N is an open subset in G,
and likewise {N} is closed in G/N if and only if N is closed in G. Theorem B.10, applied
to G/N , completes the proof. �

Remark B.13. If H is an arbitrary subgroup of G, not necessarily normal, then the
conclusions of Corollary B.12 remain true for the left coset space G/H using its quotient
topology, although we can’t prove it by applying Theorem B.10 to G/H since G/H is not
generally a group.

Theorem B.14. In a Hausdorff topological group, every discrete subgroup is closed.

It is crucial here that we are working with discrete subgroups: a discrete subset need not
be closed. In the topological group R, the subset {1, 1/2, 1/3, 1/4, . . . } is discrete but not
closed.

Proof. Let H be a discrete subgroup of a Hausdorff topological group G. To show H is
closed, we will show the complement G − H is open. Pick g 6∈ H. We will find an open
neighborhood of g in G that is disjoint from H.
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By discreteness of H, there is an open subset N of G such that N ∩ H = {e}. From
the proof of Theorem B.10, there is an open neighborhood U of e such that U = U−1 and
UU ⊂ N .

Suppose gU meets H twice: gu1 = h1 and gu2 = h2. Then h−11 h2 = u−11 u2 ⊂ H ∩ UU ⊂
H ∩N = {e}, so h1 = h2 and u1 = u2. Thus gU ∩H has size at most 1. If gU ∩H is empty
then gU is the desired open neighborhood of g that is disjoint from H. If gU ∩ H is not
empty then this intersection has size 1. Since G is Hausdorff there is a smaller open set U ′

in U such that gU ′ ∩H is empty and we can use gU ′. �

It is true more generally that in a Hausdorff topological group every locally compact
subgroup is closed [8, p. 8]. (A discrete subgroup is locally compact since all discrete
topological spaces are locally compact.)

Corollary B.15. If N is a discrete normal subgroup of a Hausdorff topological group then
G/N is Hausdorff in the quotient topology.

Proof. Since N is discrete in G and G is Hausdorff, N is closed by Theorem B.14, and
therefore G/N is Hausdorff by Corollary B.12. �

Theorem B.16. In a topological group, every open subgroup is closed and every closed
subgroup of finite index is open.

Proof. Let H be a subgroup of a topological group G. The left H-cosets in G are a disjoint
covering of G. If H is open then each gH is open, since gH is homeomorphic to H. Therefore
the union of all left H-cosets other than H is open, which implies H is closed (being the
complement of an open set). If H is closed then its left cosets are all closed, so if H has finite
index in G then the union of the left H-cosets other than H is closed, so H is open. �

Example B.17. In the group R× with its usual topology, the subgroup R>0 is open and
closed (with index 2). The subgroup {±1} is closed not of finite index and is not open.

Corollary B.18. In a compact topological group, a subgroup is open if and only if it is
closed with finite index.

Proof. Let G be a compact topological group with subgroup H. If H is open then it is
closed by Theorem B.16. The left cosets of H in G are an open covering of G, which has
a finite subcovering. This subcovering must be the original one since different cosets are
disjoint. Therefore H has finitely many left cosets in G, so [G : H] is finite.

If H is closed with finite index then it is open by Theorem B.16. �

This corollary tells us that in a compact topological group, a subgroup of finite index is
open if and only if it is closed. It’s natural to ask for an example of a compact topological
group that has a subgroup of finite index that is not open (equivalently, not closed). There
is no example among compact Lie groups, since in a Lie group (compact or not), every
subgroup of finite index is closed. There are examples but the examples all involve Zorn’s
lemma and thus are totally nonconstructive.

If G is a topological group and N is a normal subgroup then the quotient map G→ G/N
is continuous since projection to any quotient topological space is continuous when using
the quotient topology. This quotient map also has additional properties:

Theorem B.19. If G is a topological group and N is a normal subgroup then the quotient
map G→ G/N is an open map. If N is compact then G→ G/N is also a closed map.
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Proof. Let U be open in G and π : G → G/N be the reduction map. The image π(U) is
open, by definition, only when π−1(π(U)) =

⋃
n∈N Un is open in G, and this union is open

since each Un is homeomorphic to U and thus is open.
Now let N be compact and C be closed in G. Then π−1(π(C)) =

⋃
n∈N Cn = CN . In a

topological group, the product of a closed subset and a compact subset, like CN , is closed.
For a proof, see [7, p. 173] or [8, p. 7]. �

In general G→ G/N is not a closed map. Consider R→ R/Z and the discrete subgroup√
2Z in R. It is closed but its image in R/Z is dense (it is the multiples of an irrational

angle, if we identify R/Z with S1 by a 7→ e2πia) and not closed.
There is one simple condition we can impose for a discrete subgroup of G to have a

discrete image in G/N .

Theorem B.20. Let G be a Hausdorff topological group and H be a discrete subgroup. If
N is a normal subgroup of G contained in H then H/N is discrete in G/N .

Proof. The topology on H/N as a subset of G/N is the quotient topology on H/N , which
is discrete since H is assumed to have the discrete topology as a subset of G. �

(The reason this proof breaks down when we try applying it to the image of
√

2Z in
R/Z is that we need to write the image as H/Z where H ⊃ Z. The only choice for that is
H = Z +

√
2Z, which is not discrete in R.)

Theorem B.21. Let G be a Hausdorff topological group and N be a closed normal subgroup.
Then G is compact if and only if N and G/N are compact.

Proof. Since closed subspaces and continuous images of compact spaces are compact, if G
is compact then N and G/N are compact.

Conversely, assume N and G/N are compact. Since N is compact, the reduction map
G → G/N has compact fibers (that is, each coset gN is compact) and the reduction map
is a closed map by Theorem B.19. A continuous function between topological spaces that
is a closed map and has compact fibers is a proper map, which means its inverse images of
compact sets are compact.6 For a proof, see the Wikipedia page on proper maps. Since
G/N is compact and its full inverse image under the reduction map G → G/N is G, the
group G is compact. �
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[1] R. Dedekind, “Über die Permutationen des Körpers aller algebraischen Zahlen,” Festschrift zur
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