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Cohen-Lenstra

Cl(F ) The class group — a finite abelian group.

F number field.

Question: What does the class group of a general number field
look like as a finite abelian group?
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Cohen-Lenstra

Let p be an odd prime. Let Cl(F )p denote the Sylow p-subgroup
of the class group. Let Gp be a fixed finite abelian p-group.

Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute
discriminant, the frequency for which Cl(F )p ' Gp is inversely
proportional to |Aut(Gp)|.

Example: Consider the abelian groups of order 9.

1 G3 = Z/9Z has |Aut(G3)| = 6.

2 G3 = Z/3Z× Z/3Z has |Aut(G3)| = 48.

We expect these 3-groups to occur as the 3-Sylow subgroup of the
class group in the relative proportions 8 : 1.



Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

Cohen-Lenstra

Let p be an odd prime. Let Cl(F )p denote the Sylow p-subgroup
of the class group. Let Gp be a fixed finite abelian p-group.

Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute
discriminant, the frequency for which Cl(F )p ' Gp is inversely
proportional to |Aut(Gp)|.

Example: Consider the abelian groups of order 9.

1 G3 = Z/9Z has |Aut(G3)| = 6.

2 G3 = Z/3Z× Z/3Z has |Aut(G3)| = 48.

We expect these 3-groups to occur as the 3-Sylow subgroup of the
class group in the relative proportions 8 : 1.



Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

Cohen-Lenstra

Let p be an odd prime. Let Cl(F )p denote the Sylow p-subgroup
of the class group. Let Gp be a fixed finite abelian p-group.

Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute
discriminant, the frequency for which Cl(F )p ' Gp is inversely
proportional to |Aut(Gp)|.

Example: Consider the abelian groups of order 9.

1 G3 = Z/9Z has |Aut(G3)| = 6.

2 G3 = Z/3Z× Z/3Z has |Aut(G3)| = 48.

We expect these 3-groups to occur as the 3-Sylow subgroup of the
class group in the relative proportions 8 : 1.



Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

Cohen-Lenstra

Let p be an odd prime. Let Cl(F )p denote the Sylow p-subgroup
of the class group. Let Gp be a fixed finite abelian p-group.

Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute
discriminant, the frequency for which Cl(F )p ' Gp is inversely
proportional to |Aut(Gp)|.

Example: Consider the abelian groups of order 9.

1 G3 = Z/9Z has |Aut(G3)| = 6.

2 G3 = Z/3Z× Z/3Z has |Aut(G3)| = 48.

We expect these 3-groups to occur as the 3-Sylow subgroup of the
class group in the relative proportions 8 : 1.



Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

Cohen-Lenstra

Let p be an odd prime. Let Cl(F )p denote the Sylow p-subgroup
of the class group. Let Gp be a fixed finite abelian p-group.

Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute
discriminant, the frequency for which Cl(F )p ' Gp is inversely
proportional to |Aut(Gp)|.

Example: Consider the abelian groups of order 9.

1 G3 = Z/9Z has |Aut(G3)| = 6.

2 G3 = Z/3Z× Z/3Z has |Aut(G3)| = 48.

We expect these 3-groups to occur as the 3-Sylow subgroup of the
class group in the relative proportions 8 : 1.



Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

Cohen-Lenstra

Let p be an odd prime. Let Cl(F )p denote the Sylow p-subgroup
of the class group. Let Gp be a fixed finite abelian p-group.

Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute
discriminant, the frequency for which Cl(F )p ' Gp is inversely
proportional to |Aut(Gp)|.

Example: Consider the abelian groups of order 9.

1 G3 = Z/9Z has |Aut(G3)| = 6.

2 G3 = Z/3Z× Z/3Z has |Aut(G3)| = 48.

We expect these 3-groups to occur as the 3-Sylow subgroup of the
class group in the relative proportions 8 : 1.



Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

Heuristics for ray class groups

Let m be a modulus, i.e., a formal product of an integral ideal and
a set of real infinite primes.

The class group Cl(F ) is the first in a collection of ray class groups
Clm(F ) associated to a number field — each a finite abelian group.

Distributions of ray class groups
My research focuses on extending the Cohen-Lenstra heuristics to
distributions of ray class groups. Specifically, I focus on two
interlinked ray class groups: the narrow class group Cl+(F ) and
the ray class group Cl4(F ) of conductor (4).
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Relation between 2 and ∞

Let F be a number field with r1 real places and r2 complex places.
If A is an abelian group and m ∈ Z>0, we write

A[m] := {a ∈ A : am = 1}.

Relation between 2 and ∞
The 2-torsion subgroups of the narrow class group and the ray
class group of conductor (4) are linked by the relation

Cl4(F )[2] ' Cl+(F )[2]⊕ (Z/2Z)r2 .

These ray class groups must be modeled simultaneously!
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Conjectures/results

Abelian number fields of odd degree
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Abelian number fields of odd degree

Let F |Q be an abelian extension of odd degree, Z×F be the units in
the ring of integers of F , and GF := Gal(F |Q) the galois group.

Galois Modules
The action of the galois group on the 2-torsion subgroup of a ray
class group Clm(F )[2] transforms it into F2[GF ]-modules.

Since |GF | is odd then every F2[GF ]-module is semisimple, i.e, it
admits a decomposition as a direct sum of irreducible modules.
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Duality

Duality
For g ∈ G , the map g 7→ g−1 induces a map ι : F2[G ]→ F2[G ].
For an irreducible F2[G ]-module V , we can identify V ⊆ F2[G ]
and then define the dual module as V ∨ := ι(V ).

This notion extends to any F2[G ]-module M and we define a
module to be self-dual if M ' M∨.

Relation between 2 and ∞ (revisted)

Theorem (Gras)

Let F | Q be an odd galois number field. Then

Cl4(F )[2] ' Cl+(F )[2]∨.
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Duality: When is every F2[G ]-module self-dual?

Duality
Let G be a finite abelian group with exponent m. There is a simple
criteria to detect when non self-dual F2[G ]-modules exists.(

Every F2[G ]-
module is self-dual

) (
−1 is a power

of 2 in (Z/mZ)×

)

Examples

G = Z/3Z — Every module is self-dual.

G = Z/5Z — Every module is self-dual.

G = Z/7Z — There are two irreducible non self-dual modules.
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Conjectures/results: 2-torsion in narrow class groups

Relationship Cl+(F ) and Cl(F )
The class group and narrow class group only differ in their 2-Sylow
subgroups. We now focus on their 2-torsion subgroups.

Theorem (Taylor-Oriat)

Let F be an abelian number field with odd exponent m. If every
F2[GF ]-module is self-dual (equivalently −1 ≡ 2t (mod m) for
some t ∈ Z>0) then

Cl+(F )[2] ' Cl(F )[2].

Remark
This covers cyclic cubic and quintic number fields (n = 3, 5).
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Conjectures/results: 2-torsion in narrow class groups

Let F be a cyclic number field of degree seven.

Theorem (B-Varma-Voight)

If Cl(F )[2] is not self-dual, then

Cl+(F )[2] ' Cl(F )[2]⊕ (Z/2Z)3.

Additionally, Cl+(F )[2] is self-dual.

Conjecture (B-Varma-Voight)

If Cl(F )[2] is self-dual, then

Cl+(F )[2] '

{
Cl(F )[2] with probability 7/9;

Cl(F )[2]⊕ (Z/2Z)3 with probability 2/9.



Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

Unit signature ranks

Unit signature ranks

The unit signature rank sgnrk(Z×F ) is the dimension of the image
of the group homomorphism

sgn∞ : Z×F →
∏
v |∞

{±1} ' Fr1
2

which records the signs of a unit in Z×F under each real embedding.

The unit signature rank is bounded between 1 ≤ sgnrk(Z×F ) ≤ r1
with the latter occurring only when Cl+(F ) ' Cl(F ).
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Unit signature ranks

Predictions
A cyclic cubic number field has sgnrk(Z×F ) = 1, 3. How frequently
do each of these possibilities occur?

Conjecture (B-Varma-Voight)

As F varies over cyclic cubic number fields, the probability that
sgnrk(Z×F ) = 1 is approximately 3%.

Theorem (B-Elkies-Varma-Voight)

There are infinitely many cyclic cubic number fields which have
sgnrk(Z×F ) = 1.
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Computational support

We tested our conjecture by sampled cyclic cubic number fields
with large conductor. Let N3(X ) denote a sample of 10,000 cyclic
cubic fields with conductor less than X .

Table: Data for signature ranks of (sampled) cyclic cubic fields.

Family Property Proportion of Family satisfying Property Prediction

X = 105 X = 106 X = 107

N3(X )

1/
√
N = .01

sgnrk(Z×F ) = 1 0.023 0.024 0.026 ∼ 0.0301

sgnrk(Z×F ) = 3 0.977 0.976 0.974 ∼ 0.9709
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Thanks

Thanks!
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Model

Selmer groups of number fields
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Class fields

Class fields
Let Hm |F be the ray class field of conductor m, i.e, an abelian
extension of F with Gal(Hm | F ) ' Clm(F ).

Hm

F

Clm(F )
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Class fields

Class fields and 2-torsion
Let Qm ⊆ Hm be the maximal subfield of exponent dividing 2 (the
compositum of all quadratic extensions of F inside Hm).

Hm

Qm

F

Clm(F )2

Clm(F )/Clm(F )2'Clm(F )[2]
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Class fields

Let H+
4 |F be the narrow ray class field of modulus 4 — the

relationship between 2 and ∞ is captured in the subfield Q+
4 .

H+
4 Legend

H+ Q+
4 H4 H+

4 ↔ Cl+4 (F )

Q+ H Q4 H+ ↔ Cl+(F )

Q H4 ↔ Cl4(F )

F H ↔ Cl(F )
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Selmer group (of a number field)

The 2-Selmer group of a number field is

Sel2(F ) := {z ∈ F× : (z) = a2 for a fractional ideal a}/F×2.

Explicitly, this is the subgroup of F×/F×2 corresponding to Q+
4 |F .

Conclusion
The 2-Selmer group of a number field neatly packages the
relationship between 2 and ∞ into a single mathematical object.
My research focus on modeling the local image of Sel2(F )
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Ramification in quadratic extensions

Class field theory tells us that the 2-Selmer group is the subset of
F×/F×2 corresponding to all quadratic extensions of F that are
unramified away from 2 and ∞.

Main Idea: Let Fv denote the completion of F with respect to a
place v . For any quadratic extension of F , the ramification above
the place v can be determined locally from the map

F×/(F×)2 → F×v /(F×v )2.
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