| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
|                           |                                                          |                                         |

# Heuristics for narrow class groups of abelian number fields

#### Ben Breen Joint work with Noam Elkies, Ila Varma, and John Voight.

Dartmouth College

June 12, 2020

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field

## Heuristics for narrow class groups



#### 2 Conjectures/results: Abelian number fields of odd degree



| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
| •000                      | 000000000                                                | 000000                                  |

# Cl(F) The class group — a finite abelian group.

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
| 0000                      | 00000000                                                 | 000000                                  |

# Cl(F) The class group — a finite abelian group. F number field.

**Question:** What does the class group of a general number field look like as a finite abelian group?

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
| 0000                      |                                                          |                                         |
|                           |                                                          |                                         |

Let p be an odd prime. Let  $Cl(F)_p$  denote the Sylow p-subgroup of the class group. Let  $G_p$  be a fixed finite abelian p-group.

Let p be an odd prime. Let  $Cl(F)_p$  denote the Sylow p-subgroup of the class group. Let  $G_p$  be a fixed finite abelian p-group.

#### Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute discriminant, the frequency for which  $Cl(F)_p \simeq G_p$  is inversely proportional to  $|Aut(G_p)|$ .

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
| 0000                      |                                                          |                                         |

Let p be an odd prime. Let  $Cl(F)_p$  denote the Sylow p-subgroup of the class group. Let  $G_p$  be a fixed finite abelian p-group.

#### Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute discriminant, the frequency for which  $Cl(F)_p \simeq G_p$  is inversely proportional to  $|Aut(G_p)|$ .

**Example:** Consider the abelian groups of order 9.

Let p be an odd prime. Let  $Cl(F)_p$  denote the Sylow p-subgroup of the class group. Let  $G_p$  be a fixed finite abelian p-group.

#### Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute discriminant, the frequency for which  $Cl(F)_p \simeq G_p$  is inversely proportional to  $|Aut(G_p)|$ .

Example: Consider the abelian groups of order 9.

• 
$$G_3 = \mathbb{Z}/9\mathbb{Z}$$
 has  $|Aut(G_3)| = 6$ .

Let p be an odd prime. Let  $Cl(F)_p$  denote the Sylow p-subgroup of the class group. Let  $G_p$  be a fixed finite abelian p-group.

#### Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute discriminant, the frequency for which  $Cl(F)_p \simeq G_p$  is inversely proportional to  $|Aut(G_p)|$ .

**Example:** Consider the abelian groups of order 9.

**1** 
$$G_3 = \mathbb{Z}/9\mathbb{Z}$$
 has  $|\operatorname{Aut}(G_3)| = 6$ .

2 
$$G_3 = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$$
 has  $|\operatorname{Aut}(G_3)| = 48$ .

Let p be an odd prime. Let  $Cl(F)_p$  denote the Sylow p-subgroup of the class group. Let  $G_p$  be a fixed finite abelian p-group.

#### Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute discriminant, the frequency for which  $Cl(F)_p \simeq G_p$  is inversely proportional to  $|Aut(G_p)|$ .

Example: Consider the abelian groups of order 9.

• 
$$G_3 = \mathbb{Z}/9\mathbb{Z}$$
 has  $|\operatorname{Aut}(G_3)| = 6$ .

2 
$$G_3 = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$$
 has  $|\operatorname{Aut}(G_3)| = 48$ .

We expect these 3-groups to occur as the 3-Sylow subgroup of the class group in the relative proportions 8 : 1.

 Motivation: Cohen-Lenstra
 Conjectures/results: Abelian number fields of odd degree
 Model: 2-Selmer group of a number field

 0000
 000000000
 0000000
 000000

# Heuristics for ray class groups

Let  $\mathfrak{m}$  be a modulus, i.e., a formal product of an integral ideal and a set of real infinite primes.

 Motivation:
 Cohen-Lenstra
 Conjectures/results:
 Abelian number fields of odd degree
 Model:
 2-Selmer group of a number field
 ooooo

 0000
 000000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000

# Heuristics for ray class groups

Let  $\mathfrak{m}$  be a modulus, i.e., a formal product of an integral ideal and a set of real infinite primes.

The class group Cl(F) is the first in a collection of *ray class groups*  $Cl_m(F)$  associated to a number field — each a finite abelian group.

# Heuristics for ray class groups

Let  $\mathfrak m$  be a modulus, i.e., a formal product of an integral ideal and a set of real infinite primes.

The class group Cl(F) is the first in a collection of *ray class groups*  $Cl_m(F)$  associated to a number field — each a finite abelian group.

#### Distributions of ray class groups

My research focuses on extending the Cohen-Lenstra heuristics to distributions of ray class groups. Specifically, I focus on two interlinked ray class groups: the narrow class group  $Cl^+(F)$  and the ray class group  $Cl_4(F)$  of conductor (4).

 Motivation: Cohen-Lenstra
 Conjectures/results: Abelian number fields of odd degree
 Model: 2-Selmer group of a number field o00000

## Relation between 2 and $\infty$

Let *F* be a number field with  $r_1$  real places and  $r_2$  complex places. If *A* is an abelian group and  $m \in \mathbb{Z}_{>0}$ , we write

$$A[m] := \{a \in A : a^m = 1\}.$$

# Relation between 2 and $\infty$

Let *F* be a number field with  $r_1$  real places and  $r_2$  complex places. If *A* is an abelian group and  $m \in \mathbb{Z}_{>0}$ , we write

$$A[m] := \{a \in A : a^m = 1\}.$$

#### Relation between 2 and $\infty$

The 2-torsion subgroups of the narrow class group and the ray class group of conductor (4) are linked by the relation

$$\operatorname{Cl}_4(F)[2] \simeq \operatorname{Cl}^+(F)[2] \oplus (\mathbb{Z}/2\mathbb{Z})^{r_2}.$$

# Relation between 2 and $\infty$

Let *F* be a number field with  $r_1$  real places and  $r_2$  complex places. If *A* is an abelian group and  $m \in \mathbb{Z}_{>0}$ , we write

$$A[m] := \{a \in A : a^m = 1\}.$$

#### Relation between 2 and $\infty$

The 2-torsion subgroups of the narrow class group and the ray class group of conductor (4) are linked by the relation

$$\operatorname{Cl}_4(F)[2] \simeq \operatorname{Cl}^+(F)[2] \oplus (\mathbb{Z}/2\mathbb{Z})^{r_2}.$$

These ray class groups must be modeled simultaneously!

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 00000000

# Conjectures/results

# Abelian number fields of odd degree

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 000000000

# Abelian number fields of odd degree

Let  $F \mid \mathbb{Q}$  be an abelian extension of odd degree,  $\mathbb{Z}_F^{\times}$  be the units in the ring of integers of F, and  $G_F := \text{Gal}(F | \mathbb{Q})$  the galois group.

Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field Motivation: Cohen-Lenstra 000000000

# Abelian number fields of odd degree

Let  $F \mid \mathbb{Q}$  be an abelian extension of odd degree,  $\mathbb{Z}_F^{\times}$  be the units in the ring of integers of F, and  $G_F := \text{Gal}(F | \mathbb{Q})$  the galois group.

#### Galois Modules

The action of the galois group on the 2-torsion subgroup of a ray class group  $Cl_{\mathfrak{m}}(F)[2]$  transforms it into  $\mathbb{F}_2[G_F]$ -modules.

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 000000000

# Abelian number fields of odd degree

Let  $F \mid \mathbb{Q}$  be an abelian extension of odd degree,  $\mathbb{Z}_F^{\times}$  be the units in the ring of integers of F, and  $G_F := \text{Gal}(F | \mathbb{Q})$  the galois group.

#### **Galois Modules**

The action of the galois group on the 2-torsion subgroup of a ray class group  $Cl_{\mathfrak{m}}(F)[2]$  transforms it into  $\mathbb{F}_2[G_F]$ -modules.

Since  $|G_F|$  is odd then every  $\mathbb{F}_2[G_F]$ -module is semisimple, i.e, it admits a decomposition as a direct sum of irreducible modules.

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
|                           | 00000000                                                 |                                         |

# Duality

#### Duality

For  $g \in G$ , the map  $g \mapsto g^{-1}$  induces a map  $\iota \colon \mathbb{F}_2[G] \to \mathbb{F}_2[G]$ . For an irreducible  $\mathbb{F}_2[G]$ -module V, we can identify  $V \subseteq \mathbb{F}_2[G]$ and then define the **dual module** as  $V^{\vee} := \iota(V)$ .

This notion extends to any  $\mathbb{F}_2[G]$ -module M and we define a module to be **self-dual** if  $M \simeq M^{\vee}$ .

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
|                           | 00000000                                                 |                                         |

# Duality

#### Duality

For  $g \in G$ , the map  $g \mapsto g^{-1}$  induces a map  $\iota \colon \mathbb{F}_2[G] \to \mathbb{F}_2[G]$ . For an irreducible  $\mathbb{F}_2[G]$ -module V, we can identify  $V \subseteq \mathbb{F}_2[G]$ and then define the **dual module** as  $V^{\vee} := \iota(V)$ .

This notion extends to any  $\mathbb{F}_2[G]$ -module M and we define a module to be **self-dual** if  $M \simeq M^{\vee}$ .

#### Relation between 2 and $\infty$ (revisted)

Theorem (Gras)

Let  $F \mid \mathbb{Q}$  be an odd galois number field. Then

 $\operatorname{Cl}_4(F)[2] \simeq \operatorname{Cl}^+(F)[2]^{\vee}.$ 

#### Duality

Let G be a finite abelian group with exponent m. There is a simple criteria to detect when non self-dual  $\mathbb{F}_2[G]$ -modules exists.

$$\begin{pmatrix} \mathsf{Every}\ \mathbb{F}_2[G]\text{-}\\ \mathsf{module}\ \mathsf{is}\ \mathsf{self-dual} \end{pmatrix} \longleftrightarrow \begin{pmatrix} -1\ \mathsf{is}\ \mathsf{a}\ \mathsf{power}\\ \mathsf{of}\ 2\ \mathsf{in}\ (\mathbb{Z}/m\mathbb{Z})^{\times} \end{pmatrix}$$

#### Duality

Let G be a finite abelian group with exponent m. There is a simple criteria to detect when non self-dual  $\mathbb{F}_2[G]$ -modules exists.

$$\begin{pmatrix} \mathsf{Every}\ \mathbb{F}_2[G]-\\ \mathsf{module}\ \mathsf{is}\ \mathsf{self-dual} \end{pmatrix} \longleftrightarrow \begin{pmatrix} -1\ \mathsf{is}\ \mathsf{a}\ \mathsf{power}\\ \mathsf{of}\ 2\ \mathsf{in}\ (\mathbb{Z}/m\mathbb{Z})^{\times} \end{pmatrix}$$

#### Examples

#### Duality

Let G be a finite abelian group with exponent m. There is a simple criteria to detect when non self-dual  $\mathbb{F}_2[G]$ -modules exists.

$$\begin{pmatrix} \mathsf{Every}\ \mathbb{F}_2[G]\text{-}\\ \mathsf{module}\ \mathsf{is}\ \mathsf{self-dual} \end{pmatrix} \longleftrightarrow \begin{pmatrix} -1\ \mathsf{is}\ \mathsf{a}\ \mathsf{power}\\ \mathsf{of}\ 2\ \mathsf{in}\ (\mathbb{Z}/m\mathbb{Z})^{\times} \end{pmatrix}$$

#### Examples

•  $G = \mathbb{Z}/3\mathbb{Z}$  — Every module is self-dual.

#### Duality

Let G be a finite abelian group with exponent m. There is a simple criteria to detect when non self-dual  $\mathbb{F}_2[G]$ -modules exists.

$$\begin{pmatrix} \mathsf{Every} \ \mathbb{F}_2[G] \text{-} \\ \mathsf{module} \ \mathsf{is} \ \mathsf{self-dual} \end{pmatrix} \longleftrightarrow \begin{pmatrix} -1 \ \mathsf{is} \ \mathsf{a} \ \mathsf{power} \\ \mathsf{of} \ 2 \ \mathsf{in} \ (\mathbb{Z}/m\mathbb{Z})^{\times} \end{pmatrix}$$

#### Examples

- $G = \mathbb{Z}/3\mathbb{Z}$  Every module is self-dual.
- $G = \mathbb{Z}/5\mathbb{Z}$  Every module is self-dual.

#### Duality

Let G be a finite abelian group with exponent m. There is a simple criteria to detect when non self-dual  $\mathbb{F}_2[G]$ -modules exists.

$$\left(\begin{array}{c} \mathsf{Every}\ \mathbb{F}_2[G]\text{-}\\ \mathsf{module}\ \mathsf{is}\ \mathsf{self-dual} \end{array}\right)\longleftrightarrow \left(\begin{array}{c} -1\ \mathsf{is}\ \mathsf{a}\ \mathsf{power}\\ \mathsf{of}\ 2\ \mathsf{in}\ (\mathbb{Z}/m\mathbb{Z})^\times \end{array}\right)$$

#### Examples

- $G = \mathbb{Z}/3\mathbb{Z}$  Every module is self-dual.
- $G = \mathbb{Z}/5\mathbb{Z}$  Every module is self-dual.
- $G = \mathbb{Z}/7\mathbb{Z}$  There are two irreducible non self-dual modules.

 Motivation:
 Cohen-Lenstra
 Conjectures/results:
 Abelian number fields of odd degree
 Model:
 2-Selmer group of a number field

 0000
 000000000
 0000000
 000000

# Conjectures/results: 2-torsion in narrow class groups

### **Relationship** $Cl^+(F)$ and Cl(F)

The class group and narrow class group only differ in their 2-Sylow subgroups. We now focus on their 2-torsion subgroups.

# Conjectures/results: 2-torsion in narrow class groups

### **Relationship** $Cl^+(F)$ and Cl(F)

The class group and narrow class group only differ in their 2-Sylow subgroups. We now focus on their 2-torsion subgroups.

#### Theorem (Taylor-Oriat)

Let F be an abelian number field with odd exponent m. If every  $\mathbb{F}_2[G_F]$ -module is self-dual (equivalently  $-1 \equiv 2^t \pmod{m}$  for some  $t \in \mathbb{Z}_{>0}$ ) then

$$\operatorname{Cl}^+(F)[2] \simeq \operatorname{Cl}(F)[2].$$

#### <u>Remark</u>

This covers cyclic cubic and quintic number fields (n = 3, 5).

# Conjectures/results: 2-torsion in narrow class groups

Let F be a cyclic number field of degree seven.

Theorem (B-Varma-Voight)

If CI(F)[2] is not self-dual, then

 $\operatorname{Cl}^+(F)[2] \simeq \operatorname{Cl}(F)[2] \oplus (\mathbb{Z}/2\mathbb{Z})^3.$ 

Additionally,  $CI^+(F)[2]$  is self-dual.

#### Conjecture (B-Varma-Voight)

If CI(F)[2] is self-dual, then

 $\mathsf{Cl}^+(F)[2] \simeq \begin{cases} \mathsf{Cl}(F)[2] & \text{with probability 7/9;} \\ \mathsf{Cl}(F)[2] \oplus (\mathbb{Z}/2\mathbb{Z})^3 & \text{with probability 2/9.} \end{cases}$ 

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 000000000

# Unit signature ranks

#### Unit signature ranks

The **unit signature rank** sgnrk( $\mathbb{Z}_F^{\times}$ ) is the dimension of the image of the group homomorphism

$$\operatorname{sgn}_\infty \colon \mathbb{Z}_F^{\times} \to \prod_{v \mid \infty} \{\pm 1\} \simeq \mathbb{F}_2^{r_1}$$

which records the signs of a unit in  $\mathbb{Z}_{F}^{\times}$  under each real embedding.

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 000000000

# Unit signature ranks

#### Unit signature ranks

The **unit signature rank**  $sgnrk(\mathbb{Z}_F^{\times})$  is the dimension of the image of the group homomorphism

$$\operatorname{sgn}_\infty\colon \mathbb{Z}_F^\times \to \prod_{v\mid \infty} \{\pm 1\} \simeq \mathbb{F}_2^{r_1}$$

which records the signs of a unit in  $\mathbb{Z}_{F}^{\times}$  under each real embedding.

The unit signature rank is bounded between  $1 \leq \operatorname{sgnrk}(\mathbb{Z}_F^{\times}) \leq r_1$  with the latter occurring only when  $\operatorname{Cl}^+(F) \simeq \operatorname{Cl}(F)$ .

# Unit signature ranks

#### **Predictions**

A cyclic cubic number field has  $\operatorname{sgnrk}(\mathbb{Z}_F^{\times}) = 1, 3$ . How frequently do each of these possibilities occur?

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 00000000000

# Unit signature ranks

#### **Predictions**

A cyclic cubic number field has  $\operatorname{sgnrk}(\mathbb{Z}_F^{\times}) = 1, 3$ . How frequently do each of these possibilities occur?

#### Conjecture (B-Varma-Voight)

As F varies over cyclic cubic number fields, the probability that  $\operatorname{sgnrk}(\mathbb{Z}_F^{\times}) = 1$  is approximately 3%.

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 00000000000

# Unit signature ranks

#### **Predictions**

A cyclic cubic number field has  $sgnrk(\mathbb{Z}_F^{\times}) = 1, 3$ . How frequently do each of these possibilities occur?

#### Conjecture (B-Varma-Voight)

As F varies over cyclic cubic number fields, the probability that  $\operatorname{sgnrk}(\mathbb{Z}_F^{\times}) = 1$  is approximately 3%.

#### Theorem (B-Elkies-Varma-Voight)

There are infinitely many cyclic cubic number fields which have  $\operatorname{sgnrk}(\mathbb{Z}_F^{\times}) = 1$ .

# Computational support

We tested our conjecture by sampled cyclic cubic number fields with large conductor. Let  $\mathcal{N}_3(X)$  denote a sample of 10,000 cyclic cubic fields with conductor less than X.

Table: Data for signature ranks of (sampled) cyclic cubic fields.

| Family             | Property                           | Proportion of Family satisfying Property |              |              | Prediction    |
|--------------------|------------------------------------|------------------------------------------|--------------|--------------|---------------|
|                    |                                    | $X = 10^{5}$                             | $X = 10^{6}$ | $X = 10^{7}$ |               |
| $\mathcal{N}_3(X)$ | $sgnrk(\mathbb{Z}_F^{\times}) = 1$ | 0.023                                    | 0.024        | 0.026        | $\sim 0.0301$ |
| $1/\sqrt{N} = .01$ | $sgnrk(\mathbb{Z}_F^{	imes})=3$    | 0.977                                    | 0.976        | 0.974        | $\sim$ 0.9709 |

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
|                           | 000000000                                                |                                         |

# Thanks

# Thanks!

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
|                           |                                                          | 00000                                   |
|                           |                                                          |                                         |

### Model

# Selmer groups of number fields

| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree | Model: 2-Selmer group of a number field |
|---------------------------|----------------------------------------------------------|-----------------------------------------|
|                           |                                                          | 00000                                   |
|                           |                                                          |                                         |

# Class fields

#### **Class fields**

Let  $H_{\mathfrak{m}} | F$  be the ray class field of conductor  $\mathfrak{m}$ , i.e, an abelian extension of F with  $Gal(H_{\mathfrak{m}} | F) \simeq Cl_{\mathfrak{m}}(F)$ .



| Motivation: Cohen-Lenstra | Conjectures/results: Abelian number fields of odd degree 000000000 | Model: 2-Selmer group of a number field<br>00●000 |
|---------------------------|--------------------------------------------------------------------|---------------------------------------------------|
|                           |                                                                    |                                                   |

# Class fields

#### **Class fields and 2-torsion**

Let  $Q_{\mathfrak{m}} \subseteq H_{\mathfrak{m}}$  be the maximal subfield of exponent dividing 2 (the compositum of all quadratic extensions of F inside  $H_{\mathfrak{m}}$ ).





Let  $H_4^+ | F$  be the narrow ray class field of modulus 4 — the relationship between 2 and  $\infty$  is captured in the subfield  $Q_4^+$ .



 $\underline{\mathsf{Legend}}$  $H_4^+ \leftrightarrow \mathsf{Cl}_4^+(F)$  $H^+ \leftrightarrow \mathsf{Cl}^+(F)$  $H_4 \leftrightarrow \mathsf{Cl}_4(F)$ 

 $H \leftrightarrow Cl(F)$ 

Motivation: Cohen-Lenstra Conjectures/results: Abelian number fields of odd degree Model: 2-Selmer group of a number field 000000

# Selmer group (of a number field)

#### The 2-Selmer group of a number field is

$$\mathsf{Sel}_2(F) \coloneqq \{z \in F^{ imes} \ : \ (z) = \mathfrak{a}^2 ext{ for a fractional ideal } \mathfrak{a}\}/F^{ imes 2}.$$

Explicitly, this is the subgroup of  $F^{\times}/F^{\times 2}$  corresponding to  $Q_4^+ | F$ .

 Motivation:
 Cohen-Lenstra
 Conjectures/results:
 Abelian number fields of odd degree
 Model:

 0000
 000000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 000000
 000000<

Model: 2-Selmer group of a number field 000000

# Selmer group (of a number field)

#### The 2-Selmer group of a number field is

$$\mathsf{Sel}_2(F)\coloneqq \{z\in F^ imes \ : \ (z)=\mathfrak{a}^2 ext{ for a fractional ideal }\mathfrak{a}\}/F^{ imes 2}.$$

Explicitly, this is the subgroup of  $F^{\times}/F^{\times 2}$  corresponding to  $Q_4^+ | F$ .

#### **Conclusion**

The 2-Selmer group of a number field neatly packages the relationship between 2 and  $\infty$  into a single mathematical object. My research focus on modeling the local image of Sel<sub>2</sub>(*F*)

# Ramification in guadratic extensions

Class field theory tells us that the 2-Selmer group is the subset of  $F^{\times}/F^{\times 2}$  corresponding to all quadratic extensions of F that are unramified away from 2 and  $\infty$ .

# Ramification in guadratic extensions

Class field theory tells us that the 2-Selmer group is the subset of  $F^{\times}/F^{\times 2}$  corresponding to all quadratic extensions of F that are unramified away from 2 and  $\infty$ .

**Main Idea:** Let  $F_{\nu}$  denote the completion of F with respect to a place v. For any quadratic extension of F, the ramification above the place v can be determined locally from the map

$$F^{\times}/(F^{\times})^2 \rightarrow F_v^{\times}/(F_v^{\times})^2.$$