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Question: What does the class group of a general number field
look like as a finite abelian group?
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Let p be an odd prime. Let CI(F), denote the Sylow p-subgroup
of the class group. Let G, be a fixed finite abelian p-group.

Conjecture (Cohen-Lenstra 1984)

As F varies over imaginary quadratic fields ordered by absolute
discriminant, the frequency for which CI(F), ~ G, is inversely
proportional to | Aut(Gp)|.

Example: Consider the abelian groups of order 9.
Q G3= Z/QZ has |Aut(G3)| = 6.
Q@ G3 =17/37 x Z/3Z has | Aut(Gs)| = 48.

We expect these 3-groups to occur as the 3-Sylow subgroup of the
class group in the relative proportions 8 : 1.
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Heuristics for ray class groups

Let m be a modulus, i.e., a formal product of an integral ideal and
a set of real infinite primes.

The class group CI(F) is the first in a collection of ray class groups
Clyw(F) associated to a number field — each a finite abelian group.

Distributions of ray class groups

My research focuses on extending the Cohen-Lenstra heuristics to
distributions of ray class groups. Specifically, | focus on two
interlinked ray class groups: the narrow class group CI*(F) and
the ray class group Cls(F) of conductor (4).
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Relation between 2 and oo

Let F be a number field with r; real places and r, complex places.
If Ais an abelian group and m € Z~q, we write

Alml:={ac A:a" =1}

Relation between 2 and

The 2-torsion subgroups of the narrow class group and the ray
class group of conductor (4) are linked by the relation

Cla(F[2] ~ CIT(F)2]a(Z/22)".

These ray class groups must be modeled simultaneously!
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Abelian number fields of odd degree

Let F|Q be an abelian extension of odd degree, Zf be the units in
the ring of integers of F, and Gr := Gal(F | Q) the galois group.

Galois Modules
The action of the galois group on the 2-torsion subgroup of a ray
class group Cly(F)[2] transforms it into F2[ Gg]-modules.

Since |GF| is odd then every Fo[Gg]-module is semisimple, i.e, it
admits a decomposition as a direct sum of irreducible modules.
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For g € G, the map g — g~ * induces a map ¢: F2[G] — F2[G].
For an irreducible F»[G]-module V, we can identify V C F,[G]
and then define the dual module as VY := (V).

1

This notion extends to any Fo[G]-module M and we define a
module to be self-dual if M ~ M.
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Duality

Duality

For g € G, the map g > g~ ! induces a map ¢: F5[G] — F,[G].
For an irreducible F»[G]-module V, we can identify V C F,[G]
and then define the dual module as VY := (V).

This notion extends to any Fo[G]-module M and we define a
module to be self-dual if M ~ M.

Relation between 2 and oo (revisted)

Theorem (Gras)

Let F | Q be an odd galois number field. Then

Cla(F)[2] =~ CIT(F)[2]".
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Let G be a finite abelian group with exponent m. There is a simple
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Duality: When is every F,[G]-module self-dual?

Duality
Let G be a finite abelian group with exponent m. There is a simple
criteria to detect when non self-dual F»[G]-modules exists.

Every F»[G]- —1is a power
module is self-dual of 2in (Z/mZ)*
Examples
e G = Z/37Z — Every module is self-dual.

o G =7/5Z — Every module is self-dual.

e G = /77 — There are two irreducible non self-dual modules.
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The class group and narrow class group only differ in their 2-Sylow
subgroups. We now focus on their 2-torsion subgroups.
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Conjectures/results: 2-torsion in narrow class groups

Relationship CI™(F) and CI(F)
The class group and narrow class group only differ in their 2-Sylow
subgroups. We now focus on their 2-torsion subgroups.

Theorem (Taylor-Oriat)

Let F be an abelian number field with odd exponent m. If every
F2[GEg]-module is self-dual (equivalently —1 = 2 (mod m) for
some t € Z~q) then

CIT(F)[2] ~ CI(F)[2].

Remark
This covers cyclic cubic and quintic number fields (n = 3,5).
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Conjectures/results: 2-torsion in narrow class groups

Let F be a cyclic number field of degree seven.

Theorem (B-Varma-Voight)

If CI(F)[2] is not self-dual, then

CIH(F)[2] ~ CI(F)[2] ® (Z/27.)3.

Additionally, CI*T(F)[2] is self-dual.

Conjecture (B-Varma-Voight)
If CI(F)[2] is self-dual, then

CI(F)[2] with probability 7/9;

Cr(F2] ~ { : .
CI(F)[2] @ (Z/2Z)3 with probability 2/9.
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The unit signature rank sgnrk(Z7) is the dimension of the image

of the group homomorphism

SgNoo: ZF — H{:tl} ~ F}

v|oo

which records the signs of a unit in Z7 under each real embedding.
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Unit signature ranks

Unit signature ranks
The unit signature rank sgnrk(Z7) is the dimension of the image
of the group homomorphism

SgNoo: ZF — H{:tl} ~ F}

v|oo

which records the signs of a unit in Z7 under each real embedding.

The unit signature rank is bounded between 1 < sgnrk(Zf) < ny
with the latter occurring only when CI*(F) ~ CI(F).
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Predictions
A cyclic cubic number field has sgnrk(Z7£) = 1,3. How frequently
do each of these possibilities occur?
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Conjecture (B-Varma-Voight)

As F varies over cyclic cubic number fields, the probability that
sgnrk(Zg) = 1 is approximately 3%.
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Unit signature ranks

Predictions
A cyclic cubic number field has sgnrk(Z7£) = 1,3. How frequently
do each of these possibilities occur?

Conjecture (B-Varma-Voight)

As F varies over cyclic cubic number fields, the probability that
sgnrk(Zg) = 1 is approximately 3%.

Theorem (B-Elkies-Varma-Voight)

There are infinitely many cyclic cubic number fields which have
sgnrk(Zg) = 1.
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Computational support

We tested our conjecture by sampled cyclic cubic number fields
with large conductor. Let N3(X) denote a sample of 10,000 cyclic
cubic fields with conductor less than X.

Table: Data for signature ranks of (sampled) cyclic cubic fields.

Family | Property | Proportion of Family satisfying Property | Prediction
| x=10° [ x=10° | Xx=10" |

Na(X) | senrk(ZF)=1| 0.023 0.024 0.026 | ~0.0301
UV =01 | sgnrk(Zf) =3 | 0977 0.976 0.974 | ~0.9709
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Thanks!
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Class fields
Let Hy | F be the ray class field of conductor m, i.e, an abelian
extension of F with Gal(Hy | F) ~ Clu(F).

He

Clm(F)
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Class fields

Class fields and 2-torsion
Let Qu C Hy be the maximal subfield of exponent dividing 2 (the
compositum of all quadratic extensions of F inside Hy).

He

Q(F)Q

Qm

Q(F)/ Clw(F)? = Clm(F)[2]

F
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Class fields

Let H," | F be the narrow ray class field of modulus 4 — the
relationship between 2 and oo is captured in the subfield Qj.

H Legend
N
H* Qf Ha Hf  CIf(F)
Q+\ H / Qs H* ¢ CI*(F)
Q Hy < Cla(F)
F H ¢ CI(F)
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Selmer group (of a number field)

The 2-Selmer group of a number field is
Selo(F) == {z € F* : (z) = a® for a fractional ideal a}/F*2.

Explicitly, this is the subgroup of F* /F*2 corresponding to Qj | F.
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Selmer group (of a number field)

The 2-Selmer group of a number field is
Selo(F) == {z € F* : (z) = a® for a fractional ideal a}/F*2.

Explicitly, this is the subgroup of F* /F*2 corresponding to Qj | F.

Conclusion

The 2-Selmer group of a number field neatly packages the
relationship between 2 and oo into a single mathematical object.
My research focus on modeling the local image of Sely(F)
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unramified away from 2 and oo.
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Ramification in quadratic extensions

Class field theory tells us that the 2-Selmer group is the subset of
F*/F*? corresponding to all quadratic extensions of F that are
unramified away from 2 and oo.

Main Idea: Let F, denote the completion of F with respect to a
place v. For any quadratic extension of F, the ramification above
the place v can be determined locally from the map

FXJ(FX)? = FJ (RS2
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