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Question
What is “Arithmetic Statistics”?

Our goal: count or enumerate number theoretic objects of a certain
type, up to a bound.

Number-theoretic objects:
Prime numbers, twin primes, Wieferich primes, etc,
Binary quadratic forms, binary cubic forms, etc.
Number fields, class groups of number fields,
Zeta functions, L-functions,
Elliptic curves, torsion subgroups of elliptic curves, ranks,
Tate-Shafarevich groups,

among others.



Question
What is “Arithmetic Statistics”?

What questions are we trying to answer?

We fix a number-theoretic object and we ask:

Do they exist?
Are there finitely many or infinitely many such objects?
Can we parametrize these objects in families?
Is there a notion of “size” or “height”?
How many objects are there up to a given height? Asymptotically?
How many objects are there relative to another number-theoretic
object?



Question
What is “Arithmetic Statistics”?

Examples:

Prime numbers p, ordered by |p|, their absolute value.
Prime numbers p ≡ 1 mod 4,

compared to the family of primes
p ≡ 3 mod 4, ordered by |p|.
Twin primes p, q = p + 2, ordered by |p|.
Primes of the form p = n2 + 1.
Wieferich primes: p such that 2p−1 − 1 is divisible by p2.
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Question
What is “Arithmetic Statistics”?

Examples:

Binary quadratic forms f (x , y) = ax2 + bxy + cy2, ordered by their
discriminant |disc(f )| = |b2 − 4ac|.
Binary quadratic forms f (x , y) ordered by max(|a|, |b|, |c|).
Binary quadratic forms f (x , y) of fixed discriminant.
Higher-order binary forms (e.g., cubic).



Question
What is “Arithmetic Statistics”?

Examples:

Number fields K , ordered by the absolute value of their
discriminant |Disc(K )|.
Number fields up to |Disc(K )| ≤ D, filtered by a fixed invariant
(e.g., fixed degree, or fixed Galois group Gal(K/Q) = G).
Class groups Cl(K ) of number fields up to a bound on the
discriminant (e.g., class groups of imaginary quadratic fields).



Question
What is “Arithmetic Statistics”?

Examples:

Elliptic curves E/Q : y2 = x3 + ax + b, ordered by the absolute
value of their discriminant |16(4a3 + 27b2)|.
Elliptic curves E/Q ordered by their conductor.
Torsion subgroups of elliptic curves up to a bound of their
discriminant.
Ranks of elliptic curves up to a bound of their discriminant (e.g.,
average rank up to a given bound).
Tate-Shafarevich groups of elliptic curves up to a bound of their
discriminant.



Prime Numbers

2, 3, 5, 7, 11, 13, 17, 19,...
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Leonhard Euler
1707− 1783

Mathematicians have tried in vain to this day to discover some
order in the sequence of prime numbers, and we have reason
to believe that it is a mystery into which the mind will never
penetrate.



The prime number theorem was formulated by Gauss, Legendre, and
Dirichlet (1790’s to 1820’s) and proved by Hadamard, and de la
Vallée-Poussin, in 1896.

Theorem (The Prime Number Theorem)
Let π(X ) be the cardinality of the set of prime numbers 2 ≤ p ≤ X.
Then:

π(X ) ∼ X
log X

, i.e., lim
X→∞

π(X )
X

log X

= 1.

A-M. Legendre
1752− 1833

J. C. F. Gauss
1777− 1855

J. P. G. L. Dirichlet
1805− 1859
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The prime number theorem was formulated by Gauss, Legendre, and
Dirichlet (1790’s to 1820’s) and proved by Hadamard, and de la
Vallée-Poussin, in 1896.

Theorem (The Prime Number Theorem)
Let π(X ) be the cardinality of the set of prime numbers 2 ≤ p ≤ X.
Then:

π(X ) ∼ X
log X

, i.e., lim
X→∞

π(X )
X

log X

= 1.

Jacques Hadamard
1865− 1963

C. J. de la Vallée Poussin
1866− 1962



The prime number theorem was formulated by Gauss, Legendre, and
Dirichlet (1790’s to 1820’s) and proved by Hadamard, and de la
Vallée-Poussin, in 1896.

Theorem (The Prime Number Theorem)
Let π(X ) be the cardinality of the set of prime numbers 2 ≤ p ≤ X.
Then:

π(X ) ∼ X
log X

, i.e., lim
X→∞

π(X )
X

log X

= 1.



Let us conjecture the prime number theorem, using a
probabilistic/statistical approach.

ASSUMPTION: There is a “mathematical law” that describes the
distribution of primes, in the following sense:
(a) For large n, we have π(n) ≈

∫ n
2 W (x)dx (so that W (x) can be

interpreted as a probability density function of prime numbers).
(b) For X � ∆X , we have π(X + ∆X )− π(X ) ≈W (X ) ·∆X .

Proposition (exercise!)

We have log(n!) ∼ n · log n, or, in other words, lim
n→∞

log(n!)

n · log n
= 1.

Now, let us give a second formula for log(n!) in terms of prime
numbers.
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Definition
For an integer a, we let νp(a) be the largest non-negative integer such
that pνp(a) divides a. In other words, a = pνp(a) ·m, with gcd(m,p) = 1.

Since νp(ab) = νp(a) + νp(b), it follows that

νp(n!) = νp(1) + νp(2) + νp(3) + · · ·+ νp(n).

For each n, k ≥ 1, and prime p, define numbers:

Nk = Np,k (n) = #{m ∈ N : 1 ≤ m ≤ n, and pk | n},

and

Mk = Mp,k (n) = #{m ∈ N : 1 ≤ m ≤ n, and νp(m) = k}.

Then, Nk ≈ n/pk , and Mk = Nk − Nk+1 ≈ n/pk − n/pk+1. Hence:

νp(n!) = 1 ·M1 + 2 ·M2 + 3 ·M3 + · · · .
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νp(n!) = 1 ·M1 + 2 ·M2 + 3 ·M3 + · · ·
= 1 · (N1 − N2) + 2 · (N2 − N3) + 3 · (N3 − N4) + · · ·
= N1 + N2 + N3 + · · ·

≈ n
p

+
n
p2 +

n
p3 + · · ·

≈ n
p
·
(

1 +
1
p

+
1
p2 + · · ·

)
=

n
p
· p

p − 1
=

n
p − 1

.

Thus, for large n, we have

log(n!) = log

 ∏
2≤p≤n

pνp(n!)

 =
∑

2≤p≤n

log
(

pνp(n!)
)

≈
∑

2≤p≤n

log
(

pn/(p−1)
)

=
∑

2≤p≤n

n
p − 1

· log p.
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Thus, we have deduced two asymptotic relations for log(n!), namely

n · log n ∼ log(n!) ∼
∑

2≤p≤n

n
p − 1

· log p.

Setting n = X , we obtain log X ∼
∑

2≤p≤X

log p
p − 1

.

We shall reinterpret the sum as a Riemann sum. Let

[2,X ] = [2 = X1,X2] ∪ [X2,X3] ∪ · · · ∪ [Xr ,Xr+1 = X ]

with r � 0 so that π(Xk+1)− π(Xk ) ≈W (Xk )∆Xk for each 0 ≤ k ≤ r ,
and if p ∈ [Xk ,Xk+1], then p ≈ Xk . Then,

log X ∼
∑

2≤p≤X

log p
p − 1

=
r+1∑
j=1

W (Xj) ·
log(Xj)

Xj − 1
∆Xj ∼

∫ X

2
W (t) · log t

t − 1
dt .
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Note that if log X =
∫ X

2 W (t) · log t
t−1 dt , then taking derivatives we obtain

1
X

= W (X )
log X
X − 1

and therefore
W (X ) =

X − 1
X log X

≈ 1
log X

for large X . It follows that

π(X ) ∼
∫ X

2
W (t)dt ∼

∫ X

2

1
log t

dt .

Theorem (The Prime Number Theorem (Dirichlet))
Let π(X ) be the cardinality of the set of prime numbers p ≤ X. Then:

π(X ) ∼ Li(X ),

where Li(X ) =
∫ X

2
1

log t dt .
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Warning! We have not proved the prime number theorem. We have
proved that IF there is a probability density function W (X ) that
describes the distribution of the prime numbers, then the distribution is
W (X ) = 1/ log X .

However, Dirichlet’s theorem is true, and this motivates the heuristic
that the probability that a number n is prime, should be approximately
1/ log n. This heuristic has been used to motivate a number of
conjectures.



Pierre de Fermat
1607− 1665

G. H. Hardy
1877− 1947

E. M. Wright
1906− 2005

Conjecture
There are only finitely many Fermat primes.

Recall that a number of the form Fn = 22n
+ 1, for n ≥ 0, is called a

Fermat number. If Fn is prime, then we call it a Fermat prime.
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Recall that a number of the form Fn = 22n
+ 1, for n ≥ 0, is called a

Fermat number. If Fn is prime, then we call it a Fermat prime.

“Proof.” If the numbers Fn behave as random numbers, then each Fn
is prime with probability 1/ log(Fn).

Thus, the expected number of
prime numbers among F0,F1,F2, . . ., is given by

∞∑
n=0

1
log(Fn)

=
∞∑

n=0

1
log(22n + 1)

≤
∞∑

n=0

1
log(22n )

=
∞∑

n=0

1
2n log(2)

=
1

log 2

∞∑
n=0

1
2n =

2
log 2

= 2.8853 . . .

There are only 5 known Fermat primes: 3, 5, 17, 257, and 65537.
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Conjecture (Twin Prime Conjecture)
There are infinitely many prime numbers p such that q = p + 2 is a
also prime.

Such as (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71,
73), (101, 103), (107, 109), (137, 139),...



Conjecture (Twin Prime Conjecture)
There are infinitely many prime numbers p such that q = p + 2 is a
also prime.

“Proof.” If n and n + 2 behave as independent random numbers, then
n and n + 2 are simultaneously prime with probability

1
log n

· 1
log(n + 2)

.

Thus, the expected number of twin primes up to

n ≤ X is approximately
X∑

n=2

1
log n

· 1
log(n + 2)

≈
X∑

n=2

1
(log n)2 ≈

∫ X

2

1
(log t)2 dt .

However, the independence cannot possibly be true (e.g., if n is even,
n + 2 is even), so one expects that a proportion of numbers needs to
be ruled out for congruence restrictions, so that the number of twin
primes is approximately

C ·
∫ X

2

1
(log t)2 dt for some constant C.
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Conjecture (Prime Constellation Conjecture; Hardy, Littlewood)

Let C = 2 ·
∏
p≥3

(
1− 1

(p − 1)2

)
≈ 1.32032363 . . . and let π2(X ) be the

number of primes p ≤ X such that q = p + 2 is also prime. Then,

π2(X ) ∼ C ·
∫ X

2

1
(log t)2 dt .

G. H. Hardy
1877− 1947

John Littlewood
1885− 1977



Conjecture (Prime Constellation Conjecture; Hardy, Littlewood)
Let a1 = 0,a2, . . . ,ak be integers such that there is no prime p with the
property that the set {ai mod p} covers all the values modulo p. Then,
there are infinitely many prime constellations p, p + a2,..., p + ak , and
the number of such primes p ≤ X is asymptotic to

πa1,...,ak (X ) ∼ Ca1,...,ak ·
∫ X

2

1
(log t)k dt ,

for some explicit constant Ca1,...,ak > 0.

G. H. Hardy John Littlewood



G. H. Hardy
1877− 1947

John Littlewood
1885− 1977

Conjecture (“2nd Conjecture”; Hardy, Littlewood)
Let k ≥ 1 be fixed. Then all n > 0 sufficiently large, we have

π(k) ≥ π(n + k)− π(n).

“Proof.” Clearly,
k∑

j=2

1
log j

�
n+k∑

h=n+1

1
log h

for large enough n.
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WARNING! Heuristics can be misleading!

In 1973, Douglas Hensley and Ian Richards showed that the prime
constellation and 2nd conjectures of Hardy and Littlewood are
incompatible.

There is an admissible k -tuple (or prime constellation) of 447
integers a1 = 0, . . . ,a447 ≤ 3159.
By H-W’s prime constellation conjecture, there must be infinitely
many primes p such that p,p + a2, . . . ,p + a447 are primes in the
interval [p,p + 3159].
Thus, for each of those primes π(p + 3159)− π(p − 1) ≥ 447.
However, π(3160) = 446.
So π(3160) < π(X + 3160)− π(X ) would happen for infinitely
many values of X , violating the 2nd conjecture.

Exercise: Find an admissible k -tuple a1 = 0, . . . ,a447 ≤ 3159.
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Let p be an odd prime. By Fermat’s little theorem we have
2p−1 ≡ 1 mod p. Thus, 2p−1 ≡ 1 + pk mod p2.

Definition
An odd prime p is called a Wieferich prime (in base 2) if

2p−1 ≡ 1 mod p2.

The first Wieferich prime is p = 1093 (Meissner, 1913). The second,
p = 3511, was found by Beeger in 1922. If there is another one, the
next Wieferich prime is > 4.9 · 1017.

Conjecture
The number of Wieferich primes up to X is approximately log(log X ).

Note: log(log(103)) ≈ 1.93, log(log(106)) ≈ 2.62, log(log(1017)) ≈ 3.60.

Exercise: give a reasonable heuristic that justifies this conjecture.
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Marie-Sophie Germain
1776− 1831

Definition
A prime p is called a Sophie Germain prime if q = 2p + 1 is also prime.

For example: (2,5), (3,7), (5,11), (11,23), etc.

Conjecture
There are infinitely many Sophie Germain primes.

Exercise: give a reasonable asymptotic for the number of Sophie
Germain primes p ≤ X .
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THANK YOU

alvaro.lozano-robledo@uconn.edu

http://alozano.clas.uconn.edu

“If by chance I have omitted anything
more or less proper or necessary,

I beg forgiveness,
since there is no one who is without fault

and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.
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