


Arithmetic Statistics
Lecture 4

Álvaro Lozano-Robledo

Department of Mathematics
University of Connecticut

May 28th

CTNT 2018
Connecticut Summer School

in Number Theory



PREVIOUSLY...
We can define an action of SL(2,Z) on Binary Quadratic Forms (BQFs) by

M · f
((

x
y

))
= f

(
M ·

(
x
y

))
for any M ∈ SL(2,Z)

Associative? It is not associative when defined like this. Let us define a group
action instead by M · f (v) = f (M−1v), and suppose

f (x , y) =
(

x y
)

A
(

x
y

)
. Then:

N ·
(

M · f
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x
y

)))
= N ·

((
x y

)
(M−1)t · A ·M−1

(
x
y

))
=
(

x y
)
(N−1)t · ((M−1)t · A ·M−1) · N−1

(
x
y

)
=
(

x y
)
((NM)−1)t · A · (NM)−1

(
x
y

)
= (NM) · f

((
x
y

))
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Elliptic Curves

e.g., y2 = x3 − 25x .
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From Serge Lang’s “Elliptic Curves: Diophantine Analysis”:

It is possible to write endlessly on elliptic curves. (This is not a threat.)



Joseph Silverman’s books on elliptic curves.



What is an elliptic curve?



What is an elliptic curve,... and WHY elliptic curves?

Given a polynomial equation

f (x1, x2, . . . , xr ) = 0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:

1 Can we determine if there are
rational or integral solutions?

2 In the affirmative case, can we
find such a solution?

3 Can we describe all such
solutions?

4 (Hilbert’s Tenth Problem over
Z) Is there a Turing machine to
decide if f = 0 has solutions in
Z? (David, Matiyasevich, Putnam, Robinson: No)
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When C : f (x , y) = 0 is smooth
(projective), of degree 3 (or
genus 1), we already lack an
algorithm that will determine
whether there are rational points
on C, or, if one exists, an
algorithm that will determine all
the rational points on C.

An elliptic curve defined over
a field F , denoted by E/F , is
a smooth projective curve, of
genus 1, with at least one ra-
tional point defined over F .
Given by

Y 2 = X 3 + AX + B
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What is an elliptic curve,... and WHY elliptic curves?

Some examples of diophantine equations, or problems that are
connected to elliptic curves:

Fermat’s equation An + Bn = Cn leads to the so-called Frey
curve Y 2 = X (X − An)(X + Bn).
The congruent number problem leads to Y 2 = X 3 − n2X .
The ABC conjecture is logically equivalent to specific upper
bounds on an integral solution (x0, y0) to Mordell’s equation
Y 2 = X 3 + k in terms of the parameter k.
Hilbert’s Tenth Problem over a ring of integers of a number field
F can be shown to be undecidable if a well-known conjecture
(finiteness of Sha) holds for elliptic curves over F .
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Example: the elliptic curve y2 = x3 + 1
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The addition of rational points on an elliptic curve
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The addition of rational points on an elliptic curve
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J. H. Poincaré
1854− 1912

Louis Mordell
1888− 1972

André Weil
1906− 1998

Theorem (Mordell-Weil)
Let F be a number field, and let E/F be an elliptic curve. Then, the
group of F-rational points on E, denoted by E(F ), is a finitely
generated abelian group. In particular, E(F ) ∼= E(F )tors ⊕ ZRE/F where
E(F )tors is a finite subgroup, and RE/F ≥ 0.
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Torsion points: P = (2,3) has order 6 in y2 = x3 + 1
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Torsion points: (0,1) has order 5 in y2 − y = x3 − x2
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The following are some examples of elliptic curves and their Mordell-Weil
groups:

1 The curve E1/Q : y2 = x3 + 6 satisfies E1(Q) = {O}.
2 The curve E2/Q : y2 = x3 + 1 has only 6 rational points. Therefore

E2(Q) ∼= Z/6Z is an isomorphism of groups, and

E2(Q) = {O, (2,±3), (0,±1), (−1,0)}.

3 The curve E3/Q : y2 = x3 − 2 does not have any rational torsion points
other than O. However, the point P = (3,5) is a rational point. Thus, P
must be a point of infinite order. In fact,

E3(Q) = {nP : n ∈ Z} and E3(Q) ∼= Z.

4 The elliptic curve E4/Q : y2 = x3 + 7105x2 + 1327104x features both
torsion and infinite order points. In fact, E4(Q) ∼= Z/4Z⊕ Z3. The torsion
subgroup is generated by the point of order 4 T = (1152,111744). The
free part is generated by

P1 = (−6912,6912),P2 = (−5832,188568),P3 = (−5400,206280).
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Variations of the problem

Theorem (Mordell-Weil)

E(F ) is finitely generated. In particular, E(F ) ∼= E(F )tors ⊕ ZRE/F .

Variations: torsion subgroups

E1(F )tors E2(F )tors . . . Ek (F )tors . . .

F

\\ OO BB 99ff

where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .
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Torsion subgroups of elliptic curves over Q
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Barry Mazur

Theorem (Levi–Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then

E(Q)tors '

{
Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4.

Moreover, each possible group appears infinitely many times.
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The elliptic curve 30030bt1 has a point of order 12.



Question
Can we “count” how many elliptic curves are there with each torsion
subgroup?

We will consider elliptic curves (up to isomorphism over Q) given
by a minimal short Weierstrass model over Z, that is,

E = {E/Q : y2 = x3 + Ax + B, with A,B ∈ Z},

with 4A3 + 27B2 6= 0, and such that if d4|A and d6|B, then d = ±1.

The naive height of E ∈ E is defined by

ht(E) = max{4|A|3,27B2}.

E(X ) = {E ∈ E : ht(E) ≤ X}, all elliptic curves up to height X .
πE(X ) = #E(X ).
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Theorem (Harron, Snowden, 2013)
Let G be one of the groups in Mazur’s list. We let NG(X ) be the number
of (isomorphism classes of) elliptic curves E/Q of height at most X for
which E(Q)tors ∼= G. Then, there is an explicit constant d(G) such that

lim
X→∞

log NG(X )

log X
=

1
d(G)

.

E.g., d(0) = 6/5, d(Z/2Z) = 2, d(Z/3Z) = 3, d(Z/5Z) = 6, and
d(Z/7Z) = 12.

In particular, almost all elliptic curves over Q have trivial torsion.



Variations of the problem

Theorem (Mordell-Weil)

E(F ) is finitely generated. In particular, E(F ) ∼= E(F )tors ⊕ ZRE/F .
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where E1,E2, . . . ,Ek , . . . is some family of (perhaps all) elliptic curves
over a fixed field F .



Variations of the problem: ranks over Q

RE1/Q RE2/Q . . . REk/Q . . .
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where E1,E2, . . . ,Ek , . . . is a family of elliptic curves over Q:
All elliptic curves over Q.
Family of quadratic twists of a given curve: y2 = x3 + Ad2x + Bd3,
for fixed A,B ∈ Q, and any d 6= 0.
Other 1-parameter families of elliptic curves.

Open Problem
What values can RE/Q take? In particular, can RE/Q be arbitrarily
large, or is it uniformly bounded?
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What values can RE/Q take? In particular, can RE/Q be arbitrarily
large, or is it uniformly bounded?



Elkies’ elliptic curve of rank ≥ 28

y2 + xy + y = x3 − x2 − (2006776241557552658503320820933854
2750930230312178956502)x + (3448161179503055646703298569
0390720374855944359319180361266008296291939448732243429)

Noam Elkies

Independent points of infinite order:

P1 =[−2124150091254381073292137463,
259854492051899599030515511070780628911531]

P2 =[2334509866034701756884754537,
18872004195494469180868316552803627931531]

P3 =[−1671736054062369063879038663,
251709377261144287808506947241319126049131]
...



Elkies’ elliptic curve of rank ≥ 28

P4 =[2139130260139156666492982137,
36639509171439729202421459692941297527531]

P5 =[1534706764467120723885477337,
85429585346017694289021032862781072799531]

P6 =[−2731079487875677033341575063,
262521815484332191641284072623902143387531]

P7 =[2775726266844571649705458537,
12845755474014060248869487699082640369931]

P8 =[1494385729327188957541833817,
88486605527733405986116494514049233411451]

P9 =[1868438228620887358509065257,
59237403214437708712725140393059358589131]

P10 =[2008945108825743774866542537,
47690677880125552882151750781541424711531]

P11 =[2348360540918025169651632937,
17492930006200557857340332476448804363531]



Elkies’ elliptic curve of rank ≥ 28



For current rank records, visit Andrej Dujella’s website:

https://web.math.pmf.unizg.hr/~duje/tors/tors.html

https://web.math.pmf.unizg.hr/~duje/tors/tors.html


The Rank

For each r ≥ 0, we define the set of curves of rank r up to height X :

Rr (X ) = {E ∈ E(X ) : rank(E(Q)) = r}, πRr (X ) = #Rr (X ).

Some conjectures and heuristics:
(50%− 50% Conjecture, Goldfeld, Katz–Sarnak) Fix a global field
k . Asymtotically, 50% of elliptic curves over k have rank 0, and
50% have rank 1. Moreover, the average rank is 1/2, that is

AveRankE(X ) =

∑
E∈E(X) rank(E(Q))

πE(X )
→ 1

2
as X →∞.
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Data

The BHKSSW (Balakrishnan, Ho, Kaplan, Spicer, Stein,
Weigandt) database covers all 238,764,310 elliptic curves up to
height 26,998,673,868 ≈ 2.7 · 1010.

Also six large-height data sets of 100,000 curves with height ∼ 10k

for k = 11,12,13,14,15,16.



Figure: Values of AveRankE(X ) from the BHKSSW database (blue dots). The
local max happens at about 6 · 108. At X = 2.7 · 1010 value is 0.90197580 . . ..

Theorem (Skinner, Bhargava-Shankar)
0.216 ≤ limX→∞ AveRankE(X ) ≤ 0.885.



Figure: Values of AveRankE(X ) from the BHKSSW database (blue dots), and
numerical integration of the approximation given by our model (in red).

According to the database, we have AveRankE(2.7 · 1010) = 0.90197580
while our approximation gives 0.90244770. Thus, the absolute error is
0.00047189 (note (2.7 · 1010)−1/3 ≈ 0.0003), which is a 0.0523% of the value.



X AveRank(X ) X AveRank(X )

1010 0.905665 1050 0.548880

1015 0.846828 1075 0.512531

1020 0.766868 10100 0.503256

1030 0.649901 10150 0.500215

1040 0.585108 10200 0.500006

Table: Conjectural approximate values of AveRank(X ) obtained using our
models.



How do we compute ranks?

We use Selmer groups: a cohomological-defined group where we can
embed the (weak) Mordell-Weil group of an elliptic curve. Recall the
short exact sequence

0→ E(Q)/2E(Q)→ Sel2(E/Q)→X(E/Q)[2]→ 0.

Good news: Selmer groups are computable because they are defined
locally. The elements of Sel2(E/Q) can be interpreted as quartics that
are everywhere locally solvable (solutions over Qp for every
2 ≤ p ≤ ∞).

Bad news: The Tate-Shafarevich group X(E/Q) measures the failure
of the local-to-global principle, and it is hard to compute. The elements
of X(E/Q)[2] can be interpreted as quartics that are everywhere
locally solvable but not globally solvable (solutions over Qp for every
2 ≤ p ≤ ∞ but not over Q).
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We define the (2-)Selmer rank of E(Q) by

selrank(E(Q)) = dimF2 Sel2(E/Q)− dimF2 E(Q)[2].

Then, rank(E(Q)) ≤ selrank(E(Q)).

Theorem (Bhargava, Shankar, 2010)
The average size of Sel2(E/Q) in the family of all elliptic curves is 3.

They also conjecture that the average size of Selp(E/Q) is p + 1.
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We will write πSn(X ) for the number of elliptic curves E/Q up to height
X with selrank(E(Q)) = n.

Following work on quadratic twists by
Heath-Brown, Monsky, Kane, and Swinnerton-Dyer:

Conjecture (Poonen–Rains, for p = 2)

sn = Prob(selrank(E(Q)) = n) = lim
X→∞

πSn(X )

πE(X )

=

∏
j≥0

1
1 + 2−j

 ·( n∏
k=1

2
2k − 1

)
.

s0 s1 s2 s3 s4 s5

0.209711 0.419422 0.279614 0.079889 0.010651 0.000687

Table: Values of sn = Prob(selrank(E(Q)) = n)
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Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

Question
Is X(E/Q)[p∞] a “random” p-group?

Answer: NO. Reason: there is a bilinear pairing (Cassels-Tate)

X(E/Q)×X(E/Q)→ Q/Z

which, for instance, forces #X(E/Q)[p∞] to be a square (if finite!).

Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.
Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].



Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

Question
Is X(E/Q)[p∞] a “random” p-group?

Answer: NO. Reason: there is a bilinear pairing (Cassels-Tate)

X(E/Q)×X(E/Q)→ Q/Z

which, for instance, forces #X(E/Q)[p∞] to be a square (if finite!).

Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.
Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].



Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

Question
Is X(E/Q)[p∞] a “random” p-group?

Answer: NO.

Reason: there is a bilinear pairing (Cassels-Tate)

X(E/Q)×X(E/Q)→ Q/Z

which, for instance, forces #X(E/Q)[p∞] to be a square (if finite!).

Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.
Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].



Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

Question
Is X(E/Q)[p∞] a “random” p-group?

Answer: NO. Reason: there is a bilinear pairing (Cassels-Tate)

X(E/Q)×X(E/Q)→ Q/Z

which, for instance, forces #X(E/Q)[p∞] to be a square (if finite!).

Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.
Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].



Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

Question
Is X(E/Q)[p∞] a “random” p-group?

Answer: NO. Reason: there is a bilinear pairing (Cassels-Tate)

X(E/Q)×X(E/Q)→ Q/Z

which, for instance, forces #X(E/Q)[p∞] to be a square (if finite!).

Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.

Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].



Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

Question
Is X(E/Q)[p∞] a “random” p-group?

Answer: NO. Reason: there is a bilinear pairing (Cassels-Tate)

X(E/Q)×X(E/Q)→ Q/Z

which, for instance, forces #X(E/Q)[p∞] to be a square (if finite!).

Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.
Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β.

Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].



Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

Question
Is X(E/Q)[p∞] a “random” p-group?

Answer: NO. Reason: there is a bilinear pairing (Cassels-Tate)

X(E/Q)×X(E/Q)→ Q/Z

which, for instance, forces #X(E/Q)[p∞] to be a square (if finite!).

Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.
Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].



Delaunay (2001): Assume X(E/Q)[p∞] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing β.
Put a weight on each group 1/#Autβ(G), where Autβ(G) are the
automorphisms that preserve β. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for X[p∞].

For instance, if the rank of E/Q is 0, then the probability that p divides
#X is given by

f0(2) = 1−
∞∏

k=1

(1− (1/p)2k−1).

E.g., f0(2) = 0.58 . . ., f0(3) = 0.36 . . ., and f0(5) = 0.20 . . .
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Bhargava, Kane, Lenstra, Poonen, Rains:
Let p ≥ 2 be a prime. Then:

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0.

0→ E(Q)/pnE(Q)→ Selpn(E/Q)→X(E/Q)[pn]→ 0.

0→ E(Q)⊗Qp/Zp → Selp∞(E/Q)→X(E/Q)[p∞]→ 0,

a short exact sequence of Zp-modules. Model X(E/Q)[p∞], allegedly a finite
p-group, by:

0→ Ker R → Zn
p → Zn

p → Zn
p/Col(R)→ 0.

and X(E/Q)[p∞] ! (Zn
p/Col(R))tors.

If we want to model elliptic curves of rank r , fix rank(Ker(R)) = r .

Remember that X(E/Q)[p∞] has a non-deg. alt. bil. pairing, so R
needs to be alternating.

Theorem: The distribution of (Zn
p/Col(R))tors over all alternating matrices R

with rank Ker(R) = r , converges to Delaunay’s distribution for curves of rank
r , as n→∞.
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Park, Poonen, Voight, Wood:
Model elliptic curves of height H as follows:

Choose a height H.
Choose n ≥ 1 uniformly at random (from an interval that depends
on H).
Choose an n × n alternating matrix RE with integer coefficients,
with entries bounded by X = X (H), chosen uniformly at random.

Then, Coker(RE) models X(E/Q) and rank(Ker(RE)) models
rank(E(Q)).

Consequences:
(a) For 1 ≤ r ≤ 20, we have

∑∞
k=r πRk (X ) = X (21−r)/24+o(1).

(b) All but finitely many elliptic curves satisfy rank(E(Q)) ≤ 21.
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with entries bounded by X = X (H), chosen uniformly at random.

Then, Coker(RE) models X(E/Q) and rank(Ker(RE)) models
rank(E(Q)).

Consequences:
(a) For 1 ≤ r ≤ 20, we have

∑∞
k=r πRk (X ) = X (21−r)/24+o(1).

(b) All but finitely many elliptic curves satisfy rank(E(Q)) ≤ 21.





Figure: Values of πRr (X ) from the BHKSSW database (blue dots) for
r = 1,2,3, and the approximations predicted by our models (in red).



Figure: Values of πRr (X ) from the BHKSSW database (blue dots) for r = 4,5,
and the approximations predicted by our models (in red).



r = 1 2 3 4 5

πRr (2.7 · 1010) 113128929 40949289 6259157 380519 6481

Approx. value 113133971 41005107 6273138 381272 6438

|Error| 5042 55818 13981 753 43

Error % 0.004456 0.136310 0.223368 0.197887 0.663477

≈ sr · X 1/2 68848.72 45942.96 13112.47 1749.97 111.73

Table: Values of πRr (2.7 · 1010) from the BHKSWW database, the
approximate values (rounded to the closest integer) given by numerical
integration of the formulas predicted by the models, the absolute error, the
error as a percentage of the actual value of πRr , and the size of the predicted
error sr · (2.7 · 1010)1/2.



Figure: Distribution of Mordell–Weil ranks (in blue) among elliptic curves in
E([2 · 1010,2.025 · 1010]) by Selmer rank n = 2,3,4,5, and compared to the
predicted M–W ranks (in green) that we would expect from the models.



n πSn(I) M–W ranks observed in Sn M–W ranks predicted

2 509,845 [180128,0,329717,0,0,0] [181246.58,0,328598.41,0,0,0]

3 111,926 [0,60149,0,51777,0,0] [0,60455.09,0,51470.90,0,0]

4 8399 [803,0,4321,0,3275,0] [836.68,0,4256.52,0,3305.78,0]

5 158 [0,22,0,76,0,60] [0,21.24,0,73.38,0,63.36]

Table: Mordell–Weil ranks observed in the interval height interval
I = [2 · 1010,2.025 · 1010] and the ranks predicted by the models.



THANK YOU

alvaro.lozano-robledo@uconn.edu

http://alozano.clas.uconn.edu/

“If by chance I have omitted anything
more or less proper or necessary,

I beg forgiveness,
since there is no one who is without fault

and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.
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