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PREVIOUSLY...
We can define an action of SL(2,Z) on Binary Quadratic Forms (BQFs) by

M.f(< ; )) _f<M. ( ; )) for any M € SL(2, Z)

Associative? It is not associative when defined like this. Let us define a group
action instead by M - f(v) = f(M~"v), and suppose

f,y)=(x y )A<;>.Then:

() (5 ey ane(5)

—1\t =N - - X
= (Y N Ay ()

—(x y ) ((NM)") - A (NM)~! ( X )
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Elliptic Curves



Elliptic Curves

e.g., y> = x3 — 25x.



Foreword

It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here
with diophantine problems, and we lay the foundations, especially for the theory of
integral points. We review briefly the analytic theory of the Weierstrass function,
and then deal with the arithmetic aspects of the addition formula, over complete
fields and over number fields, giving rise to the theory of the height and its
quadraticity. We apply this to integral points, covering the inequalities of
diophantine approximation both on the multiplicative group and on the elliptic
curve directly. Thus the book splits naturally in two parts

From Serge Lang’s “Elliptic Curves: Diophantine Analysis”:

It is possible to write endlessly on elliptic curves. (This is not a threat.)



GraduateTexts  Graduate Texts
InMathematics  jn Mathematics

Joseph H. Silverman
JohnT. Tate

Rational
Points on
Elliptic Curves

Second Edition

Q Springer

Joseph Silverman’s books on elliptic curves.
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and WHY elliptic curves?

Given a polynomial equation

f(x1,X2,..., %) =0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:

@ Can we determine if there are

rational or integral solutions?

@ In the affirmative case, can we

find such a solution?

© Can we describe all such

solutions?
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Given a polynomial equation
f(x1,X2,..., %) =0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:
@ Can we determine if there are
rational or integral solutions?
@ In the affirmative case, can we
find such a solution?
© Can we describe all such
solutions?
© (Hilbert’s Tenth Problem over
Z) Is there a Turing machine to
decide if f = 0 has solutions in
7?
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@ Can we determine if there are
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algorithm that will determine all
the rational points on C.



What is an elliptic curve,... and WHY elliptic curves?

Given a polynomial equation

f(x1,X%2,..., %) =0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:
@ Can we determine if there are
rational or integral solutions?
@ In the affirmative case, can we
find such a solution?
© Can we describe all such
solutions?
© (Hilbert’s Tenth Problem over
7) s there a Turing machine to
decide if f = 0 has solutions in

Z? (David, Matiyasevich, Putnam, Robinson: No)

When C : f(x,y) = 0 is smooth
(projective), of degree 3 (or
genus 1), we already lack an
algorithm that will determine
whether there are rational points
on C, or, if one exists, an
algorithm that will determine all
the rational points on C.

An elliptic curve defined over
a field F, denoted by E/F, is
a smooth projective curve, of
genus 1, with at least one ra-
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Given a polynomial equation

f(x1,X%2,..., %) =0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:
@ Can we determine if there are
rational or integral solutions?
@ In the affirmative case, can we
find such a solution?
© Can we describe all such
solutions?
© (Hilbert’s Tenth Problem over
7) s there a Turing machine to
decide if f = 0 has solutions in

Z? (David, Matiyasevich, Putnam, Robinson: No)

When C : f(x,y) = 0 is smooth
(projective), of degree 3 (or
genus 1), we already lack an
algorithm that will determine
whether there are rational points
on C, or, if one exists, an
algorithm that will determine all
the rational points on C.

An elliptic curve defined over
a field F, denoted by E/F, is
a smooth projective curve, of
genus 1, with at least one ra-
tional point defined over F.
Given by

Y2 - X3 L AX+ B
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@ Fermat’s equation A” + B" = C" leads to the so-called Frey
curve Y2 = X(X — A")(X + B").
@ The congruent number problem leads to Y2 = X® — n?X.
@ The ABC conjecture is logically equivalent to specific upper
bounds on an integral solution (xg, yp) to Mordell’s equation
Y2 = X3 + k in terms of the parameter k.



What is an elliptic curve,... and WHY elliptic curves?

Some examples of diophantine equations, or problems that are
connected to elliptic curves:

@ Fermat’s equation A” + B" = C" leads to the so-called Frey
curve Y2 = X(X — A")(X + B").

@ The congruent number problem leads to Y2 = X® — n?X.

@ The ABC conjecture is logically equivalent to specific upper

bounds on an integral solution (xg, yp) to Mordell’s equation
Y2 = X3 + k in terms of the parameter k.

@ Hilbert’s Tenth Problem over a ring of integers of a number field
F can be shown to be undecidable if a well-known conjecture
(finiteness of Sha) holds for elliptic curves over F.



Example: the elliptic curve y? = x3 + 1

0
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Theorem (Mordell-Weil)

Let F be a number field, and let E/F be an elliptic curve. Then, the
group of F-rational points on E, denoted by E(F), is a finitely
generated abelian group.




J. H. Poincaré Louis Mordell André Weil
1854 — 1912 1888 — 1972 1906 — 1998

Theorem (Mordell-Weil)

Let F be a number field, and let E/F be an elliptic curve. Then, the
group of F-rational points on E, denoted by E(F), is a finitely
generated abelian group. In particular, E(F) = E(F)rs & Z7€/F where
E(F)tors is a finite subgroup, and Re ¢ > 0.




Torsion points: P = (2, 3) has order 6 in y2 = x3 + 1




Torsion poi
points: (0,1) h
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© The curve E3/Q : y? = x® — 2 does not have any rational torsion points
other than O. However, the point P = (3,5) is a rational point. Thus, P
must be a point of infinite order. In fact,

E3(Q)={nP:neZ} and E;(Q)=Z.



The following are some examples of elliptic curves and their Mordell-Weil
groups:
@ Thecurve E;/Q : y? = x3 + 6 satisfies £1(Q) = {O}.
© The curve E,/Q : y? = x3 + 1 has only 6 rational points. Therefore
E>(Q) = 7Z/6Z is an isomorphism of groups, and
EZ(Q) = {Ov (27 :tS), (Ov +1 )7 (_1 ) 0)}

© The curve E3/Q : y? = x® — 2 does not have any rational torsion points
other than O. However, the point P = (3,5) is a rational point. Thus, P
must be a point of infinite order. In fact,

E3(Q)={nP:neZ} and E;(Q)=Z.

© The elliptic curve E4/Q : y? = x3 + 7105x2 + 1327104 x features both
torsion and infinite order points. In fact, £4(Q) = Z/4Z @ Z®. The torsion
subgroup is generated by the point of order 4 T = (1152,111744). The
free part is generated by

P, = (~6912,6912), P, = (—5832, 188568), P; = (—5400, 206280).
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Variations of the problem

Theorem (Mordell-Weil)

E(F) is finitely generated. In particular, E(F) = E(F)ors ® Z/F.

Variations: torsion subgroups

E1(F)tors EZ(F)tors Ek(F)tors

F

where Eq, Es, ..., Eg, ... is some family of (perhaps all) elliptic curves
over a fixed field F.



Torsion subgroups of elliptic curves over Q

E1 (Q)tors EZ(Q)tors e Ek(@)tors

N



Torsion subgroups of elliptic curves over Q

E1 (Q)tors E2(@)tors e Ek(@)tors

N

Barry Mazur

Theorem (Levi-Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then

E ~
(Qors {Z/ZZ ®7Z/2MZ  with1 < M < 4.

Z/MZ with1 <M <10orM =12, or

Moreover, each possible group appears infinitely many times.
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The elliptic curve 30030bt1 has a point of order 12.



Can we “count” how many elliptic curves are there with each torsion
subgroup?

@ We will consider elliptic curves (up to isomorphism over Q) given
by a minimal short Weierstrass model over Z, that is,

E={E/Q:y?=x®+Ax+ B, with A Be 7},

with 4A3 + 2782 + 0, and such that if d*|A and d®|B, then d = +1.



Can we “count” how many elliptic curves are there with each torsion
subgroup?

@ We will consider elliptic curves (up to isomorphism over Q) given
by a minimal short Weierstrass model over Z, that is,

E={E/Q:y?=x®+Ax+ B, with A Be 7},

with 4A3 + 2782 + 0, and such that if d*|A and d®|B, then d = +1.
@ The naive height of E € £ is defined by

ht(E) = max{4|A?,27B8?}.

@ £(X)={E €& :ht(E) < X}, all elliptic curves up to height X.
o me(X) = #E(X).



Theorem (Harron, Snowden, 2013)

Let G be one of the groups in Mazur’s list. We let Ng(X) be the number

of (isomorphism classes of) elliptic curves E/Q of height at most X for

which E(Q)iwrs = G. Then, there is an explicit constant d(G) such that
log Ng(X) 1

AN log X~ d(G)

E.g., d(0) = 6/5, d(Z/2Z) = 2, d(Z/3Z) = 3, d(Z/5Z) = 6, and
d(Z/7Z) = 12.

In particular, almost all elliptic curves over Q have trivial torsion.



Variations of the problem

Theorem (Mordell-Weil)

E(F) is finitely generated. In particular, E(F) = E(F)ors ® Z/F.
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where Eq, Ep, ..., . is some family of (perhaps all) elliptic curves

over a fixed field F
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@ All elliptic curves over Q.

e Family of quadratic twists of a given curve: y? = x3 4+ Ad?x + Bd®,
for fixed A, B € Q, and any d # 0.

@ Other 1-parameter families of elliptic curves.



Variations of the problem: ranks over Q

RE1/Q REQ/Q 7
Q
where Eq, Es, ..., Eg, ... is a family of elliptic curves over Q:

@ All elliptic curves over Q.

e Family of quadratic twists of a given curve: y? = x3 4+ Ad?x + Bd®,
for fixed A, B € Q, and any d # 0.

@ Other 1-parameter families of elliptic curves.

What values can Rg/q take? In particular, can Rg g be arbitrarily
large, or is it uniformly bounded?




Elkies’ elliptic curve of rank > 28

y2+xy +y=x3 - x? - (2006776241557552658503320820933854
2750930230312178956502)x + (3448161179503055646703298569
0390720374855944359319180361266008296291939448732243429)

Independent points of infinite order:

Py =[—2124150091254381073292137463,
259854492051899599030515511070780628911531]

P, =[2334509866034701756884754537,
18872004195494469180868316552803627931531]

P; =[—-1671736054062369063879038663,
251709377261144287808506947241319126049131]

\ g _/f

'l

Noamr Elkies



Elkies’ elliptic curve of rank > 28

P4 =[2139130260139156666492982137,
36639509171439729202421459692941297527531]
Ps =[1534706764467120723885477337,
85429585346017694289021032862781072799531]
Ps =[—2731079487875677033341575063,
262521815484332191641284072623902143387531]
P7; =[2775726266844571649705458537,
12845755474014060248869487699082640369931]
Ps =[1494385729327188957541833817,
88486605527733405986116494514049233411451]
Py =[1868438228620887358509065257,
59237403214437708712725140393059358589131]
P10 =[2008945108825743774866542537,
47690677880125552882151750781541424711531]
P11 =[2348360540918025169651632937,
17492930006200557857340332476448804363531]



Elkies’ elliptic curve of rank > 28

P12 = [-1472084007090481174470008663, 246643450653503714199947441549759798469131]
P13 =[2924128607708061213363288937, 28350264431488878501488356474767375899531]
P14 =[5374993891066061893293934537, 286188908427263386451175031916479893731531]
P15 = [1709690768233354523334008557, 71898834974686089466159700529215980921631]
P16 = [2450954011353593144072595187, 4445228173532634357049262550610714736531]
P17 = [2969254709273559167464674937, 32766893075366270801333682543160469687531]
P18 = [2711914934941692601332882937, 2068436612778381698650413981506590613531]
P19 = [20078586077996854528778328937, 2779608541137806604656051725624624030091531]
P20 = [2158082450240734774317810697, 34994373401964026809969662241800901254731]
P21 =[2004645458247059022403224937, 48049329780704645522439866999888475467531]
P22 = [2975749450947996264947091337, 33398989826075322320208934410104857869131]
P23 =[-2102490467686285150147347863, 259576391459875789571677393171687203227531]
P24 =[311583179915063034902194537, 168104385229980603540109472915660153473931]
P25 = [2773931008341865231443771817, 12632162834649921002414116273769275813451]
P26 = [2156581188143768409363461387, 35125092964022908897004150516375178087331]
P27 = [3866330499872412508815659137, 121197755655944226293036926715025847322531]
P28 = [2230868289773576023778678737, 28558760030597485663387020600768640028531]



For current rank records, visit Andrej Dujella’s website:

https://web.math.pmf.unizg.hr/~duje/tors/tors.html


https://web.math.pmf.unizg.hr/~duje/tors/tors.html
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The Rank

For each r > 0, we define the set of curves of rank r up to height X:
Rr(X)={E € &(X) :rank(E(Q)) =r}, 7r,(X)=#Rr(X).

Some conjectures and heuristics:
@ (50% — 50% Conjecture, Goldfeld, Katz—Sarnak) Fix a global field

k. Asymtotically, 50% of elliptic curves over k have rank 0, and
50% have rank 1. Moreover, the average rank is 1/2, that is

rank(E
AveRankg(X) = 2-ecepq FanKE(Q)) — % as X — oo.

me(X)




@ The BHKSSW (Balakrishnan, Ho, Kaplan, Spicer, Stein,
Weigandt) database covers all 238,764,310 elliptic curves up to
height 26,998,673,868 ~ 2.7 - 10'°.

e Also six large-height data sets of 100,000 curves with height ~ 10¥
for k =11,12,13,14,15,16.
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Figure: Values of AveRankg(X) from the BHKSSW database (blue dots). The
local max happens at about 6 - 108. At X = 2.7 - 10'° value is 0.90197580.. . ..

Theorem (Skinner, Bhargava-Shankar)
0.216 < limy_,, AveRankg(X) < 0.885.
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Figure: Values of AveRankg (X) from the BHKSSW database (blue dots), and
numerical integration of the approximation given by our model (in red).

According to the database, we have AveRankg (2.7 - 10'%) = 0.90197580
while our approximation gives 0.90244770. Thus, the absolute error is
0.00047189 (note (2.7 - 10'9)~"/3 ~ 0.0003), which is a 0.0523% of the value.



X | AveRank(X) X | AveRank(X)

10'0 | 0.905665 1050 0.548880
10'5 | 0.846828 107 0.512531
1020 | 0.766868 10190 | 0.503256

10%0 | 0.649901 10'50 | 0.500215

1040 | 0.585108 10290 | 0.500006

Table: Conjectural approximate values of AveRank(X) obtained using our
models.



How do we compute ranks?

We use Selmer groups: a cohomological-defined group where we can

embed the (weak) Mordell-Weil group of an elliptic curve. Recall the
short exact sequence

0 — E(Q)/2E(Q) — Selo(E/Q) — HI(E/Q)[2] — 0.
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2<p< o).



How do we compute ranks?

We use Selmer groups: a cohomological-defined group where we can
embed the (weak) Mordell-Weil group of an elliptic curve. Recall the
short exact sequence

0 — E(Q)/2E(Q) — Selo(E/Q) — HI(E/Q)[2] — 0.

Good news: Selmer groups are computable because they are defined
locally. The elements of Sel>(E/Q) can be interpreted as quartics that
are everywhere locally solvable (solutions over Qp for every

2<p< o).

Bad news: The Tate-Shafarevich group III(E/Q) measures the failure
of the local-to-global principle, and it is hard to compute. The elements
of III(E/Q)[2] can be interpreted as quartics that are everywhere
locally solvable but not globally solvable (solutions over Q,, for every

2 < p < oo but not over Q).
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We use Selmer groups: a cohomological-defined group where we can
embed the (weak) Mordell-Weil group of an elliptic curve. Recall the
short exact sequence

0 — E(Q)/2E(Q) — Selo(E/Q) — HI(E/Q)[2] — 0.

Good news: Selmer groups are computable because they are defined
locally. The elements of Sel>(E/Q) can be interpreted as quartics that
are everywhere locally solvable (solutions over Qp for every
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Bad news: The Tate-Shafarevich group III(E/Q) measures the failure
of the local-to-global principle, and it is hard to compute. The elements
of III(E/Q)[2] can be interpreted as quartics that are everywhere
locally solvable but not globally solvable (solutions over Q,, for every

2 < p < oo but not over Q).
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We define the (2-)Selmer rank of E(Q) by
selrank(E(Q)) = dimg, Selz(E/Q) — dimg, E(Q)[2].
Then, rank(E(Q)) < selrank(E(Q)).

Theorem (Bhargava, Shankar, 2010)
The average size of Sely(E/Q) in the family of all elliptic curves is 3.

They also conjecture that the average size of Sel,(E/Q) is p + 1.



We will write 7s,(X) for the number of elliptic curves E/Q up to height
X with selrank(E(Q)) = n.



We will write 7s,(X) for the number of elliptic curves E/Q up to height
X with selrank(E(Q)) = n. Following work on quadratic twists by
Heath-Brown, Monsky, Kane, and Swinnerton-Dyer:

Conjecture (Poonen—Rains, for p = 2)

_ v i FSa(X)
s, = Prob(selrank(E(Q)) =n) = XI|_r>noo e ()
1 o2 >
- H 5| H k_q )"
(/201+2 1) (k_12 1
So S1 So S3 S4 S5

0.209711 | 0.419422 | 0.279614 | 0.079889 | 0.010651 | 0.000687

Table: Values of s, = Prob(selrank(E(Q)) = n)
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Delaunay (2001): Assume III(E/Q)[p>] is a random finite abelian
group G together with a non-degenerate alternating bilinear pairing .
Put a weight on each group 1/# Aut’(G), where Aut’(G) are the
automorphisms that preserve 3. Obtain (Cohen-Lenstra type)
heuristics for the probability of each isomorphism type for II[p>°].

For instance, if the rank of E/Q is 0, then the probability that p divides
#I11 is given by

oo

) =1-T]0 - /p)*).

k=1

E.g. /(2) =0.58..., f(3)=0.36...,and f,(5) = 0.20 . ..
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Bhargava, Kane, Lenstra, Poonen, Rains:
Let p > 2 be a prime. Then:

0 — E(Q)/pE(Q) — Sely(E/Q) — II(E/Q)[p] — 0.

0 — E(Q)/p"E(Q) — Selpy(E/Q) — HI(E/Q)[p"] — 0.

0 — E(Q) ® Qp/Zp — Selp=(E/Q) — HI(E/Q)[p™] — O,

a short exact sequence of Z,-modules. Model ITII( E/Q)[p">°], allegedly a finite

p-group, by:
0 — KerR — Zy — Zp — Z,/ Col(R) — 0.

and II(E/Q)[p>] « (Zp/ Col(R))tors-
@ If we want to model elliptic curves of rank r, fix rank(Ker(R)) = r.

@ Remember that III(E/Q)[p>°] has a hon-deg. alt. bil. pairing, so R
needs to be alternating.

Theorem: The distribution of (Z7/ Col(R))wrs over all alternating matrices R
with rank Ker(R) = r, converges to Delaunay’s distribution for curves of rank
r,as n— oo.
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@ Choose a height H.
@ Choose n > 1 uniformly at random (from an interval that depends
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@ Choose an n x n alternating matrix Rg with integer coefficients,
with entries bounded by X = X(H), chosen uniformly at random.
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Park, Poonen, Voight, Wood:
Model elliptic curves of height H as follows:

@ Choose a height H.

@ Choose n > 1 uniformly at random (from an interval that depends
on H).

@ Choose an n x n alternating matrix Rg with integer coefficients,
with entries bounded by X = X(H), chosen uniformly at random.

Then, Coker(Rg) models III(E/Q) and rank(Ker(Rg)) models
rank(E(Q)).

Consequences:

(a) For1 <r <20, we have Y32 g, (X) = X(&1-r)/24+0(1),
(b) All but finitely many elliptic curves satisfy rank(E(Q)) < 21.
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A PROBABILISTIC MODEL FOR THE DISTRIBUTION OF RANKS OF
ELLIPTIC CURVES OVER Q

ALVARO LOZANO-ROBLEDO

ABSTRACT. In this article, we propose a new probabilistic model for the distribution of ranks of
elliptic curves in families of fixed Selmer rank, and compare the predictions of our model with
previous results, and with the databases of curves over the rationals that we have at our disposal.
In addition, we document a phenomenon we refer to as Selmer bias that seems to play an important
role in the data and in our models.

1. INTRODUCTION

Let E/Q be an elliptic curve. The Mordell-Weil theorem states that the group E(Q) of rational
points on F is finitely generated and, therefore, we have an isomorphism

E(Q) = E(Q)tors ® L7,

where E(Q)tors is the (finite) subgroup of points of finite order, and Rp = rank(E(Q)) > 0is the rank
of the elliptic curve. The torsion subgroups that arise over Q are well understood: Mazur’s theorem
settles what groups are possible ([21], [22]), the parametrization of the corresponding modular curves
are known ([20]), and we know the distribution of elliptic curves with a prescribed torsion subgroup
([15]) as a function of the height of the curve. However, the distribution of ranks of elliptic curves
is unknown. Several conjectures can be found in the literature (e.g., on the average rank, see [24]),
and also some heuristic models ([29], [23]), but the basic questions about the distribution of the
ranks remain unanswered. For instance, it is not known whether the rank can be arbitrarily large
(currently, the largest rank known is 28, due to Noam Elkies - see [11] for Elkies’ example, and other
current records).

In this article, we propose a new probabilistic model for the distribution of ranks of elliptic curves
(in families of fixed 2-Selmer rank) and explore its possible consequences. The model itself is built
on a probability space of test elliptic curves and test Selmer elements in the spirit of Cramér’s model
for the prime numbers (see [6], [13]). As such, our model is a collection T of all possible sequences of
(finite) sets of test elliptic curves of each height (with certain growth conditions as the height grows).
The sequence of ordinary elliptic curves £ over Q belongs to this class, and we make predictions
about £ from the asymptotic average behavior from sequences in T under the assumption of certain
probabilistic hypotheses (see Sections 1.3, 5, and 7 for more details). We use the largest database
of elliptic curves at our disposal ([1], which we will refer to as the BHKSSW database) in order to
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Figure: Values of m,(X) from the BHKSSW database (blue dots) for
r =1,2,3, and the approximations predicted by our models (in red).



5e9 lel0 1.5e10 2el0 2.5el0

Figure: Values of g, (X) from the BHKSSW database (blue dots) for r = 4,5,
and the approximations predicted by our models (in red).



r=-1 2 3 4 5

7=, (2.7 - 1010)
Approx. value
|Error|
Error %

~s - X2

113128929 40949289 6259157 380519 6481

113133971 41005107 6273138 381272 6438
5042 55818 13981 753 43

0.004456  0.136310 0.223368 0.197887 0.663477

68848.72 4594296 13112.47 1749.97 111.73

Table: Values of mx,(2.7 - 10'%) from the BHKSWW database, the
approximate values (rounded to the closest integer) given by numerical
integration of the formulas predicted by the models, the absolute error, the
error as a percentage of the actual value of 7x,, and the size of the predicted
error s, - (2.7 -1010)1/2,
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Figure: Distribution of Mordell-Weil ranks (in blue) among elliptic curves in
£([2-10%,2.025 - 10'°]) by Selmer rank n = 2,3, 4,5, and compared to the
predicted M-W ranks (in green) that we would expect from the models.



n| ms,(/) M-Wranks observedin S, M-W ranks predicted

2 | 509,845 [180128,0,329717,0,0,0] [181246.58,0,328598.41,0,0,0]
3| 111,926  [0,60149,0,51777,0,0] [0,60455.09,0,51470.90,0,0]
4 | 8399 [803,0,4321,0,3275,0]  [836.68,0,4256.52,0,3305.78,0]
5 158 [0,22,0,76,0,60] [0,21.24,0,73.38,0,63.36]

Table: Mordell-Weil ranks observed in the interval height interval
I=1[2-10',2.025 - 10'°] and the ranks predicted by the models.
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