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PREVIOUSLY...

We can define an action of SL(2,Z) on Binary Quadratic Forms
(BQFs) by

M · f
((

x
y

))
= f

(
M ·

(
x
y

))
for any M ∈ SL(2,Z).

Associative? Not when defined like this. See first slide in Lecture 4.

Gauss called this proper equivalence. If we change variables by a
matrix in GL(2,Z) with determinant −1, Gauss called this improper
equivalence. With det = ±1 we say wide equivalence.

Proper equivalence leads to the narrow ideal class group of a ring of
integers. Wide equivalence leads to the ideal class group.
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PREVIOUSLY...

For example, x2 + xy + 5y2 is reduced, but 11x2 + 5xy + y2 is NOT.

Gauss: Every equivalence class of BQFs (with disc = d < 0) contains
a unique reduced representative f (x , y) = ax2 + bxy + cy2 with the
property

−a < b ≤ a ≤ c, and b ≥ 0 if a = c.

Also Gauss: there is an algorithm to find the reduced reprentative.
Steps in the algorithm:

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

2 If b > a or b ≤ −a, then
(

x
y

)
=

(
1 −k
0 1

)(
x ′

y ′

)
, such that

b′ ≡ b mod 2a and −a < b′ ≤ a, with b′ = b − 2ka.

3 If c = a and −a < b < 0, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.



PREVIOUSLY...

Example

Let d = −20. The values of g(x , y) = 2x2 + 2xy + 3y2 are
(1/2)·norms of elements in

(2, (2 +
√
−20)/2) = (2,1 +

√
−5) = P2,

which is a prime ideal above 2.

Is the ideal P2 = (2,1 +
√
−5) principal? Is P2 ∼ OKd ? If so:

There is α ∈ Kd such that P2 = α · OKd .
N(τ) = N(α)N(γ) for every τ ∈ P2 and some γ ∈ OKd .
2 = N(P2) = N(α)N(OKd ) = N(α), so N(α) = 2.
Thus, norms from P2 equal norms from αOKd implies

2 · g(x , y) = 2 · f (x ′, y ′)

so f (x , y) = x2 + 5y2 and g(x ′, y ′) = 2x ′2 + 2x ′y ′ + 3y ′2 represent
the same numbers. Contradiction!!



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

ax2 + bxy + cy2 ←→ cx ′2 − bx ′y ′ + ay ′2.

(a,b +
√

d)←→ (c,−b +
√

d).

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

ax2 + bxy + cy2 ←→ cx ′2 − bx ′y ′ + ay ′2.

(a,b +
√

d)←→ (c,−b +
√

d).

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

ax2 + bxy + cy2 ←→ cx ′2 − bx ′y ′ + ay ′2.

(a,b +
√

d)←→ (c,−b +
√

d).

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

ax2 + bxy + cy2 ←→ cx ′2 − bx ′y ′ + ay ′2.

(a,b +
√

d)←→ (c,−b +
√

d).

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

ax2 + bxy + cy2 ←→ cx ′2 − bx ′y ′ + ay ′2.

(a,b +
√

d)←→ (c,−b +
√

d).

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

ax2 + bxy + cy2 ←→ cx ′2 − bx ′y ′ + ay ′2.

(a,b +
√

d)←→ (c,−b +
√

d).

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

ax2 + bxy + cy2 ←→ cx ′2 − bx ′y ′ + ay ′2.

(a,b +
√

d)←→ (c,−b +
√

d).

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.



Conversely, Gauss’ reduction of binary quadratic forms gives a method
to check the ideal class of any fractional ideal I.

For example, in Q(
√
−5), we have (3) = (3,1 +

√
−5)(3,1−

√
−5).

Let I = (3,1 +
√
−5) = (3, (2 +

√
−20)/2). Is it equivalent to P2?

The norms of elements of I are of the form

3 · (3x2 + 2xy + 2y2)

but the form 3x2 + 2xy + 2y2 is not reduced.

−b +
√

d
2

·

(
a,

b +
√

d
2

)
=

(
a · −b +

√
d

2
,

b2 − d
4

)
= a

(
−b +

√
d

2
, c

)
.

Upshot:

(
3,
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2

)
=

3
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2

(
2,
−2 +

√
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2
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3
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2
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3
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Note: What does the second step to reduce forms do to ideals?

If b > a or b ≤ −a, then
(

x
y

)
=

(
1 −k
0 1

)(
x ′

y ′

)
, such that

b′ ≡ b mod 2a and −a < b′ ≤ a, with b′ = b − 2ka.

It transforms binary forms as follows:

ax2 + bxy + cy2 = a(x ′ − ky ′)2 + b(x ′ − ky ′)y ′ + cy ′2

= ax ′2 + (−2ak + b)x ′y ′ + (−ak2 − bk + c)y ′2.

So it transforms(
a,

b +
√

d
2

)
←→

(
a,

b − 2ak +
√

d
2

)

and these ideals are identical.
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Binary quadratic forms ! ideals in quadratic fields

leads to an isomorphism

BQFs(d) /SL(2,Z) ∼= Cl+(OKd )
∼= Cl(OKd )

for d < 0, where the group law on the left-hand side is Gauss’
composition of quadratic forms. (For d > 0, the narrow and wide class
groups are not isomorphic in general.)

Theorem (Heegner (1952), Baker (1966), Stark (1967))
The only values d < 0 with h(d) = 1, are

d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163.
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The only values d < 0 with #Cl(OKd ) = h(OKd ) = 1, are

d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163.

Question
For what d > 0 do we have h(OKd ) = 1?

Gauss’ conjecture: there are infinitely many number fields with h = 1.



Binary quadratic forms ! ideals in quadratic fields

leads to an isomorphism

BQFs(d) /SL(2,Z) ∼= Cl+(OKd )
∼= Cl(OKd )

for d < 0, where the group law on the left-hand side is Gauss’
composition of quadratic forms. (For d > 0, the narrow and wide class
groups are not isomorphic in general.)

Theorem (Heegner (1952), Baker (1966), Stark (1967))
The only values d < 0 with #Cl(OKd ) = h(OKd ) = 1, are

d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163.

Question
For what d > 0 do we have h(OKd ) = 1?

Gauss’ conjecture: there are infinitely many number fields with h = 1.



Binary quadratic forms ! ideals in quadratic fields

leads to an isomorphism

BQFs(d) /SL(2,Z) ∼= Cl+(OKd )
∼= Cl(OKd )

for d < 0, where the group law on the left-hand side is Gauss’
composition of quadratic forms. (For d > 0, the narrow and wide class
groups are not isomorphic in general.)

Theorem (Heegner (1952), Baker (1966), Stark (1967))
The only values d < 0 with #Cl(OKd ) = h(OKd ) = 1, are

d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163.

Question
For what d > 0 do we have h(OKd ) = 1?

Gauss’ conjecture: there are infinitely many number fields with h = 1.



A full treatment of binary
quadratic forms and ideal
class groups (§1 through §3).



Ideal Class Groups

e.g., Cl(Q(
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Consider:

C =
{

Cl(Q(
√

d)) : d < 0 fundamental discriminant (d ≡ 0,1 mod 4)
}
.

Question
What finite abelian groups appear in C?

Consider also:

C(X ) =
{

Cl(Q(
√

d)) : d < 0 fundamental discriminant with |d | ≤ X
}
.

Question
Is C(X ) a “random” sequence of finite abelian groups?

Answer: NO. See genus theory.
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C(X ) =
{

Cl(Q(
√

d)) : d < 0 fundamental discriminant with |d | ≤ X
}
.

Question
Is C(X ) a “random” sequence of finite abelian groups?

Answer: NO. See genus theory.

The 2-part of the class group has a nice theory, called genus theory
(see also Cox’ “Primes of the form x2 + ny2”.) In particular, if d is a
fundamental discriminant, then

Cl(Q(
√

d))[2] ∼= (Z/2Z)r−1

where r is the number of distinct prime divisors of d .

Example

Let d = −20 (so that r = 2). Then, we have Cl(Q(
√
−20)) ∼= Z/2Z.
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C(X ) =
{

Cl(Q(
√

d)) : d < 0 fundamental discriminant with |d | ≤ X
}

is not random, but what about the odd part?

Let

Hd = Cl(Q(
√

d)), Hd ,2 = Cl(Q(
√

d))[2∞]

and H 6=2
d = Hd/Hd ,2.

C 6=2(X ) =
{

H 6=2
d : d < 0 fundamental discriminant with |d | ≤ X

}
.

Question
Is C 6=2(X ) a “random” sequence of finite abelian groups?
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sequence of finite abelian groups of odd order”.

What is a random finite abelian group? A group with random p-part...
What is a random finite abelian p-group?
What group is more likely: Z/p3Z, (Z/pZ)3, or Z/pZ⊕ (Z/pZ)2 ?
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Conjecture (Cohen-Lenstra, 1984)

The sequence of groups H 6=2
d ordered by |d | behaves like a “random

sequence of finite abelian groups of odd order”.

Cohen-Lenstra: Let p be a prime. Assume that we have a “natural”
unbiased stochastic process producing finite abelian p-groups. If we fix
a finite abelian group G, then the probability that an output of the
process is isomorphic to G is inversely proportional to the size of the
automorphism group Aut(G).



Theorem
Let k ≥ 0, e1 > . . . > ek > 0, and ri > 0 for i = 1, . . . , k. Let

G =
k∏

i=1

(Z/peiZ)ri .

Then,

#Aut(G) =

(
k∏

i=1

( ri∏
s=1

(1− p−s)

))
·

 ∏
1≤i,j≤k

pmin(ei ,ej )ri rj

 .

Example

Let G = Z/p3Z, so k = 1, e1 = 3, r1 = 1. Thus,

#Aut(Z/p3Z) = (1− p−1)(p3·1·1) = (1− 1/p)p3 = (p − 1)p2.

(Note: Aut(Z/p3Z) ∼= (Z/p3Z)×.)
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= (p − 1)(p2 − 1)(p3 − 1)p3.

(Note: Aut((Z/pZ)3) ∼= GL(3,Z/pZ).)



Theorem
Let k ≥ 0, e1 > . . . > ek > 0, and ri > 0 for i = 1, . . . , k. Let

G =
k∏

i=1

(Z/peiZ)ri .

Then,

#Aut(G) =

(
k∏

i=1

( ri∏
s=1

(1− p−s)

))
·

 ∏
1≤i,j≤k

pmin(ei ,ej )ri rj

 .

Example

Let G = (Z/pZ)3, so k = 1, e1 = 1, r1 = 3. Thus,

#Aut((Z/pZ)3) = (1− p−1)(1− p−2)(1− p−3)p1·3·3

= (p − 1)(p2 − 1)(p3 − 1)p3.

(Note: Aut((Z/pZ)3) ∼= GL(3,Z/pZ).)



Theorem
Let k ≥ 0, e1 > . . . > ek > 0, and ri > 0 for i = 1, . . . , k. Let

G =
k∏

i=1

(Z/peiZ)ri .

Then,

#Aut(G) =

(
k∏

i=1

( ri∏
s=1

(1− p−s)

))
·

 ∏
1≤i,j≤k

pmin(ei ,ej )ri rj

 .

Example

Let G = (Z/pZ)3, so k = 1, e1 = 1, r1 = 3. Thus,

#Aut((Z/pZ)3) = (1− p−1)(1− p−2)(1− p−3)p1·3·3

= (p − 1)(p2 − 1)(p3 − 1)p3.

(Note: Aut((Z/pZ)3) ∼= GL(3,Z/pZ).)



Theorem
Let k ≥ 0, e1 > . . . > ek > 0, and ri > 0 for i = 1, . . . , k. Let

G =
k∏

i=1

(Z/peiZ)ri .

Then,

#Aut(G) =

(
k∏

i=1

( ri∏
s=1

(1− p−s)

))
·

 ∏
1≤i,j≤k

pmin(ei ,ej )ri rj

 .

Example

Let G = (Z/pZ)3, so k = 1, e1 = 1, r1 = 3. Thus,

#Aut((Z/pZ)3) = (1− p−1)(1− p−2)(1− p−3)p1·3·3

= (p − 1)(p2 − 1)(p3 − 1)p3.

(Note: Aut((Z/pZ)3) ∼= GL(3,Z/pZ).)



Theorem
Let k ≥ 0, e1 > . . . > ek > 0, and ri > 0 for i = 1, . . . , k. Let

G =
k∏

i=1

(Z/peiZ)ri .

Then,

#Aut(G) =

(
k∏

i=1

( ri∏
s=1

(1− p−s)

))
·

 ∏
1≤i,j≤k

pmin(ei ,ej )ri rj

 .

Example
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Example
Let p = 5. Then:

#Aut(Z/p3Z) = (p − 1)p2 = 100

#Aut((Z/pZ)3) = (p − 1)(p2 − 1)(p3 − 1)p3 = 1488000

#Aut((Z/pZ)⊕ (Z/p2Z)) = (p − 1)2p3 = 2000.



Cohen-Lenstra: Let p be a prime. Assume that we have a “natural”
unbiased stochastic process producing finite abelian p-groups. If we fix
a finite abelian group G, then the probability that an output of the
process is isomorphic to G is inversely proportional to the size of the
automorphism group Aut(G).

Formally: Let Gp be the set of all finite abelian p-groups. The
Cohen-Lenstra weight ω is the measure on the set Gp such that

ω({G}) = 1/#Aut(G).

The (local) Cohen-Lenstra probability measure P is the probability
measure on Gp that is obtained by scaling ω, i.e.:

P(M) = ω(M)/ω(Gp) for M ⊆ Gp.

Theorem
ω(Gp) =

∏∞
i=1(1− p−i)−1.
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Theorem
ω(Gp) =

∏∞
i=1(1− p−i)−1.

Example
Let p = 5.

Then:
ω(G5) = 1.315213 . . .

From before:

#Aut(Z/p3Z) = (p − 1)p2 = 100

#Aut((Z/pZ)3) = (p − 1)(p2 − 1)(p3 − 1)p3 = 1488000

#Aut((Z/pZ)⊕ (Z/p2Z)) = (p − 1)2p3 = 2000.

Therefore:

P(Z/p3Z) =
1/100

1.315213 . . .
= 0.0076 . . . or 0.76%

P((Z/pZ)⊕ (Z/p2Z)) =
1/2000

1.315213 . . .
= 0.00038 . . . or 0.038%.

P((Z/pZ)3) =
1/1488000
1.315213 . . .

= 0.0000005109 . . . or 0.00005109%.
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WHY THIS MEASURE???



Question
Why would the Cohen-Lenstra measure be the correct measure?

How do we expect random abelian p-groups to arise? One way:

Pick random k ≥ 0, e1 > . . . > ek > 0, and ri > 0 for i = 1, . . . , k , and
let

G =
k∏

i=1

(Z/peiZ)ri .

This is unnatural because,
for one thing, we would be
assuming the structure
theorem of finite abelian
groups.

Instead, let us model random generators and relations.
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Start with r ≥ 1 generators Zr = 〈g1, . . . ,gr 〉.

Choose r random relations e1,ig1 + · · ·+ er ,igr = 0, with ei ∈ Z.

In matrix form: R =


e1,1 e1,2 · · · e1,r
e2,1 e2,2 · · · e2,r

...
...

. . .
...

er ,1 er ,2 · · · er ,r


Random group: Zr/Col(R). (But this is not a p-group.)

Instead, random group: Zr
p/Col(R).

0 −→ Ker R −→ Zr
p −→ Zr

p −→ Coker R ∼= Zr
p/Col(R) −→ 0.

So we have a correspondence

finite abelian p-groups ! matrices in Zr×r
p with full rank .

Moreover, Zp is compact, it has a Haar measure (normalized to have
total volume 1), and so Zr×r

p inherits a Haar measure from Zp.
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Eduardo Friedman Lawrence Washington

Theorem (Friedman, Washington, 1987)

For a randomly chosen matrix R ∈ Zr×r
p w.r.t. the Haar measure,

1 P(R has full rank ) = 1 for all r > 0.
2 For any finite abelian p-group G we have

P(Coker(R) ∼= G) −→ P(G)

as r →∞, where P is the Cohen-Lenstra probability measure.
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The idea of using #Aut as a weight also appears in other contexts:
lattices, quadratic forms, elliptic curves, etc.

For quadratic fields, there is extensive data (with hundreds of millions
of class groups) to support the Cohen-Lenstra heuristics. See
Stephens and Williams [Stephens and Williams 88]; Jacobson, Lukes,
and Williams [Jacobson et al. 95]; and Jacobson [Jacobson 98].
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How about real quadratic fields? The Cohen-Lenstra heuristics for a real
quadratic field Q(

√
d) suggests the following:

Let k ≥ 1 be an odd number. Then, the probability that the odd part of
h(Q(

√
d)), denoted by h∗(Q(

√
d)), equals k is given by

P(h∗(Q(
√

d)) = k) =
C · λ(k)

k

where C = 0.754458173 . . ., and

λ(k)−1 =
∏

pα||k

pα(1− p−1)(1− p−2) · · · (1− p−α).

So, in particular, this implies

P(h∗(Q(
√

d)) = 1) = C = 0.754458173 . . .

If we assume that the subfamily Q(
√

p), over primes p, behaves similarly,
then h∗ = h, and

P(h(Q(
√

p)) = 1) = C = 0.754458173 . . . .



How about real quadratic fields? The Cohen-Lenstra heuristics for a real
quadratic field Q(

√
d) suggests the following:

Let k ≥ 1 be an odd number. Then, the probability that the odd part of
h(Q(

√
d)), denoted by h∗(Q(

√
d)), equals k is given by

P(h∗(Q(
√

d)) = k) =
C · λ(k)

k

where C = 0.754458173 . . ., and

λ(k)−1 =
∏

pα||k

pα(1− p−1)(1− p−2) · · · (1− p−α).

So, in particular, this implies

P(h∗(Q(
√

d)) = 1) = C = 0.754458173 . . .

If we assume that the subfamily Q(
√

p), over primes p, behaves similarly,
then h∗ = h, and

P(h(Q(
√

p)) = 1) = C = 0.754458173 . . . .



How about real quadratic fields? The Cohen-Lenstra heuristics for a real
quadratic field Q(

√
d) suggests the following:

Let k ≥ 1 be an odd number. Then, the probability that the odd part of
h(Q(

√
d)), denoted by h∗(Q(

√
d)), equals k is given by

P(h∗(Q(
√

d)) = k) =
C · λ(k)

k

where C = 0.754458173 . . ., and

λ(k)−1 =
∏

pα||k

pα(1− p−1)(1− p−2) · · · (1− p−α).

So, in particular, this implies

P(h∗(Q(
√

d)) = 1) = C = 0.754458173 . . .

If we assume that the subfamily Q(
√

p), over primes p, behaves similarly,
then h∗ = h, and

P(h(Q(
√

p)) = 1) = C = 0.754458173 . . . .



THANK YOU

alvaro.lozano-robledo@uconn.edu

http://alozano.clas.uconn.edu

“If by chance I have omitted anything
more or less proper or necessary,

I beg forgiveness,
since there is no one who is without fault

and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.

Álvaro Lozano-Robledo (UConn) Arithmetic Statistics CTNT, May 28-31 30 / 30


