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Theorem (Dirichlet, de la Vallée-Poussin)

Let a and n be relatively prime natural numbers. Then, there are
infinitely prime numbers p = a mod n. Moreover,

1 X
Tn,a(X) ~ o0 /2 o6 tdt where ¢(n) is the Euler phi function.

Since p(4) = 2, we have
)~ 3 [ g0t~ mas(X).
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Chebyshev’s bias (1853).

Number of primes Number of primes
X 4n+3uptox 4n+luptox
100 13 11
200 24 21
300 32 29
400 40 37
500 50 44
600 57 51
700 65 59
800 71 67
900 79 74
1000 87 80
2000 155 147
3000 218 211
4000 280 269
5000 339 329
6000 399 383
7000 457 442
8000 507 499
9000 562 554
10,000 619 609
20,000 1136 1125
50,000 2583 2549
100,000 4808 4783

(A table in “Prime number races”, by Granville and Martin.)



See also “Unexpected biases in the distribution of consecutive primes”,
by Robert Lemke Oliver and Kannan Soundararajan.
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3,5,7,11,13,17,19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, ...

Chebyshev: is it always true that w4 3(X) > 74 1(X)? Equality at
X =5,17,41,461,.... Inequality flips for the first time at X = 26833.

Theorem (Littlewood, 1914)
There are arbitrarily high values of X such that 74 1(X) > 74 3(X).

Conjecture (Knapowski, Turan, 1962)
The inequality 4 3(X) > m4.1(X) holds for 100% of all integers X > 2.

False: {x < X : m43(x) > m4.1(x)}/X does not have a limit as X — oo.

Theorem (Rubinstein, Sarnak, 1994)

L
log X

1
Z — 5 0.9959...
xeS(X) X

as X — oo, where S(X) = {X < X: 7T4’3(X) > 7T471(X)}.
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Why are primes p = 3 mod 4 slightly more abundant than primes
p =1 mod 47?

In short: 1 mod 4 is a square, while 3 mod 4 is not, in Z/4Z.
(See Granville and Martin’s Prime Number Races.)

Theorem (Fermat)
An odd prime p is a sum of two squares if and only if p = 1 mod 4.

Thatis, p = x2 + y?, for some x, y € Z, if and only if p = 1 mod 4.
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e.g., f(x,y) = x> + y2.
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A prime p > 2 is of the form p = 1 mod 4, if and only if there exist
X,y € Z such that p = x2 4 y?.

Definition
A binary quadratic form is a function of the form

f(x,y) = ax® + bxy + cy?.

The function f(x, y) = x2 + y? is an example of a binary quadratic
form... What primes are represented by other binary quadratic forms?
For instance, such as g(a, b) = a° + 2ab + 2b°?

Putx =a+bandy = b. Then, x2 + y2 = pif and only if
(a+ b)? + b? = p, if and only if &% + 2ab + 2b? = p.

From the point of view of Arithmetic Statistics, we would like to
parametrize binary quadratic forms, according to the primes they
represent.
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X2 +y?=p< (a+b)?+b?=p<= a+2ab+2b°=p.

We changed variables

oo (1)=(5 1)(32)

The matrix < 2) 1 > could be replaced by any other matrix in SL(2,7Z)

and we would still have an invertible change of variables (such that
itself and its inverse have integral coefficients).

Thus, we can define an action of SL(2,Z) on Binary Quadratic

) ()

forany M € SL(2,Z).
Note: BQFs in each orbit represent the same numbers.
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An alternative way to interpret a BQF:

f(x,y) = x*+y? = ( x Y)<g) ?)<;)

or, in general,

f(x,y) = ax® + bxy + cy? = ( x y)<b72 b{f)(;)

If M € SL(2,Z), then

M-f(x,y)=(x y)-Mt~<b72 bé2>M<;>



Example
The quadratic form f(x, y) = x2 + y? corresponds to the matrix

(é ?).IfweactonfbyM:<(1) 1>ESL(2,Z),thenweobtain

the quadratic form that corresponds to

(o 1) (5 5)(
IS
(e
(

—_ —_ —_
— O
N~——

corresponds to the form g(a, b) = @ + 2ab + 2b°.

N—

. 1 1
The matrix ( 1 o
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We are interested in the orbit of a single BQF:
SL(2,Z)-f={M-feBQFs: MeSL(2,2)},
and the set of all orbits:

BQFs /SL(2,Z).

When are two binary quadratic forms f and g in the same class?

For instance, are 11x2 4+ 5xy + y? and x? + xy + 5y? equivalent?

Look for equivalence class invariants.
Acs M-A-M
... since det(M) = 1, the determinant is invariant!

det(M'- A- M) = det(M") - det(A) - det(M) = 1 - det(A) - 1 = det(A).



Let f(x,y) = ax® + bxy + cy? be a quadratic form, attached to the

matrix < b72 bé 2 ) We define the discriminant of f by

disc(f) = —4 - det ( b72 béZ ) — b? — 4ac.




Definition
Let f(x,y) = ax® + bxy + cy? be a quadratic form, attached to the

matrix < b72 bé 2 ) We define the discriminant of f by

, 4 a b/2\ _ 2
disc(f) = —4 det( b/2 )—b 4ac.

| 0
N,

Example

disc(x® + y?) = —4. det( (1) ? > = 4.




Definition
Let f(x,y) = ax® + bxy + cy? be a quadratic form, attached to the

matrix < b72 bé 2 ) We define the discriminant of f by

disc(f) = —4-det( b‘72 b/2 ) _ p? —4ac.

| 0
\

Example

disc(x® + y?) = —4-det( S > _—
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For d # 0, we have disc(x? — dy?) = —4 - det ( (1) 0 ) =4d.




Definition
Let f(x,y) = ax® + bxy + cy? be a quadratic form, attached to the

matrix < b72 bé 2 ) We define the discriminant of f by

disc(f) = —4-det( b‘72 b/2 ) _ p? —4ac.

| 0
\

Example

disc(x® + y?) = —4-det< S > _—

Example

|
\

For d # 0, we have disc(x? — dy?) = —4 - det ( 0 ) =4d.

Example
We have disc(x2 + xy + y2) = 4(1/4 — 1) = —3.

| |
A
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Definition
Let f(x,y) = ax® + bxy + cy? be a quadratic form, attached to the

matrix ( b72 bé 2 ) We define the discriminant of f by

. . a b/2 _p2
dlsc(f)_—4-det<b/2 c >_b 4ac.

We can similarly define disc([f]) for each equivalence class
[f] € BQFs /SL(2,Z), by

disc([f]) = disc(f)
where f is any representative of the class [f].

If f,g € [f], then disc(f) = disc(g). Is the converse true?
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Carl Friederich Gauss

Gauss: Every equivalence class of BQFs (with disc = d < 0) contains
a unique reduced representative f(x, y) = ax? + bxy + cy? with the

property
—a<b<a<c, andb>0ifa=c.
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For example, x2 + xy + 5y? is reduced, but 11x2 + 5xy + y? is NOT.

Gauss: Every equivalence class of BQFs (with disc = d < 0) contains
a unique reduced representative f(x, y) = ax? + bxy + cy? with the

property
—a<b<a<c, andb>0ifa=c.

Also Gauss: there is an algorithm to find the reduced reprentative.
Steps in the algorithm:

X 0 —1 X'
0Ifc<a,then<y)_<1 0><y’>'
@ lib>aorb<—athen | X )= 1 —k x such that
- 7 y 0 1 y' )’
b'=bmod2aand —a< b < g, with b’ = b — 2ka.

X 0 -1 x'
9Ifc_aand—a<b<0,then<y>_<1 0 ><y’>'



Let f(x,y) = 11x2 + 5xy + y2.

@ a= 11> 1 = c. Change variables with M = ( (1) _01 ) .

(5 0) (52 ) (5 0 )=(82 )

which corresponds to f(x, y) = x2 — 5xy + 11y2.




Let f(x,y) = 11x2 + 5xy + y2.

@ a= 11> 1 = c. Change variables with M = < (1) _01 ) .

0 1\ (11 52\ (0 -1\ _( 1 -5/
10 5/2 1 1 0 ) \-52 11 )
which corresponds to f(x, y) = x2 — 5xy + 11y2.

@ b=-5<-1=-a Letb=-5=1 mod 2a. So pick
—1<b=1<1,andb' =-5-2-(-83),s0 k=-3.




Let f(x, y) = 11x2 + 5xy + y2.

1 0

0 1\ (11 52\ (0 -1\ _( 1 -5/
10 5/2 1 1 0 ) \-52 11 )
which corresponds to f(x, y) = x2 — 5xy + 11y2.

@ b=-5<-1=-a Letb=-5=1 mod 2a. So pick
—1<b=1<1,and b =-5-2-(-8),so k =—8. So change

vM%MWMM:(13>.

@ a= 11> 1 = c. Change variables with M = < 0 - )

0 1

(39) (2 ) (o1)=(1 5)

which corresponds to f3(x, y) = x* 4+ xy + 5y2. (So equivalent!)

v
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Fix a (negative) discriminant d. Let BQFs(d) be the set of all binary
quadratic forms of discriminant d. How many classes are there in

BQFs(d)/SL(2,Z) ?

Suppose d < 0 and f(x, y) = ax® + bxy + cy? is reduced, i.e.,
—a<b<a<c andb>0ifa=c. Then,

ld=-d=4-a-c—b*>>4-a-a— a =34

Thus, a < /|d|/3. Hence:

@ Finitely many options for a.
@ |b| < a, so finitely many options for b.
@ d=b?—4ac, so ¢ = (b® — d)/4ais determined by a and b.

This implies that there are finitely many classes in BQFs(d)/ SL(2,Z)
when d < 0.
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The number of classes in BQFs(d)/ SL(2,Z) is denoted by h(d) and
called the class number of binary quadratic forms of discriminant d.

Note: d = b? — 4ac, so d = 0 or 1 mod 4.
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There are finitely many classes in BQFs(d)/SL(2,Z) for d < 0.

Definition

The number of classes in BQFs(d)/ SL(2,Z) is denoted by h(d) and
called the class number of binary quadratic forms of discriminant d.

Note: d = b? — 4ac, so d = 0 or 1 mod 4.
@ If d = 0 mod 4, then x2 — Zy2 is reduced.
e If d =1 mod 4, then x? + xy + 1792 is reduced.

These are called the principal forms of discriminant d. In particular,
h(d) > 1 for every fundamental discriminant d (= 0 or 1 mod 4).

h(—4) = 1, so all BQFs of discriminant —4 are equivalent to x> + y2.

h(—20) = 2. All BQFs of disc. —20 are equivalent to x2 + 5y? or
2x2 + 2xy + 3y°.

Exercise: Show that h(—3) = h(—4) = 1 and h(—20) = 2.



Back to representing primes by binary quadratic forms...

Proposition

Letgcd(a, b, c) = 1, let p be a prime, and put d = b — 4ac.
@ Ifp= am®+ bmn+ cn? for integers m, n, then d = 0 mod 4p.

@ Ifd is a square mod 4p, then there exists a binary quadratic form
of discriminant d that represents p.
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Back to representing primes by binary quadratic forms...

Proposition
Letgcd(a, b, c) = 1, let p be a prime, and put d = b — 4ac.
@ Ifp= am®+ bmn+ cn? for integers m, n, then d = 0 mod 4p.

@ Ifd is a square mod 4p, then there exists a binary quadratic form
of discriminant d that represents p.

For (2), if d = b®> mod 4p, then d = b? — 4pc, and then the form
px? 4 bxy + cy? represents p for (x,y) = (1,0).

Corollary

If h(d) = 1, then there is a BQF of discriminant d that represents p
if and only if d is a square mod 4p.

Example
A BQF of discriminant —4 (such as x2 + y?) represents p > 2

| \
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Back to representing primes by binary quadratic forms...

Proposition
Letgcd(a, b, c) = 1, let p be a prime, and put d = b — 4ac.
@ Ifp= am®+ bmn+ cn? for integers m, n, then d = 0 mod 4p.

@ Ifd is a square mod 4p, then there exists a binary quadratic form
of discriminant d that represents p.

For (2), if d = b®> mod 4p, then d = b? — 4pc, and then the form
px? 4 bxy + cy? represents p for (x,y) = (1,0).

Corollary

If h(d) = 1, then there is a BQF of discriminant d that represents p
if and only if d is a square mod 4p.

Example
A BQF of discriminant —4 (such as x? + y?) represents p > 2 if and

only if (*74) —1= (%)

| \
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Back to representing primes by binary quadratic forms...

Proposition
Letgcd(a, b, c) = 1, let p be a prime, and put d = b — 4ac.
@ Ifp= am®+ bmn+ cn? for integers m, n, then d = 0 mod 4p.

@ Ifd is a square mod 4p, then there exists a binary quadratic form
of discriminant d that represents p.

For (2), if d = b®> mod 4p, then d = b? — 4pc, and then the form
px? 4 bxy + cy? represents p for (x,y) = (1,0).

Corollary

If h(d) = 1, then there is a BQF of discriminant d that represents p
if and only if d is a square mod 4p.

Example

A BQF of discriminant —4 (such as x? + y?) represents p > 2 if and
only if (*74) = = (%) if and only if p = 1 mod 4.

| \
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Theorem (Heegner (1952), Baker (1966), Stark (1967))

The only values d < 0 with h(d) =1, are
d=-3,-4,-7,-8,—-11,—-19, -43,-67, and — 163.




Corollary

If h(d) = 1, then there is a BQF of discriminant d that represents p if
and only if d is a square mod 4p.

Theorem (Baker (1966), Heegner (1952), Stark (1967))
The only values d < 0 with h(d) =1, are

d=-3,-4,-7,-8,—-11,-19,-43,-67, and — 163.
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Corollary

If h(d) = 1, then there is a BQF of discriminant d that represents p if
and only if d is a square mod 4p.

\

Theorem (Baker (1966), Heegner (1952), Stark (1967))
The only values d < 0 with h(d) =1, are

d=-3,-4,-7,-8,—-11,-19,-43,-67, and — 163.

| \

Example
Let p be a prime.

@ (d=-3) x2 + xy + y2 = pif and only if (‘73) =1.
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Corollary

If h(d) = 1, then there is a BQF of discriminant d that represents p if
and only if d is a square mod 4p.

\

Theorem (Baker (1966), Heegner (1952), Stark (1967))
The only values d < 0 with h(d) =1, are

d=-3,-4,-7,-8,—-11,-19,-43,-67, and — 163.
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Example
Let p be a prime.

@ (d=-3) x2 + xy + y2 = pif and only if (‘73) =1.
o (d = —8) x2+2y2 = pif and only if (—72) — 1,

\




Corollary

If h(d) = 1, then there is a BQF of discriminant d that represents p if
and only if d is a square mod 4p.

\

Theorem (Baker (1966), Heegner (1952), Stark (1967))
The only values d < 0 with h(d) =1, are

d=-3,-4,-7,-8,—-11,-19,-43,-67, and — 163.

| \

Example
Let p be a prime.

@ (d=-3) x2 + xy + y2 = pif and only if (‘73) =1.

o (d = —8) x2+2y2 = pif and only if (—72) — 1,

o (d = —20)
e p=x?+5y?ifandonlyif p=5o0rp=1or9 mod 20.
e p=2x2+2xy + 3y?iff p=2or p=3or7mod 20.

\




Before: primes represented by quadratic forms.

What numbers are represented by BQFs? l




Before: primes represented by quadratic forms.

What numbers are represented by BQFs? \

For instance, let f(x, y) = x? + y2. Then,

(X +y2) (2 +y?) = (xx' +yy' )P+ (xy — X'y)?,

so if n, m are sums of squares, then n- mis also a sum of squares.



Before: primes represented by quadratic forms.

What numbers are represented by BQFs?

For instance, let f(x, y) = x? + y2. Then,

(X +y2) (2 +y?) = (xx' +yy' )P+ (xy — X'y)?,

so if n, m are sums of squares, then n- mis also a sum of squares.
Similarly: (x2 + dy?)(x”2 + dy?) = (xx’' + yy')? + d(xy’ — x'y)?. So
what if f(x, y) = ax® 4 bxy + cy??



Before: primes represented by quadratic forms.

What numbers are represented by BQFs?

For instance, let f(x, y) = x? + y2. Then,

(X +y2) (2 +y?) = (xx' +yy' )P+ (xy — X'y)?,

so if n, m are sums of squares, then n- mis also a sum of squares.
Similarly: (x2 + dy?)(x”2 + dy?) = (xx’' + yy')? + d(xy’ — x'y)?. So
what if f(x, y) = ax® 4 bxy + cy??

Gauss: If f and g are BQFs of discriminant d, then there exists
h € BQFs(d) such that

f(X’y) ) g(X/>y/) = h(m7 n)v

where m = m(x,y,x’,y’)and n= n(x, y, x’, y’) are bilinear forms.



Gauss: If f and g are BQFs of discriminant d, then there exists
h € BQFs(d) such that

f(Xay) ’ g(xlv.yl) = h(m7 n)7
where m = m(x,y,x’,y’)and n= n(x, y, x’,y’) are bilinear forms.

Example (Gauss’ “composition”)
Let

f(x,y) = 4x® + 3xy + 5y2, and g(x',y’) = 3x? + X'y’ + 6y,

forms of discriminant —71.




Gauss: If f and g are BQFs of discriminant d, then there exists
h € BQFs(d) such that

f(Xay) ’ g(xlv.y/) = h(m7 n)7
where m = m(x,y,x’,y’)and n= n(x, y, x’,y’) are bilinear forms.

Example (Gauss
Let

composition”)

f(x,y) = 4x® + 3xy + 5y2, and g(x',y’) = 3x? + X'y’ + 6y,
forms of discriminant —71. Then,
f(x,y)9(x',y") = 2m? + mn + 9n?
which is also of discriminant —71, with

m = xx' — 3xy’ — 2yx’ — 3yy’,

n=xx"+xy +yx' —yy.




Gauss’ composition is extraordinarily complicated, and it takes Gauss
pages to explain how it works in his Disquisitiones Arithmeticae.
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characteristicus formae datae etiam toti classi et generi tribui potest; denique 1
semper esse numerum characteristicum formae clnsu et genens pnnapehl sive
quamlibet formam e genere p li esse resid sui.

VIL Si (g, &) est valor expr. (M(a, b, ¢)(mod.m), atque ¢'=g, K¥=h
(mod. m): erit etiam (g,.k) valor eiusdem expressionis. Tales valores pro aequi-
valentibus haberi possunt; contra si (g. k), (g, k) sunt valores einsdem expr.
\M(a, b, ¢}, neque tamen simul g'=g, ¥ (mod.m), diversi sunt censendi.
Manifesto quoties (g, &) est valor talis expressionis, etiam (—g, — &) erit, facile-
que demonstratur, hos valores semper esse diversos nisi m=2. Aeque facile de-
monstratur, expressionem /M (a, b, ¢} (mod. m) plures valores diversos quam duos
tales (oppositos) habere non posse, quando m sit aut numerus primus impar aut
numeri primi imparis potestas ant = 4; quando vero m sit =8 aut a.lunr pote—
stas numeri 2, quatuor omnino dari. Hinc facile ded per VI, si d
D formae (a, b, ¢} sit = + 2°4°B*..., designantibus A, B etc. numeros pri-
mos impares diversos quorum multitudo ===, atque M numerus characteristicus
illius formae: dari ommino vel 2" vel 2"%' vel 2"+* valores diversos expr.
VM (a, b, ¢)(mod. D}, prout pu vel <2 vel =2 vel =>2. Ita e g. haben-
tur sedecim valores expr. y7 (12, 6. —17) (mod. 240), pata (418, T 11),
(18, 429), (418, J2o1), (=18, +109), (H=78, +19), (+78, £ 59),
(478, F61), (478, F-101). D i pli quum ad seq
tia non sit adeo necessaria, brevitatis gratia non apponimus.

VIIL. Denique observamus, si duarum formarum aeqmvalenuum (a, b, ¢c)
@, b, ¢) d i sit D, h isticus M, in
posteriorem per substitutionem e, &, v, &: ex quovis valore expr. \/M (@, b, ¢) ut
(9. ) sequi valorem expr. M (d\, ¥,¢), puta (ag—+yh, 6g43&4). Demon-
strationem quisque nullo negotio eruere poterit.

De compositione formarum.

234.
Poslquam haec de formis in classes genera et ordines distribuendis praemi-
simus, prop les quae ex hls listinctionibus statim defl ex-
plicavimus, ad aliud i a nemine h

& qf
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attactum, de formarum iti In cuius disquisitionis limine, ne posthac

d i seriem i interrumpere oporteat, statim intercalamus

Lesya.  Habentur quatuor series numerorum integrorum

a,d,d...a"; b, ¥, b"...b"; e, ¢, ., d, d', d"...d"

ex aeque multis (puta n—-1) ini. , atque ita p L ut
cd'—dc, cd'—de ete., d"—d'c" ete. ete.

respective sint
= klab'—ba), k(ab'—ba") ete., kia'b—Fa’) etc. ete.
sive generaliter
Fd* —dh et = k@bt — b a®)

denotante k numerwm integrum datum; X, | integros quoscunque inaequales inter O
et n incl. quorum maior w*); praeterea omnes a'b*—b'a* divisorem communem
non habent.  Tunc inveniri possunt quatuor numeri integri a, 6, v, ¢ tales, ut sit

aa4+6b=c, ad4-8F==c, ad4Bb =" et.

ya+-8b=d, yad48F=d, ya'- & = d" ete.
sive generaliter

aad'+BL = ¢, ya'+8b —=a"
quo facto erit
ad—8y =k

Quum per hyp. numeri ab¥—ba, ab"—ba" etc. a'b"—¥b'a" ete. (quorum
multitudo erit — 4 (n—-1)n) divisorem communem non habeant, inveniri pote-
runt totidem alii numeri integri, per quos illis resp. multiplicatis productorum
summa fiat =1 (art.40). Desi hi multipli per (0,1). (0,2 ete.
{1,2) ete., sive generaliter multiplicator ipsius @”b* — ¥ a* per (k, g, ita ut sit

X0, ) (@b —bat) = 1

{Per literam X d aggr ium valorum expressionis, cui praefixa

*} Considerando @ tamquam o,  tamquam 3° etc. _  Ceterum manifesto eadem aequatio valebit

quogue quando A =gu aut k> p.
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est, qui oriuntur tribuendo ipsis &, p omnes valores inaequales inter 0 et n, ita
ut sit p >4k, Quo facto si statuitur

X0k, p) (bt — b = a, X[, p)ldct—ctat) =8

Yl @ @) = 7, X0 )@t —dat = @

hi @, @, y. & proprietatibus praescriptis erunt praediti.

Dem. 1. Denotante » numerum gquemcungue integrum inter 0 et n, erit
aa’ 465 = Xk p) (" 0" — b eta" - at et b — et b
= ¢ E(h p)tdre —d e
= 2 X0, (e d —at
= Yy la b —a) = ¢

i

Et per ealeulum similem eruitur

ya' -8k = d*. Q E P

Il.  Quoniam igitur

& = aa" 4 Bb, o = aa*|- B
fit
S — bt = alat bt — b a®)
similique modo . )
atct—ctat = Blat bt -— b a¥
dh B — Bt = ylat b —brat
a'd* —d"a* = dla*b* — b a¥)

ex quibus formulis valores ipsorum @, §, 7, § multo facilius erui possunt, &i
modo i, ita accipiuntur, ut @"4* —ba* non sit = 0, quod certo fieri poterit,
quia omnes a&"b*—b*a* per hyp. divisorem communem non habent, adeoque
omnes =0 esse nequeunt. — EX iisdem aequationibus deducitur, Itiplicando
primam per quartam, secundam per tertiam et subtrahendo,

(o6 — By, 'a b —bra"? = (a"b*— b aF) e d* — d e, = ka" b — b o)

unde necessario

ab—8y = k& QE S
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235.
Si forma AXX+42BXY+4CYY..F

transit in productum e duabus formis

azx+-2bxy—teyy...f, et drd WAy -y ..

per substitutionem talem
X = pratpay +pyd+pyy
. Y = qua'+qay+qyd+qvy
(guod brevitatis cansa in sequentibus semper ita exprimemus: Si F transit in ff"
per substitutionem p, p', p°, p™; ¢. ¢, ¢", ¢"*)), dicemus simpliciter, formam F
transformabilem esse in ff"; si insuper haec transformatio ita est comparata, ut
sex numeri
g —qp. pg'—qp’. pqd —9p" PO —g P PO —dP" P

divisorem communem non habeant: formam F e formis f, /' compositam voca-
bimus, .

Inchoabi hane disquisitionem a itione lissima, formam F
in ff" transire per substitutionem p, p', p", p"; ¢. ¢, 4", ¢" et quae inde sequan-
tur evolvemus. Manifesto huic suppositioni ex asse aequivalebunt sequentes no-
vem aequationes (i. e. simulac hae aequationes locum habent, F' per substitutio-
nem dictam transibit in ff", et vice versa):

App +2Bpg +Cqg =ad . . .
App +2Bpg +Cq¢ =ad
ApP 2By - Cq'q = cd

Ap P2 Bp T O = e ]

App +B(pg +qp) +Cqq —ab . . . 5]

App” +Bpg" +qp) +Cqq" = ba . . . |6]

ApY B¢ 4P +Cgq = b . 7]

AP+ Bl g P Ceg =t .. 8]

APP PP+ Bl "+ qp P a0+ Clgd g9 = 208 .

*) In hae igitar designatione ad ordinem tum coefficientiom p, p' ote. tum formarum f, f* probe respis
cere oportet. Facile autem perspicietur, si ordo formarum f, f° converlatur ut prior fiat poaterior coef-
cientes p', ¢ cum his p”, " commutandos esse, reliquos suo quemlibet loco manere.
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"Sint determinantes formarum F, f, f* resp. D, d. d'; divisores communes
maximi numerorum A, 2B, C; a, 2b, ¢; o, 20, ¢ resp. M, m, m' (quos omnes
positive acceptos supponimus). Porro determi sex numeri integri ¥, B, €,
o, W, & ita ut sit

a+2Bb+-Cec—=m., Wa4-2WV+C¢ =m'

Denique designentur numeri

pg'—ap. pd—ap’. pO"—ap". PO—a¥. P—av" p—dp”
resp. per P, Q, R, 8, T, U, sitque ipsorum divisor communis maximus positive
acceptus = A&. —  Tam ponendo

App "+ Bpg~+ep )+ Cqq" = bb4-4 . . . . [100
fit ex aequ. 9
Apy+B(pg+qp)+ Cqqg = bb—a& . . .. 11
Ex his undecim aequationibus 1...11, sequentes novas evolvimus *):
DPP =daa. . . . . . .. ... .. [12]
DPR—S) = 2dab . . . . ... .. ... [13]
DPU = dac—(AA—dd'). . . . ... [14]
DR—S8p = ad'bb4-20A—dd) . . . . . [13]
DR—S)U = 24d%bc . . . . .. . .. ... (18]
DUU = d'cc . . o o v o oo . [17]
DQQ =dda . . . . ... .. ... .18
DQ(R4-8) = 2da'¥ . . . . .. e e [19]
DQT = ddd—(AA—dd') . . .. . . [20]
DRAS)? = adb¥+208A—ad) . . . . . [21]
DR+S)T = 2db¢ . . . . . . . . .« .. [22)
DTT =dce . . . . . . . . .. ... (23]

Hine rursus deducuntur hae duae:

“) Origo harum sequationum haec est: 12 ex 3.5 —1.2; 13 x 5.9 =
FEex 88 55 1010 + 11al1 — 14 — 2.3 — 6.7 — 675 16 X 5.8 — 3T — 4, 7 ex 5.8 — 3.4, Deductio
e reli eadem modo ads + si modo i 2,5, 7 cum aequationibus 3, 6, 5 Tesp. commu-
tantur, et religuse 1, 4, 5, 19, 11 codem loco deinceps retinentur, puta 1> ex 6.6 — 1.3 ete.

3




Dirichlet was Gauss’ student and, apparently, he traveled everywhere
with a copy of his advisor’'s Disquisitiones Arithmeticae. He slept with it
under his pillow, hoping that inspiration would come at night and it
would help him understand some of the tougher passages in this book.

Dirichlet’s hard work reading Disquisitiones paid off, and he went on to
interpret Gauss’ composition law of quadratic forms in terms of what
we would today call ideals; and this, in turn, led to the birth of modern
algebra by Dedekind.



(Quadratic) Number Fields



(Quadratic) Number Fields

e.g., K = Q(v/-5).



Richard Dedekind
1831 — 1916




Let d be a square-free integer and let Ky = Q(\/d).
Let Ok, be the ring of integers of K. Then:

[z[vd]  ifd=2,3mod 4,
T\ Z11%9) ifd=1mod4.
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Let Ok, be the ring of integers of K. Then:
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Consider the set of all rings of integers O,:

{Ok, : d square-free} .

How many of these rings are Unique Factorization Domains?
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Consider the set of all rings of integers O,:
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How many of these rings are Unique Factorization Domains?

The ring Oy, is a Dedekind domain, so UFD if and only if Principal
ldeal Domain.




Let d be a square-free integer and let Ky = Q(\/d).
Let Ok, be the ring of integers of K. Then:

[z[vd]  ifd=2,3mod 4,
T\ Z11%9) ifd=1mod4.

Consider the set of all rings of integers O,:

{Ok, : d square-free} .

How many of these rings are Unique Factorization Domains?

The ring Oy, is a Dedekind domain, so UFD if and only if Principal
ldeal Domain.

How many of these rings are Principal Ideal Domains? \




How many of these rings are Principal Ideal Domains? \

We define the class group of O, to measure the failure of being a PID.

Fractional ideals

Cl(Ok,) = Principal Ideals ’

so that two fractional ideals are in the same class (write / ~ J or
[] = [J]) if and only if there is a non-zero a € Ky such that [ = « - J.



How many of these rings are Principal Ideal Domains?

We define the class group of O, to measure the failure of being a PID.

Fractional ideals
Principal Ideals ’

CI(OKd) =

so that two fractional ideals are in the same class (write / ~ J or
[] = [J]) if and only if there is a non-zero a € Ky such that [ = « - J.

Fact: Any ideal / C Z[v/d] can be written
I=s-(ab+Vd),
where s, a, b € Z, and a divides b® — d. Here

(a,b+Vd)={ax+ (b+Vd)y:x,yecZ).



Fact: Any ideal / C Z[/d] can be written
I=s-(ab+Vd),

where s, a,b € Z, and a divides b? — d.

What is the norm of an element ax + (b + v/d)y, for some x, y, € Z?



Fact: Any ideal / C Z[v/d] can be written
I=s-(ab+Vd),
where s, a,b € Z, and a divides b? — d.
What is the norm of an element ax + (b + v/d)y, for some x, y, € Z?

Ng?(ax + (b+ Vd)y) = (ax + (b+ Vd)y) - (ax + (b — Vd)y)
= ax% + a(b — Vd)xy + a(b+ Vd)xy + (b? — d)y?
= a’x? + 2abxy + 4acy?
= a- (ax?® + 2bxy + 4cy?),

where b? — d = 4ac.



Fact: Any ideal / C Z[v/d] can be written
I=s-(ab+Vd),
where s, a,b € Z, and a divides b? — d.
What is the norm of an element ax + (b + v/d)y, for some x, y, € Z?

Ng?(ax + (b+ Vd)y) = (ax + (b+ Vd)y) - (ax + (b — Vd)y)
= ax% + a(b — Vd)xy + a(b+ Vd)xy + (b? — d)y?
°x2 + 2abxy + 4acy?
= a- (ax?® + 2bxy + 4cy?),

( b+\f) ) (ax+(b—2ﬁ)y>

=a-(ax® + bxy + cy?).

where b? — d = 4ac. Then:

Ng" (aer (b+ vd) )



Ng"<ax+(b+\r >=< b+f)> (aXJr(b_z\Fd)y)

=a- (ax® + bxy + cy?).

Let d = —20. The values of f(x, y) = x? 4+ 5y? are norms of elements

in

(1,v/-20/2) = (1,vV/-5) = O,.




Ng"’ (ax+ (b+d) >

< b+f ) <ax+(b—2\fd)y>

=a- (ax® + bxy + cy?).

Let d = —20. The values of f(x, y) = x? 4+ 5y? are norms of elements

in
(1,v/-20/2) = (1,vV/-5) = O,.
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Example

Let d = —20. The values of g(x, y) = 2x2 + 2xy + 3y2 are
(1/2)-norms of elements in

(2,(2+ V—=20)/2) = (2,1 + V=5) = P>,

which is a prime ideal above 2.
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@ Thereis o € Ky such that P> = a - Ok,
@ N(7) = N(a)N(v) for every 7 € P, and some ~y € Ok,.
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Let d = —20. The values of g(x, y) = 2x2 + 2xy + 3y2 are
(1/2)-norms of elements in

(2,(2+vV—=20)/2) = (2,1 + V/=5) = Py,

which is a prime ideal above 2.

Is the ideal P, = (2,1 + +/—5) principal? Is P, ~ Ok,? If so:
@ Thereis o € Ky such that P> = a - Ok,
@ N(7) = N(a)N(v) for every 7 € P, and some ~y € Ok,.
@ 2= N(P2) = N(a)N(Ok,) = N(), so N(a) = 2.



Example

Let d = —20. The values of g(x, y) = 2x2 + 2xy + 3y? are
(1/2)-norms of elements in

(2,(2+vV—=20)/2) = (2,1 + V/=5) = Py,

which is a prime ideal above 2.

Is the ideal P, = (2,1 + +/—5) principal? Is P, ~ Ok,? If so:
@ Thereis o € Ky such that P> = a - Ok,
@ N(7) = N(a)N(v) for every 7 € P, and some ~y € Ok,.
@ 2= N(P2) = N(a)N(Ok,) = N(), so N(a) = 2.
@ Thus, norms from P, equal norms from aOk, implies

zg(Xay) :2'f(xlay/)

so f(x,y) = x? + 5y? and g(x, y) = 2x? 4 2xy + 3y? represent the
same numbers.



Example

Let d = —20. The values of g(x, y) = 2x2 + 2xy + 3y? are
(1/2)-norms of elements in

(2,(2+vV—=20)/2) = (2,1 + V/=5) = Py,

which is a prime ideal above 2.

Is the ideal P, = (2,1 + +/—5) principal? Is P, ~ Ok,? If so:
@ Thereis o € Ky such that P> = a - Ok,
@ N(7) = N(a)N(v) for every 7 € P, and some ~y € Ok,.
@ 2= N(P2) = N(a)N(Ok,) = N(), so N(a) = 2.
@ Thus, norms from P, equal norms from aOk, implies

zg(Xay) :2'f(xlay/)

so f(x,y) = x? + 5y? and g(x, y) = 2x? 4 2xy + 3y? represent the
same numbers. Contradiction!!



THANK YOU

alvaro.lozano-robledo@uconn.edu

http://alozano.clas.uconn.edu

“If by chance | have omitted anything
more or less proper or necessary,
| beg forgiveness,
since there is no one who is without fault
and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.

Alvaro Lozano-Robledo (UConn) Arithmetic Statistics CTNT, May 28-31



