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A theme of Arithmetic Statistics: count a number-theoretic object
relative to another.

For example, every prime p > 2 is either ≡ 1 mod 4
or 3 mod 4. Is there the same number of such primes up to X?

Johann Peter
Gustav Lejeune
Dirichlet
1805− 1859

Dirichlet’s theorem on primes in arithmetic progressions:

Theorem (Dirichlet, de la Vallée-Poussin)
Let a and n be relatively prime natural numbers. Then, there are
infinitely prime numbers p ≡ a mod n. Moreover,

πn,a(X ) ∼ 1
ϕ(n)

·
∫ X

2

1
log t

dt , where ϕ(n) is the Euler phi function.
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Chebyshev’s bias (1853).

(A table in “Prime number races”, by Granville and Martin.)



See also “Unexpected biases in the distribution of consecutive primes”,
by Robert Lemke Oliver and Kannan Soundararajan.



3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, ...

Chebyshev: is it always true that π4,3(X ) ≥ π4,1(X )? Equality at
X = 5,17,41,461, . . ..

Inequality flips for the first time at X = 26833.

Theorem (Littlewood, 1914)
There are arbitrarily high values of X such that π4,1(X ) > π4,3(X ).

Conjecture (Knapowski, Turán, 1962)
The inequality π4,3(X ) ≥ π4,1(X ) holds for 100% of all integers X ≥ 2.

False: {x ≤ X : π4,3(x) ≥ π4,1(x)}/X does not have a limit as X →∞.

Theorem (Rubinstein, Sarnak, 1994)
1

log X

∑
x∈S(X)

1
x
→ 0.9959 . . .

as X →∞, where S(X ) = {x ≤ X : π4,3(X ) ≥ π4,1(X )}.
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Why are primes p ≡ 3 mod 4 slightly more abundant than primes
p ≡ 1 mod 4?

In short: 1 mod 4 is a square, while 3 mod 4 is not, in Z/4Z.
(See Granville and Martin’s Prime Number Races.)

Theorem (Fermat)
An odd prime p is a sum of two squares if and only if p ≡ 1 mod 4.

That is, p = x2 + y2, for some x , y ∈ Z, if and only if p ≡ 1 mod 4.
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A prime p > 2 is of the form p ≡ 1 mod 4, if and only if there exist
x , y ∈ Z such that p = x2 + y2.

Definition
A binary quadratic form is a function of the form

f (x , y) = ax2 + bxy + cy2.

The function f (x , y) = x2 + y2 is an example of a binary quadratic
form... What primes are represented by other binary quadratic forms?
For instance, such as g(a,b) = a2 + 2ab + 2b2?

Put x = a + b and y = b. Then, x2 + y2 = p if and only if
(a + b)2 + b2 = p, if and only if a2 + 2ab + 2b2 = p.

From the point of view of Arithmetic Statistics, we would like to
parametrize binary quadratic forms, according to the primes they
represent.
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x2 + y2 = p ⇐⇒ (a + b)2 + b2 = p ⇐⇒ a2 + 2ab + 2b2 = p.

We changed variables{
x = a + b
y = b

or
(

x
y

)
=

(
1 1
0 1

)(
a
b

)
.

The matrix
(

1 1
0 1

)
could be replaced by any other matrix in SL(2,Z)

and we would still have an invertible change of variables (such that
itself and its inverse have integral coefficients).

Thus, we can define an action of SL(2,Z) on Binary Quadratic
Forms (BQFs) by

M · f
((

x
y

))
= f

(
M ·

(
x
y

))
for any M ∈ SL(2,Z).
Note: BQFs in each orbit represent the same numbers.
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An alternative way to interpret a BQF:

f (x , y) = x2 + y2 =
(

x y
)( 1 0

0 1

)(
x
y

)

or, in general,

f (x , y) = ax2 + bxy + cy2 =
(

x y
)( a b/2

b/2 c

)(
x
y

)
.

If M ∈ SL(2,Z), then

M · f (x , y) =
(

x y
)
·M t ·

(
a b/2

b/2 c

)
·M ·

(
x
y

)
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Example

The quadratic form f (x , y) = x2 + y2 corresponds to the matrix(
1 0
0 1

)
. If we act on f by M =

(
1 1
0 1

)
∈ SL(2,Z), then we obtain

the quadratic form that corresponds to(
1 1
0 1

)t ( 1 0
0 1

)(
1 1
0 1

)
=

(
1 0
1 1

)(
1 0
0 1

)(
1 1
0 1

)
=

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
.

The matrix
(

1 1
1 2

)
corresponds to the form g(a,b) = a2 + 2ab + 2b2.



We are interested in the orbit of a single BQF:

SL(2,Z) · f = {M · f ∈ BQFs : M ∈ SL(2,Z)},

and the set of all orbits:

BQFs /SL(2,Z).

Question

When are two binary quadratic forms f and g in the same class?

For instance, are 11x2 + 5xy + y2 and x2 + xy + 5y2 equivalent?

Look for equivalence class invariants.

A←→ M t · A ·M

... since det(M) = 1, the determinant is invariant!

det(M t · A ·M) = det(M t) · det(A) · det(M) = 1 · det(A) · 1 = det(A).
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Definition
Let f (x , y) = ax2 + bxy + cy2 be a quadratic form, attached to the

matrix
(

a b/2
b/2 c

)
. We define the discriminant of f by

disc(f ) = −4 · det
(

a b/2
b/2 c

)
= b2 − 4ac.

Example

disc(x2 + y2) = −4 · det
(

1 0
0 1

)
= −4.

Example

For d 6= 0, we have disc(x2 − dy2) = −4 · det
(

1 0
0 −d

)
= 4d .

Example

We have disc(x2 + xy + y2) = 4(1/4− 1) = −3.
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)
. We define the discriminant of f by

disc(f ) = −4 · det
(

a b/2
b/2 c

)
= b2 − 4ac.

We can similarly define disc([f ]) for each equivalence class
[f ] ∈ BQFs /SL(2,Z), by

disc([f ]) = disc(f )

where f is any representative of the class [f ].

If f ,g ∈ [f ], then disc(f ) = disc(g). Is the converse true?
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Example

Are 11x2 + 5xy + y2 and x2 + xy + 5y2 equivalent?

disc(11x2+5xy+y2) = 25−4·11 = −19 = 1−4·5 = disc(x2+xy+5y2).

The discriminants coincide... how can we tell if they are actually
equivalent?

Carl Friederich Gauss

Gauss: Every equivalence class of BQFs (with disc = d < 0) contains
a unique reduced representative f (x , y) = ax2 + bxy + cy2 with the
property

−a < b ≤ a ≤ c, and b ≥ 0 if a = c.
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For example, x2 + xy + 5y2 is reduced, but 11x2 + 5xy + y2 is NOT.

Gauss: Every equivalence class of BQFs (with disc = d < 0) contains
a unique reduced representative f (x , y) = ax2 + bxy + cy2 with the
property

−a < b ≤ a ≤ c, and b ≥ 0 if a = c.

Also Gauss: there is an algorithm to find the reduced reprentative.
Steps in the algorithm:

1 If c < a, then
(

x
y

)
=

(
0 −1
1 0

)(
x ′

y ′

)
.

2 If b > a or b ≤ −a, then
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Example

Let f (x , y) = 11x2 + 5xy + y2.

a = 11 > 1 = c. Change variables with M =

(
0 −1
1 0

)
.

(
0 1
−1 0

)
·
(

11 5/2
5/2 1

)
·
(

0 −1
1 0

)
=

(
1 −5/2
−5/2 11

)
,

which corresponds to f2(x , y) = x2 − 5xy + 11y2.

b = −5 ≤ −1 = −a. Let b ≡ −5 ≡ 1 mod 2a. So pick
−1 < b′ = 1 ≤ 1, and b′ = −5− 2 · (−3), so k = −3. So change

variables with M =

(
1 3
0 1

)
.

(
1 0
3 1

)
·
(

1 −5/2
−5/2 11

)
·
(

1 3
0 1

)
=

(
1 1/2

1/2 5

)
,

which corresponds to f3(x , y) = x2 + xy + 5y2. (So equivalent!)
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Gauss: Every equivalence class of BQFs (with disc = d < 0) contains
a unique reduced representative f (x , y) = ax2 + bxy + cy2 with the
property

−a < b ≤ a ≤ c, and b ≥ 0 if a = c.

Example

The forms x2 + 5y2 and 2x2 + 2xy + 3y2 are both reduced and both of
discriminant −20, so they are not equivalent.

Question
Fix a (negative) discriminant d . Let BQFs(d) be the set of all binary
quadratic forms of discriminant d . How many classes are there in

BQFs(d)/SL(2,Z) ?
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Question
Fix a (negative) discriminant d . Let BQFs(d) be the set of all binary
quadratic forms of discriminant d . How many classes are there in

BQFs(d)/SL(2,Z) ?

Suppose d < 0 and f (x , y) = ax2 + bxy + cy2 is reduced, i.e.,
−a < b ≤ a ≤ c, and b ≥ 0 if a = c.

Then,

|d | = −d = 4 · a · c − b2 ≥ 4 · a · a− a2 = 3a2.

Thus, a ≤
√
|d |/3. Hence:

Finitely many options for a.
|b| ≤ a, so finitely many options for b.
d = b2 − 4ac, so c = (b2 − d)/4a is determined by a and b.

This implies that there are finitely many classes in BQFs(d)/SL(2,Z)
when d < 0.
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There are finitely many classes in BQFs(d)/SL(2,Z) for d < 0.

Definition
The number of classes in BQFs(d)/SL(2,Z) is denoted by h(d) and
called the class number of binary quadratic forms of discriminant d.

Note: d = b2 − 4ac, so d ≡ 0 or 1 mod 4.
If d ≡ 0 mod 4, then x2 − d

4 y2 is reduced.

If d ≡ 1 mod 4, then x2 + xy + 1−d
4 y2 is reduced.

These are called the principal forms of discriminant d . In particular,
h(d) ≥ 1 for every fundamental discriminant d (≡ 0 or 1 mod 4).

Example

h(−4) = 1, so all BQFs of discriminant −4 are equivalent to x2 + y2.

h(−20) = 2. All BQFs of disc. −20 are equivalent to x2 + 5y2 or
2x2 + 2xy + 3y2.

Exercise: Show that h(−3) = h(−4) = 1 and h(−20) = 2.
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Back to representing primes by binary quadratic forms...

Proposition

Let gcd(a,b, c) = 1, let p be a prime, and put d = b2 − 4ac.
1 If p = am2 + bmn + cn2 for integers m,n, then d ≡ � mod 4p.
2 If d is a square mod 4p, then there exists a binary quadratic form

of discriminant d that represents p.

For (2), if d ≡ b2 mod 4p, then d = b2 − 4pc, and then the form
px2 + bxy + cy2 represents p for (x , y) = (1,0).

Corollary
If h(d) = 1, then there is a BQF of discriminant d that represents p
if and only if d is a square mod 4p.

Example

A BQF of discriminant −4 (such as x2 + y2) represents p > 2 if and
only if

(
−4
p

)
= 1 =

(
−1
p

)
if and only if p ≡ 1 mod 4.
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1893− 1965

Alan Baker
1939− 2018

Harold Stark
1939−

Theorem (Heegner (1952), Baker (1966), Stark (1967))
The only values d < 0 with h(d) = 1, are

d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163.



Corollary
If h(d) = 1, then there is a BQF of discriminant d that represents p if
and only if d is a square mod 4p.

Theorem (Baker (1966), Heegner (1952), Stark (1967))
The only values d < 0 with h(d) = 1, are

d = −3,−4,−7,−8,−11,−19,−43,−67, and − 163.

Example
Let p be a prime.

(d = −3) x2 + xy + y2 = p if and only if
(
−3
p

)
= 1.

(d = −8) x2 + 2y2 = p if and only if
(
−2
p

)
= 1.

(d = −20)
p = x2 + 5y2 if and only if p = 5 or p ≡ 1 or 9 mod 20.
p = 2x2 + 2xy + 3y2 iff p = 2 or p ≡ 3 or 7 mod 20.
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Before: primes represented by quadratic forms.

Question
What numbers are represented by BQFs?

For instance, let f (x , y) = x2 + y2. Then,

(x2 + y2)(x ′2 + y ′2) = (xx ′ + yy ′)2 + (xy ′ − x ′y)2,

so if n,m are sums of squares, then n ·m is also a sum of squares.
Similarly: (x2 + dy2)(x ′2 + dy ′2) = (xx ′ + yy ′)2 + d(xy ′ − x ′y)2. So
what if f (x , y) = ax2 + bxy + cy2?

Gauss: If f and g are BQFs of discriminant d , then there exists
h ∈ BQFs(d) such that

f (x , y) · g(x ′, y ′) = h(m,n),

where m = m(x , y , x ′, y ′) and n = n(x , y , x ′, y ′) are bilinear forms.
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forms of discriminant −71.

Then,

f (x , y)g(x ′, y ′) = 2m2 + mn + 9n2

which is also of discriminant −71, with

m = xx ′ − 3xy ′ − 2yx ′ − 3yy ′,

n = xx ′ + xy ′ + yx ′ − yy ′.
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Gauss’ composition is extraordinarily complicated, and it takes Gauss
pages to explain how it works in his Disquisitiones Arithmeticae.













Dirichlet was Gauss’ student and, apparently, he traveled everywhere
with a copy of his advisor’s Disquisitiones Arithmeticae. He slept with it
under his pillow, hoping that inspiration would come at night and it
would help him understand some of the tougher passages in this book.

Dirichlet’s hard work reading Disquisitiones paid off, and he went on to
interpret Gauss’ composition law of quadratic forms in terms of what
we would today call ideals; and this, in turn, led to the birth of modern
algebra by Dedekind.
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Let d be a square-free integer and let Kd = Q(
√

d).
Let OKd be the ring of integers of Kd . Then:

OKd =

{
Z[
√

d ] if d ≡ 2,3 mod 4,
Z[1+

√
d

2 ] if d ≡ 1 mod 4.

Consider the set of all rings of integers OKd :{
OKd : d square-free

}
.

Question
How many of these rings are Unique Factorization Domains?

The ring OKd is a Dedekind domain, so UFD if and only if Principal
Ideal Domain.

Question
How many of these rings are Principal Ideal Domains?
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How many of these rings are Principal Ideal Domains?

We define the class group of OKd to measure the failure of being a PID.

Cl(OKd ) =
Fractional ideals
Principal Ideals

,

so that two fractional ideals are in the same class (write I ∼ J or
[I] = [J]) if and only if there is a non-zero α ∈ Kd such that I = α · J.

Fact: Any ideal I ⊆ Z[
√

d ] can be written

I = s · (a,b +
√

d),

where s,a,b ∈ Z, and a divides b2 − d . Here

(a,b +
√

d) = {ax + (b +
√

d)y : x , y ∈ Z}.
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√

d)y , for some x , y ,∈ Z?

NKd
Q (ax + (b +

√
d)y) = (ax + (b +

√
d)y) · (ax + (b −

√
d)y)

= a2x2 + a(b −
√

d)xy + a(b +
√

d)xy + (b2 − d)y2

= a2x2 + 2abxy + 4acy2

= a · (ax2 + 2bxy + 4cy2),

where b2 − d = 4ac. Then:

NKd
Q

(
ax +

(b +
√

d)
2

y

)
=

(
ax +

(b +
√

d)
2

y

)
·

(
ax +

(b −
√

d)
2

y

)
= a · (ax2 + bxy + cy2).



Fact: Any ideal I ⊆ Z[
√

d ] can be written

I = s · (a,b +
√

d),

where s,a,b ∈ Z, and a divides b2 − d .

What is the norm of an element ax + (b +
√

d)y , for some x , y ,∈ Z?

NKd
Q (ax + (b +

√
d)y) = (ax + (b +

√
d)y) · (ax + (b −

√
d)y)

= a2x2 + a(b −
√

d)xy + a(b +
√

d)xy + (b2 − d)y2

= a2x2 + 2abxy + 4acy2

= a · (ax2 + 2bxy + 4cy2),

where b2 − d = 4ac.

Then:

NKd
Q

(
ax +

(b +
√

d)
2

y

)
=

(
ax +

(b +
√

d)
2

y

)
·

(
ax +

(b −
√

d)
2

y

)
= a · (ax2 + bxy + cy2).



Fact: Any ideal I ⊆ Z[
√

d ] can be written

I = s · (a,b +
√

d),

where s,a,b ∈ Z, and a divides b2 − d .

What is the norm of an element ax + (b +
√

d)y , for some x , y ,∈ Z?

NKd
Q (ax + (b +

√
d)y) = (ax + (b +

√
d)y) · (ax + (b −

√
d)y)

= a2x2 + a(b −
√

d)xy + a(b +
√

d)xy + (b2 − d)y2

= a2x2 + 2abxy + 4acy2

= a · (ax2 + 2bxy + 4cy2),

where b2 − d = 4ac. Then:

NKd
Q

(
ax +

(b +
√

d)
2

y

)
=

(
ax +

(b +
√

d)
2

y

)
·

(
ax +

(b −
√

d)
2

y

)
= a · (ax2 + bxy + cy2).



NKd
Q

(
ax +

(b +
√

d)
2

y

)
=

(
ax +

(b +
√

d)
2

y

)
·

(
ax +

(b −
√

d)
2

y

)
= a · (ax2 + bxy + cy2).

Example

Let d = −20. The values of f (x , y) = x2 + 5y2 are norms of elements
in

(1,
√
−20/2) = (1,

√
−5) = OKd .

Example

Let d = −20. The values of g(x , y) = 2x2 + 2xy + 3y2 are
(1/2)·norms of elements in

(2, (2 +
√
−20)/2) = (2,1 +

√
−5) = P2,

which is a prime ideal above 2.
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which is a prime ideal above 2.

Is the ideal P2 = (2,1 +
√
−5) principal? Is P2 ∼ OKd ?

If so:
There is α ∈ Kd such that P2 = α · OKd .
N(τ) = N(α)N(γ) for every τ ∈ P2 and some γ ∈ OKd .
2 = N(P2) = N(α)N(OKd ) = N(α), so N(α) = 2.
Thus, norms from P2 equal norms from αOKd implies

2 · g(x , y) = 2 · f (x ′, y ′)

so f (x , y) = x2 + 5y2 and g(x , y) = 2x2 + 2xy + 3y2 represent the
same numbers. Contradiction!!
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“If by chance I have omitted anything
more or less proper or necessary,

I beg forgiveness,
since there is no one who is without fault

and circumspect in all matters.”

Leonardo Pisano (Fibonacci), Liber Abaci.
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