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1 Introduction

These notes are not as complete or self contained as I would like. For further reading on elliptic curves, the
following books are are recommended:

• “Rational points on elliptic curves” by Silverman and Tate,

• “The arithmetic of elliptic curves” by Silverman,

• “Elliptic curves” by Husemöller.

For further reading on cryptography and especially elliptic curve cryptography, the following books are
recommended:

• “An Introduction to mathematical cryptography by Hoffstein, Pipher, and Silverman,

• “Handbook of elliptic and hyperelliptic curve cryptography” by Cohen, Frey et al.

though the second deserves some caution due to numerous errors. Also Bernstein’s website

• https://safecurves.cr.yp.to/

is indispensable. All of these resources were consulted when developing these notes.
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2 Finite fields

Let p be a prime, and let f ∈ Fp[x] be a polynomial of degree n ≥ 1 and suppose it is irreducible, i.e. f does
not factor as f = gh with g, h ∈ Fp[x] both of degree greater than or equal to 1. Then Fp[x]/(f) is a field,
and is a vector space over Fp with basis

1 + (f), x+ (f), . . . xn−1 + (f),

hence Fp[x]/(f) is a field of pn elements. From now on we will identify x+(f) with α, where f(α) = 0, thus
an arbitrary element in a finite field in characteristic p will look like

a0 + a1α+ · · · an−1α
n−1

where ai ∈ Fp. Also, we will often denote a finite field with q = pn elements as Fq. Since the multiplicative
group F×

q has order pn−1 − 1, then for all β ∈ F×
q we have βq−1 = 1, which means that

βq = β (1)

for all β ∈ Fq. As an immediate consequence it follows that all of the elements of Fq are roots of the
polynomial xq − x, and since Fq has exactly q elements. The polynomial g(x) = xq − x is separable, i.e. it
has distinct roots, since by differentiating:

g′(x) = qxq−1 − 1 = −1

over Fp, hence g(x) cannot share any roots with its derivative, since its derivative does not have roots.
Therefore, by counting, we see that

xq − x =
∏
β∈Fq

(x− β).

What is more, since this is true for any finite field Fq of q = pn elements, and since any irreducible polynomial
of degree n leads to the construction of such a field, then all irreducible polynomials of degree n over Fp are
factors of xp

n − x.
As an additive group Fq is isomorphic to

Z/pZ+ Z/pZ+ · · ·Z/pZ︸ ︷︷ ︸
n times

,

which is clear from the fact that Fq is an Fp-vector space of dimension n. Meanwhile, the multiplicative
group F×

q is cyclic, and thus is isomorphic to

Z/(q − 1)Z.

Example 1. The only irreducible polynomial of degree 2 over F2 is f(x) = x2 + x+ 1. Let α denote a root
of f . Then α2 = α+ 1 (negative signs can be replaced by positive signs in characteristic 2), and

α(α+ 1) = α2 + α = 2α+ 1 = 1,

(α+ 1)2 = α2 + 2α+ 1 = α2 + 1 = α+ 2 = α,

which completely determines the structure of the multiplicative group, hence we see that F×
4 is a cyclic group

of order 3, and either α or α+ 1 are generators. It is also not hard to see that α+ 1 is the other root of f ,
and that

x4 − x = x(x+ 1)(x2 + x+ 1)

over F2.
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The field Fq is a Galois extension of Fp of degree n. The map

σ : β 7→ βp (2)

is an automorphism of Fq, called the Frobenius automorphism, because

(β1 + β2)
p =

p∑
i=0

(
p

i

)
βi1β

p−i
2 = βp1 + βp2

over Fp; the other properties being easier to check. From equation (1), we see that σn is trivial on Fq, and it
is not possible for σm to be on Fq for any m < n, since xm−x is separable giving us a contradiction with the
number of elements in Fq. It follows that F×

q is cyclic as claimed above, since there must exist some β ∈ Fq
such that σn(β) = β but σm(β) ̸= β for m < n. Furthermore, by the Galois correspondence, the degree of a
finite Galois extension must match the order its Galois group, thus by counting, we conclude that

Gal(Fq/Fp) = ⟨σ⟩ ∼= Z/nZ.

Also, the normal subgroups of a Galois group are in one-to-one correspondence with the Galois subextensions.
Since Z/nZ is abelian, all of its subgroups are normal and have order m| | n, and since any finite extension
of Fp is Galois, then it follows that the only subfields of Fq are those of degree m | n.
Example 2. A reducible polynomial of degree 4 over F2 is either

(x2 + x+ 1)2 = x4 + x2 + 1

or has a root in F2. A polynomial in F2[x] has a root in F2 if an only if the constant term is zero, or the
sum of the coefficients is even. It follows that f(x) = x4 + x + 1 is irreducible. If α is a root of f , then α
cannot have order 1 or 3, since it is clearly not in F2, and having order 3 would imply that α belongs to the
subfield F4, which is not possible since α generates F16. We have

α5 = α4α = (α+ 1)α = α2 + α,

so α does not have order 5, hence α generates F×
16. Since α3 has order 5 in F×

16 it does not generate F×
16

and cannot belong to F4, since that would require it to have order dividing 3. Thus it is true that F16 is
generated by α3 over F2 in the sense of fields, while F×

16 is not generated by α3 in the sense of groups. The
action of Frobenius on α is as follows

σ(α) = α2, σ2(α) = α4 = α+ 1, σ3(α) = α8 = (α+ 1)2 = α2 + 1, σ4(α) = α16 = α.

In particular, since field automorphisms induce permutations on the roots of polynomials that split over the
field, then we have all roots of x4 + x+ 1 accounted for:

x4 + x+ 1 = (x+ α)(x+ α2)(x+ α+ 1)(x+ α2 + 1).

Note that, once again we are using the fact that minus signs can be replaced by plus signs, which is possible
in characteristic 2, but not in odd characteristic. Finally, note that since 3 ∤ 4, then F8 is not a subfield of
F16.

Exercises

1. Compute all other irreducible polynomials of degree 4 over F2.

2. Construct F9, and find a generator for F×
9 . Use the Frobenius automorphism to compute the other

roots of the irreducible polynomial for the chosen generator.
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3 Projective Geometry

Let f(x, y) be a polynomial of degree greater than or equal to 1 (the degree being the highest combined power
among the terms of the polynomial). Then the equation f(x, y) = 0 defines a plane curve. Such an equation
is often called an “affine equation.” Degree 1 polynomials define lines, and degree 2 polynomials define
conic sections (possibly degenerate). If two lines are drawn randomly, then we expect them to intersect, but
parallel lines do not. Or so it would seem, but one of the virtues of projective geometry is that even parallel
lines intersect. We accomplish this feat by including extra points, which are often called “points at infinity.”
If f has degree d, then we can projectivize by substituting x = X

Z and y = Y
Z into f(x, y) and multiplying

through by Zd. The result is a “homogeneous” polynomial F (X,Y, Z) of degree d, meaning that all terms
have degree d: there are no higher or lower order terms. Points in the projective plane are defined by triples
(X : Y : Z) such that X, Y , and Z. At least two things should be clear from the substitution we have done:

1. the “points at infinity” previously mentioned are those with Z = 0,

2. Since x = X
Z = rX

rZ and y = Y
Z = rY

rZ for any r ̸= 0, then it makes sense to consider (X : Y : Z) and
(rX : rY : rZ) as representing the same point. In fact, that is precisely what the colons in the notation
(X : Y : Z), since it is a standard notation for ratios. In this sense, a point in the projective plane is
really an equivalence class of triples.

Taking these facts together, we see that the points at infinity can be brought into the form (1 : m : 0) or
(0 : 1 : 0). In particular, any two parallel lines with slope m will intersect at (1 : m : 0) and any two vertical
lines will intersect (0 : 1 : 0). The points at infinity taken together form a line with equation Z = 0. We do
not allow (0 : 0 : 0) to be a projective point: at least one of X, Y , or Z must be non-zero.

Example 3. Consider the hyperbola f(x, y) = x2 − xy − 1. Then

Z2 · f
(
X

Z
,
Y

Z

)
= X2 −XY − Z2

So X2 −XY − Z2 = 0 gives us a projective equation defining the hyperbola. Substituting Z = 0 give us

X(X − Y ) = 0

so the points at infinity are (0 : 1 : 0) and (1 : 1 : 0). The lines X = 0 and X − Y = 0 are the asymptotes of
the hyperbola and the points (0 : 1 : 0) and (1 : 1 : 0) respectively lie on them. Thus the asymptotes of the
hyperbola intersect the hyperbola at infinity.

If F is a homogeneous polynomial degree d and r ̸= 0, then

F (rX, rY, rZ) = rdF (X,Y, Z),

so F (rX, rY, rZ) = 0 if and only if F (X,Y, Z) = 0, which allows us to speak unambiguously about a
projective point P lying on a curve C defined by a homogeneous equation. As such it is often convenient to
write F (P ) = 0 to mean that F (X,Y, Z) = 0 for any triple representing P . It is also convenient to use a
representative of a point P that is as simple as possible, to check whether or not F (P ) is satisfied. By “as
simple as possible” we mean “over the smallest field.” The point (

√
2 : 0 :

√
2) is equivalent to (1 : 0 : 1) by

rescaling, and so we consider the projective point P to be defined over Q since the ratios of X, Y , and Z
are all rational. On the other hand the square root in (

√
2 : 0 : 1) cannot be eliminated by any choice of r,

and if we look at the ratios, we see that the smallest field this point belongs to is Q(
√
2).
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Definition 1. Let C be a curve defined by the homogeneous equation F (X,Y, Z) = 0. If F has coefficients
in K then we say that C is defined over K. A K-rational point on C is a projective point P such that
F (P ) = 0. The set of all K-rational points on a plane curve is denoted by C(K).

If K = C, then C(K) will be infinite by the fundamental theorem of algebra, but for a different choice of
K, then C(K) could be finite, and possibly even empty.

Example 4. Let C be the curve defined by X2 + Y 2 + Z2 = 0. Then C is defined over Q, but C(Q) = ∅.
In fact, C(R) = ∅, because the square of a non-zero real number must be positive, and a sum of a positive
number with non-negative numbers must be positive, hence X = Y = Z = 0, which does not yield a valid
projective point.

It turns out that the asymptotes not only intersect the hyperbola, but are also tangent to the hyperbola
at the points of intersection. We can see this by computing partial derivatives. Let F be a homogeneous
polynomial, and let C be the curve defined by F , and let P be point on the curve, (i.e F (P ) = 0). If

∂F

∂X
(P )X +

∂F

∂Y
(P )Y +

∂F

∂Z
(P )Z = 0

defines a line L, then L is tangent to C at the point P . Why would this equation not define a line? It does
not define a line if it vanishes identically.

Definition 2. Let C be a curve defined by a homogeneous polynomial F . A point P such that

F (P ) =
∂F

∂X
(P ) =

∂F

∂Y
(P ) =

∂F

∂Z
(P ) = 0

is a singularity of the curve C. A curve C with no singularities will be called smooth.

Example 5. The two curves in the graphs below are singular at the origin:

The one on the left is called a “cusp” and the one on the right is called a “node.” The two are clearly
distinguished by the root multiplicity of the function f(x) on the right hand side. Since the singularities do
not occur at infinity it is possible to check that they are singularities without even projectivizing.

For the cusp if F (x, y) = y2 − x3, then
∂

∂x
F (x, y) = −3x2 and

∂

∂y
F (x, y) = 2y.

Clearly all of the functions y2 − x3, −3x3, and 2y evaluate to zero at the origin, hence the curve defined by
F (x, y) = 0 is singular at the origin. See the exercises for the other case.
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Example 6. We have seen in example 3 that (0 : 1 : 0) and (1 : 1 : 0) are points on the hyperbola defined
by F (X,Y, Z) = X2 −XY − Z2. The partial derivatives of F are

∂F

∂X
(X,Y, Z) = 2X − Y, ∂F

∂Y
(X,Y, Z) = −X, ∂F

∂Z
(X,Y, Z) = −2Z,

By evaluating at (0 : 1 : 0), we obtain the line −X = 0, and by evaluating at (1 : 1 : 0) we obtain the
line X − Y = 0. These lines are precisely the asymptotes. Furthermore, the hyperbola is not singular at
(0 : 1 : 0) and (1 : 1 : 0). In fact the hyperbola is not singular at any point, but to see this, we must try to
solve the system

2X − Y = 0, −X = 0, −2Z = 0, X2 −XY − Z2 = 0.

The middle two equations imply that X = 0 and Z = 0. Then by the first equation we must also have
Y = 0, but (0 : 0 : 0) is not a valid projective point.

If a line L is tangent to a curve C at a point P , then we can think of L as intersecting with C at P
more than once. This can be seen algebraically in terms of a polynomial having a factor more than once, or
analytically in terms of a polynomial having derivatives vanishing up to a certain order.

Example 7. The curve C given by y = (x − a)m intersects the line y = 0 (the x-axis) exactly m times at
(a, 0). In terms of projective geometry the homogeneous equations corresponding to C and the x-axis are
(X−aZ)m−Y Zm−1 = 0 and Y = 0 respectively. By eliminating the Y variable we see that (X−aZ)m = 0,
hence is satisfied by (a : 0 : 1) a total of m times. By eliminating the Z variable instead we also see that C
intersects the line at infinity m times at the point (0 : 1 : 0).

Definition 3. The number of times that a curve C intersects with a line L at a point P is called the
multiplicity. In particular if C intersects L with multiplicity 2 at P , then L is tangent to C at P , and if C
intersects L with multiplicity 3 at P , then P is an inflection point.

Naturally this definition also extends to intersections between curves, an in particular we have the fol-
lowing result:

Theorem 1 (Bézout’s theorem). If F1(X,Y, Z) = 0 and F2(X,Y, Z) = 0 are homogeneous equations of
degree d1 and d2 respectively, then the number of points of intersection counted with multiplicity is d1d2.

We have already observed the fact that there is a line at infinity with equation Z = 0. The y-axis
corresponds to the line X = 0, and the x-axis corresponds to the line Y = 0. There is no particular reason
why we need to choose these three lines. Generally speaking, three randomly drawn lines will determine a
projectivization. More precisely, we have the following

Proposition 1. Suppose we are given three lines L1, L2, L3, where Lj is defined by the equation

a1jX + a2jY + a3jZ = 0

in (X : Y : Z) coordinates. Let A = (aij) and suppose furthermore that detA ̸= 0. Then

(U : V :W ) = (X : Y : Z)A

defines a change of variables of the projective plane.
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Example 8. The asymptotes of the hyperbola in example 3 are the lines L1 : X = 0 and L2 : Y −X = 0.
If we take L3 : Z = 0 to be the third line, then detA = 1. The corresponding change of variables gives us
G(U, V,W ) =W 2 −UV and by specializing, G(1, v, w) = 0 leads to the affine equation v = w2, which is the
equation of a parabola. We can also obtain a transformation to the unit circle by completing the square:

X2 −XY − Z2 =

(
X − 1

2
Y

)2

− 1

4
Y 2 − Z2.

So, take L1 : 1
2Y = 0, L2 : Z = 0, and L3 : X − 1

2Y = 0. Then under the change of variables we obtain
G(U, V,W ) =W 2 − U2 − V 2 and so G(u, v, 1) = 0 gives us u2 + v2 = 1.

Both of the methods in example 8 can be generalized:

1. Let C be a plane curve defined over K, and suppose that P ∈ C(K). Then proposition 1 can be
applied to obtain an equation G(U, V,W ) = 0 for C in which the Ud term vanishes. Vanishing of other
terms can be seen in terms of the vanishing of partial derivatives.

2. If f(x, y) = 0 is an equation for a non-degenerate conic section in characteristic different from 2, then
we can always obtain the equation u2 + v2 = 1 by a change of variables.

The maps in proposition 1 are called “projective linear maps.” Projective linear maps are a special case
of birational maps, the difference being that we are not limited by degree 1 maps.

Definition 4. Two curves C1 and C2 defined over a field K are said to be birationally equivalent over K if
there exists a rational map f : C1 → C2 defined over K with a rational inverse g : C2 → C1.

Example 9. We show that the unit circle x2 + y2 = 1 is birationally equivalent to the projective line P1

parametrized by the variable t. By using the equation y = t(x + 1) to eliminate the y-coordinate from
x2 − 1 + y2 = 0, we obtain a quadratic in x, whose roots are the x-coordinates of the points P and Q:

x2 − 1 + t2(x+ 1)2 = 0 =⇒ (x+ 1)(x− 1 + t2(x+ 1)) = 0.

The two factors give the x-coordinates of P and Q respectively, thus
by solving x − 1 + t2(x + 1) = 0 for x and plugging back into y =
t(x+ 1) to find y, we obtain the coordinates of Q:

x =
1− t2

1 + t2
and y =

2t

1 + t2

Since t = y
x+1 , the map is birational.

Exercises

1. Show that y2 = x2(x+ 1) is singular at the origin.

2. Determine all singularities of the curve x2 + y2 = 1 + dx2y2, where d ̸= 0, or 1.

3. Let f(x) be a separable polynomial of degree d. Prove that the curve C : y2 = f(x) is smooth for
d = 2 and 3, but that it is singular only at infinity for d ≥ 4.

4. Let C1 : y2 = f(x) = x4 + ax3 + bx2 + cx, where f is separable (in particular c ̸= 0). Show that
(x, y) = ( 1

cu ,
v
u2 ) defines a birational equivalence, between C1 and C2, where C2 : v2 = g(u) and g(u)

is a monic cubic polynomial.

7



4 Geometry of elliptic curves

Let C be a smooth curve defined by a cubic equation, and suppose that C(K) ̸= ∅. Then, there is a very
nice geometrical way to define addition on C:

1. Choose a point O in E(K) as the identity.

2. Let P and Q be any two points in E(K), and let L1, be the line through them (the line tangent to E
at P if P = Q). Then L1 intersects E at a third point R.

3. Let L2 be the line through O and R. Then the third point of intersection of L2 and E is P +Q.

Smoothness is required here because otherwise the tangent line at a point P may not be well defined.

Example 10. Consider the curve C : y2 = x3 + x2 − 2x + 1. Take O to be the “point at infinity.” It is
easy to check that P = (−2, 1) and Q = (0,−1) are points on the curve. We can compute P +Q as follows.
The line L1 through P and Q, has equation y = −x − 1. We can find the third point of intersection by
eliminating the y variable in the equation for C

0 = x3 + x2 − 2x+ 1− (x+ 1)2 = x3 − 4x = x(x− 2)(x+ 2)

Even though we are left with a cubic, it is easy to factor since two of its roots are known, namely the x-
coordinates of P and Q (the two known points of intersection of C and L1). The third root is the x-coordinate
of the unknown point of intersection, R, and to get the y-coordinate, we plug back into the equation for L1.
Thus we find R = (2,−3). Since O is the point at infinity, the line L2 is vertical and P +Q is the reflection
of R across the x-axis. Thus P +Q = (2, 3). If we want to compute 2P , we first need to compute the slope
at P . By implicit differentiation:

2y
dy

dx
= 3x2 + 2x− 2.

Hence, if P = (x0, y0) is a point on C, then the slope at P is
3x2

0−2x0+1
2y0

. In particular, for P = (−2, 1) we
find that the slope is 3, thus L1 is given by y = 3x+ 7. We can find the x-coordinate of R the same way as
before

0 = x3 + x2 − 2x+ 1− (3x+ 7)2 = x3 − 8x2 − 44x− 48 = (x− 12)(x+ 2)2.

So R = (12, 43), and after reflecting across the x-axis, we find 2P = (12,−43).
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It can be shown that a cubic curve C defined over K with a point O ∈ C(K) is birrationally equivalent
to a curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (3)

where the point O has been moved to (0 : 1 : 0). These days, such an equation is called a “Weierstrass
equation,” even though he preferred the form

y2 = 4x3 − g2x− g3. (4)

Equation (4) makes a great deal of sense analytically if you are working over C, but C has characteristic 0,
and it is not possible to get from the form (3) to the form (4) if K has characteristic 2 or 3, which can be
seen as follows.

If char(K) ̸= 2, then we can complete the square

y2 + a1xy + a3y =
(
y +

a1
2
x− a3

2

)2

− a21
4
x2 − a1a3

2
x− a3

4
,

hence we can bring (4) into the form

v2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4

(5)

where
v = y +

a1
2
x− a3

2
, b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6.

If char(K) ̸= 3 either, then we can eliminate the x2 term from (5), by completing the cube. Let

u = x+
b2
12
, c4 = b22 − 24b4, c6 = b32 − 36b2b4 + 216b6

then
v2 = u3 − c4

48
u− c6

864
, (6)

which differs from (4) only by rescaling. The correct values of c4 and c6 are easy to obtain with sage using
the following code:

R.<b2,b4,b6,x,u>=QQ[]

f=x^3+(b2/4)*x^2+(b4/2)*x+(b6/4)

f(x=u-b2/12)(u=0).factor()

f(x=u-b2/12).derivative(u,1)(u=0).factor()

A plane curve C defined by a cubic equation and possessing a rational point is an elliptic curve if and only
if it is non-singular. What does that mean for equations (3), (5), and (6)? If K is a field with char(K) ̸= 2
and a, b, c ∈ K, then an equation of the type

y2 = x3 + ax2 + bx+ c

is singular if and only if the discriminant of the right hand side is zero. If we apply this to equations (5) and
(6), then we obtain the following discriminants with the help of sage:

R.<b2,b4,b6,c4,c6,x,u>=QQ[]

f1=x^3+(b2/4)*x^2+(b4/2)*x+(b6/4)
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f1.discriminant(x).factor()

Output:

− 1

64
(−b22b24 + b32b6 + 32b34 − 36b2b4b6 + 108b26) (7)

f2=x^3+(c4/48)*x+(c6/864)

f2.discriminant(x).factor()

Output:

− 1

27648
(−c34 + c26) (8)

These formulas are not helpful if char(K) = 2. We cannot divide by 2, and the even coefficients that show
up inside the parentheses in equation (7) end up being zero, which gets rid of useful information. But we
note that 32, 36 and 108 are all divisible by 4, and

b22b
2
4 − b32b6 = b22(b

2
4 − b2b6) = 4b22(a

2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a24),

so if we define
b8 = a21a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a24,

then (7) reduces to ∆
16 , where

∆ = b22b8 + 9b2b4b6 − 8b34 − 27b26. (9)

It turns out that by defining ∆ in this way, (3) is non-singular if and only if ∆ ̸= 0. Since the discriminants
(7) and (8) are equal, then in the case where char(K) ̸= 2 or 3 we also have

∆ =
1

1728
(c34 − c26).

The advantage of (9) is that it holds even when char(K) = 2 or 3, that is if we compute ∆ using (9), and we
discover that 2|∆ or that 3|∆, then the curve (3) is not an elliptic curve in those characteristics respectively.

It is also useful to have a way of classifying elliptic curves up to birational equivalence over an algebraically
closed field. The j-invariant

j =
c34
∆

(10)

does exactly this, but if two elliptic curves E1 and E2 are defined over a field K that is not algebraically
closed, then we may need to pass to an algebraic extension of K to find a birational equivalence.

Example 11. Consider the elliptic curves

E1 : y2 = x3 + bx+ c and E2 : ds2 = r3 + br + cr,

defined over Q, where d is not a square. First, we need to bring E2 into Weierstrass form. If we multiply
though by d3, and substitute d2s = v and dr = u, then we obtain the equation

v2 = u3 + bd2u+ cd3

for E2. If we had d = 1, then we would have the equation for E1, but d is not a square.
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We compute the j-invariant as follows:

a1 = a2 = a3 = 0, a4 = bd2, a6 = cd3,

b2 = 0, b4 = 2bd2, b6 = 4cd3, b8 = −b2d4,
c4 = −48bd2, c6 = 864cd3,

∆ = −16(4b3 + 27c2)d6, j = 1728 · 4b3

4b3 + 27c2
.

Since j does not depend on d, then E1 and E2 have the same j-invariant. The change of variables x = r and
y = s

√
d is a birational map between E1 and E2 defined over Q(

√
d) but not over Q. So long as d is not a

square, we cannot do better than this.

Definition 5. Two elliptic curves E1 and E2 defined over K, are said to be quadratic twists if they are
birationally equivalent over a quadratic extension of K, but not over K.

In the case whereK is a number field (i.e. an algebraic extension of Q) there are infinitely many quadratic
twists up to birational equivalence over K itself. In the example above, simply take prime values for d. But
if K is a finite field, there is essentially only one quadratic twist up to birational equivalence, thus over a
finite field we will usually refer to the quadratic twist of an elliptic curve. In one of the exercises in this
section, it is shown that

E1 : y2 = x3 +Ax2 + x and E2 : By2 = x3 +Ax2 + x, (11)

where A,B ∈ Fp and
(
B
p

)
= −1 are quadratic twists. In elliptic curve cryptography, such curves are called

Montgomery curves. Clearly, a different choice of a quadratic non-residue amounts only to rescaling the
y-coordinate, so there is the birational equivalence right there. Furthermore, for any x ∈ Fp, if f(x) ̸= 0

in Fp, then
(
f(x)
p

)
= ±1, meaning that each x ∈ Fp is an x-coordinate of a point on either E1 or its twist

E2, and if there are two such points on the same curve (i.e. if y ̸= 0), then that x value cannot be the
x-coordinate of a point on the other curve.

We now discuss the general algebraic formulas for adding points on an elliptic curve E with equation (3),
along with some special cases. First, if P = (x0, y0) is a point on E, then the vertical line through P has
equation x = x0. By plugging in, we obtain

y2 + a1x0y + a3y = x30 + a2x
2
0 + a4x0 + a6.

Since P is a point on E, then the right hand side is equal to y20 + a1x0y0 + a3y0. Subtracting this quantity
from both sides and factoring out y − y0 gives us

(y − y0)(y + y0 + a1x0 + a3).

The solution y = y0 corresponds to the point P = (x0, y0), which was already known to us. The other
solution is

−P = (x0,−y0 − a1x0 − a3). (12)

Now suppose we have two points P = (x1, y1) and Q = (x2, y2) on E. If x1 = x2, then the line through P
and Q is vertical, and we have P + Q = O, otherwise the line through P and Q has a well defined slope
given by

λ =

{
3x2

1+2a2x1+a4−a1y1
2y1+a1x1+a3

if P = Q
y2−y1
x2−x1

otherwise.
(13)
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In the case P = Q, λ is the slope of the tangent line at P . When P ̸= Q, the calculation of λ is clear, and if
P = Q then implicit differentiation can be applied to equation (3); see the exercises. The y-intercept of the
line through P and Q is given by

ν =

{
−x3

1+a4x1+2a6−a3y1
2y1+a1x1+a3

if P = Q
y1x2−y2x1

x2−x1
otherwise.

(14)

In the case P ̸= Q, we have y1 = λx1 + ν and y2 = λx2 + ν, so

x2y1 − y2x2 = x2(λx1 + ν)− x1(λx2 + ν) = λ(x2x1 − x1x2) + ν(x2 − x1) = ν(x2 − x1)

and dividing through by x2 − x1. In the case P = Q, we simply solve y1 = λx1 + ν for ν; see the exercises.
The equation for the line L1 through P and Q is therefore

y = λx+ ν. (15)

We use this equation to eliminate y from (3), resulting in a cubic in x, specifically

x3 − (λ2 + a1λ− a2)x2 + (a4 − a3λ− a1ν − 2λν)x− (ν2 + a3ν − a6). (16)

Usually a general cubic would require Cardano’s formula to solve, however we already know two roots: if
P ̸= Q, then x1 and x2 are roots, and if P = Q, then x1 is a double root. The remaining unknown root x3
is the x-coordinate of R. For a cubic in monic form,

(x− x1)(x− x2)(x− x3) = x3 − s1x2 + s2x− s3,

where s1, s2, and s3 are the elementary symmetric polynomials in x1, x2, x3, namely

s1 = x1 + x2 + x3, s2 = x1x2 + x2x3 + x3x1, s3 = x1x2x3.

Since x1 and x2 are known, then choosing any of the lower degree coefficients in (16) will yield a linear
equation in x3, which can be solved, but among the options the x2 coefficient is the easiest to work with,
thus

x3 = λ2 + a1λ− a2 − x1 − x2. (17)

The y-coordinate of R can then be obtained by plugging into (15), thus we have R = (x3, λx3 + ν). Since
P +Q+R = O, then P +Q = −R, hence if y3 denotes the y-coordinate of P +Q, then by (12) we have

y3 = −(λ+ a1)x3 − ν − a3. (18)

In the case where P = Q, the denominator of λ is not just anything, but rather it is recognizably equal to
2v in the derivation of equation (5) above. Therefore, all of the terms in the formula for x3 can be put over
the common denominator

4v2 = 4x31 + b2x
2
1 + 2b4x1 + b6.

Remarkably, the numerator also simplifies, and so the x-coordinate of 2P is

x3 =
x41 − b4x21 − 2b6x− b8
4x31 + b2x21 + 2b4x1 + b6

; (19)
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see the exercises. In the case of Montgomery curves (a1 = a3 = a6 = 0, a4 = 1, a2 = A) when B = 1, this
formula reduces to

x3 =
(x21 − 1)2

4(x31 +Ax21 + x1)

A formula that remains valid even for the twist (see the exercises). If we projectivize, and if P = (X : Y : Z),
then we compute

X(2P ) = (X2 − Z2)2 Z(2P ) = 4XZ(X2 +AXZ + Z2). (20)

Naturally Y (2P ) can be computed using the tangent line at P , but the fact is, if we are only interested
in computing X(nP ), Y (nP ), and Z(nP ), then Y (nP ) can be ignored completely during the calculation.
When we say X(nP ), Y (nP ), and Z(nP ), of course, these values are only determined up to rescaling by
r ̸= 0, but that is a major virtue, because it means we do not need to get Z(nP ) = 1 every time in the
middle of a calculation, but save that step for the very end. Specifically, let nP = (Xn : Yn : Zn) where for
each n the particular choice of representative among the equivalence class of triples is irrelevant, but we may
assume that it is fixed throughout the calculation until possibly the very end, where we compute Z−1

n and
rescale. Then we have the following recursive formula among the X’s and Z’s for nm(n−m)(n+m) ̸= 0:

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2,
Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2.

It may not be immediately clear which values of the indices are needed by the recursion, and indeed there
is usually more than one way, but the systematic approach is to take m− n to be a power of 2. Then, if we
want to compute X(nP ) and Y (nP ), the only values of the indices we need can be found from the binary
expansion of n and its bitwise complement (plus one).

Example 12. Consider the elliptic curve E : y2 = x3 + 71x2 + x over F8147. Let P = (3347 : 4936 : 1).
In order to compute 1630P , we will need all powers of 2, less than or equal to 1630. Also since 1630 =
(11001011110)2, we will need its bit complement plus one 418 = (110100010)2, and all integers formed by
successively dropping off leading ones in the binary expansions of 1630 and 417, that is we will need

606 = (1001011110)2, 94 = (1011110)2, 30 = (11110)2, 14 = (1110)2, 6 = (110)2, 2 = (10)2

162 = (10100010)2, 34 = (100010)2, 1 = (1)2

Then the computation of X1630 and Z1630 proceeds as follows

n m n−m n+m (Xn : Zn) (Xm : Zm) (Xn−m : Zn−m) (Xn+m : Zn+m)

4 2 2 6 (2715:2157) (3519:750) (3519:750) (5555:2775)

8 6 2 14 (5824:1119) (5555:2775) (3519:750) (293:5074)

16 14 2 30 (1870:3852) (293:5074) (3519:750) (2209:6486)

32 2 30 34 (5901:2181) (3519:750) (2209:6486) (4065:5724)

64 30 34 94 (1208:5559) (2209:6486) (4065:5724) (6800:2686)

128 34 94 162 (1681:5854) (4065:5724) (6800:2686) (6848:5259)

256 162 94 418 (4774:3208) (6848:5259) (6800:2686) (3875:3172)

512 94 418 606 (2017:2213) (6800:2686) (3875:3172) (4068:4538)

1024 606 418 1630 (5393:254) (4068:4538) (3875:3172) (3590:6354)
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Then it can be checked that 6354−1 ≡ 986 mod 8147 and 3590 × 986 ≡ 3942 mod 8147, which matches the
x-coordinate of 1630 · P as computed by sage.

In elliptic curve cryptography, an Edwards elliptic curve over a field K of characteristic different from 2
is given by an equation

x2 + y2 = 1 + dx2y2 (21)

where d ̸= 0 or 1. By taking the identity element to be (0, 1), the addition law can be defined by

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
. (22)

If P = (x0, y0), then −P = (−x0, y0). Unlike in the case of Weierstrass equations, there is no need for a
separate doubling formula. Furthermore, though there are points at infinity on the curve, they play no role
in the group law.

Example 13. Consider the curve x2 + y2 = 1 + 12x2y2 over F41. The point P = (13, 33) can be shown to
have order 13. For n = 10, we first express 10 as a sum of powers of 2

10 = 2 + 8,

then we double repeatedly until we reach 8

2P = (16, 34), 4P = (24, 36), 8P = (23, 4),

and finally we add
10P = 2P + 8P = (12, 39).

We now show how construct a birational map from an Edwards elliptic curve to a curve in Weierstrass
form. We begin by putting everything on one side of the equation, and collecting terms:

y2(1− dx2) + x2 − 1 = 0.

If both x and y to be rational over K, then as a quadratic in y it must factor over K, which occurs if and
only if the discriminant is a square. The discriminant is

−4(1− dx2)(x2 − 1) = 4(dx4 − (d+ 1)x2 + 1),

so if we let
z2 = dx4 − (d+ 1)x2 + 1 (23)

then the quadratic formula gives us y = ± z
1−dx2 , but since y and z only occur to even powers, the sign can

be absorbed into z, say, so essentially this defines a birational map between (21) and (23). Now equation
(23) is closely related to the theory of 2-descent of elliptic curves, and from that theory, an elliptic curve

E : s2 = r3 + ar2 + br (24)

is birationally equivalent to a curve of the form

C : z2 = 1− 2ax2 + (a2 − 4b)x4 (25)
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via the maps

E −→ C C −→ E

(r, s) 7−→
(

s

r2 + ar + b
,

r2 − b
r2 + ar + b

)
(x, y) 7−→

(
z − ax2 + 1

2x2
,
z − ax2 + 1

2x3

)
By comparing equations (23) and (25) we see that they are the same when 2a = d + 1 and d = a2 − 4b. If
we then solve for a and b, then (24) can be brought into the form

s2 = r3 +

(
d+ 1

2

)
r2 +

(
d− 1

4

)2

r. (26)

We have thus established birational equivalence to Weierstrass form, however, by just one more step we can

obtain birational equivalence to Montgomery form. Specifically, if we divide through by
(
d−1
4

)3
, then under

the substitution

u =
4r

d− 1
and v =

4s

d− 1

equation (26) becomes

Bv2 = u3 +Au2 + u with A = 2 · d+ 1

d− 1
and B =

4

d− 1
. (27)

Exercises

1. Compute the formulas for (13) and (14) (they are reasonable to do by hand).

2. (Optional) Finish the derivation of (19) with the help of sage or magma.

3. The point P = (0 : 0 : 1) is always on the curve Y 2Z = X3 + AX2Z +XZ2, and has order 2. Apply
the doubling formula (22) to P . Why isn’t the result O? Hint: go back to the derivation of (19) and
read through the steps. There is an assumption made that does not apply to P = (0 : 0 : 1).

4. Compute ∆ and j for By2 = x3 + Ax2 + x. Conclude that such a curve is never an elliptic curve in
characteristic 2, and that the curves E1 and E2 given by (11) are quadratic twists of each other.

5. Compute the j-invariant of an Edwards curve using either equation (26) or (27).

6. Prove that (0,−1) is a point of order 2, and (±1, 0) are points of order 4 on an Edwards curve.

7. Prove that if p ≡ 3 mod 4, then y2 = x3 −Ax2 + x is the twist of y2 = x3 +Ax2 + x.

8. Prove that the doubling formula 20 remains valid for B ̸= 1. The proof should work for char(K) ̸= 2.

9. If we projectivize equation (21) in the usual way with x = X
Z and y = Y

Z , and if we projectivize (26)

with r = R
T and s = S

T , then the map directly from (21) to (26) is given by

R = X

(
(Z2 − dX2)Y − d+ 1

2
X2Z + Z3

)
, S = Z

(
(Z2 − dX2)Y − d+ 1

2
X2Z + Z3

)
, T = 2X3Z.

Show that the points (1 : 0 : 0) and (0 : 1 : 0) do not map to anything. Conclude that the rational
points on (26) including (0 : 1 : 0) are in bijection with the rational points on (21) except for (1 : 0 : 0)
and (0 : 1 : 0).
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5 Torsion

Since an elliptic curve E is a group, and then it makes sense to ask for the order of a point P . The order of
a point P is the least m such that

mP = P + P + · · ·P︸ ︷︷ ︸
m times

= O. (28)

if such m exists, and it is infinite otherwise. We will also introduce the following terminology:

Definition 6. A point P on E such that (28) is satisfied for some m ∈ Z+ is called a torsion point. For
fixed m ∈ Z+, the set of all points of E satisfying (28) is a subgroup of E called the m-torsion of E, which
will be denoted here by E[m].

Note that saying that P is an m-torsion point does not necessarily mean that P has order m, it means
rather that p has order dividing m. There is quite a bit of theory involving the torsion of elliptic curves,
some of which we will be exposed to in the course of these notes. We begin with the simplest cases.

Suppose E is defined over a field K, where char(K) ̸= 2, then E can be expressed by an equation of the
form

y2 = f(x) = x3 + ax2 + bx+ c. (29)

Suppose P is a 2-torsion point on this curve, so 2P = O. By the doubling formula, we see that we get O
precisely when y = 0, which means that we can have a rational 2-torsion point on E if and only if the cubic
on the right hand side of (29) has a rational root. If K = Q, this is easy to check by the rational root
theorem. If K = Fq, this is easy to check by plugging in.

We also see from the doubling formula that the slope of the line tangent to E at P is vertical, a fact
which can also be seen from chord tangent addition as follows. Working backwards, we see that P ∗ P must
be the third point on the line tangent to the curve at O. The line tangent to the curve at O is the line at
infinity, which intersects triply with E at O, hence P ∗ P = O, or in other words the line tangent to E at P
has O as the third point of intersection, which means it is vertical.

From the above description of lattices, it should be clear that E[2] ∼= Z/2Z×Z/2Z. One of the points in
E[2] is O = (0 : 1 : 0), which is always rational. The remaining 3 non-trivial points of E[2] each corresponds
with a root of the cubic x3 + ax2 + bx+ c. Three things can happen:

1. x3 + ax2 + bx+ c has no rational roots (is therefore irreducible over Q), and so E has trivial 2-torsion
over Q, i.e. only O which can be thought of as generating the trivial subgroup,

2. x3+ax2+bx+c has one rational root and one irreducible quadratic factor, and so the rational 2-torsion
of E is isomorphic to Z/2Z.

3. x3 + ax2 + bx+ c has three rational factors, so E has “full 2-torsion” over Q, i.e. all points in E[2] are
rational and so the rational 2-torsion of E is isomorphic to Z/2Z× Z/2Z.

If f(x) is a polynomial with h as a root, then it is easy to see that f(x+ h) has zero as a root (plug in).
By applying this idea to the polynomial on the right hand side of (29), we can obtain a new equation for
E, in the same form, except with c = 0. As a result it is often convenient to bring an elliptic curve with a
non-trivial 2-torsion point into the form

y2 = x3 + ax2 + bx = x(x2 + ax+ b). (30)
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From here, it is easy to check whether or not E has full 2-torsion by checking whether or not the discriminant
of x2 + ax+ b is a square.

We have not yet seen a formula for computing 3P , but the geometric description of the 3-torsion points
is rather nice. If we rewrite 3P = O as 2P + P = O, then we see that P is the inverse of 2P . Since the
inverse of 2P is P ∗ P , then we have P ∗ P = P , which means that the line tangent to E at P actually
intersects triply at P . In other words, P is an inflection point of the curve, so the question becomes “when
does an elliptic curve E defined over Q have rational inflection points.” The inflection points of a curve can
be found by doing implicit differentiation twice, so that gives one strategy of describing elliptic curves with
rational 3-torsion.

There are several theorems that are useful for describing the structure of rational torsion on elliptic curves
defined over Q.

Theorem 2 (Nagell-Lutz). Let E be an elliptic curve defined by an equation of the type (29) with a, b, c ∈ Z,
and suppose that P = (x, y) is a non-trivial rational torsion point on E. The discriminant of f is

disc(f) = a2b2 − 4a3c− 4b3 + 18abc− 27c2

Then x and y are both integers, and either y = 0 or y2| disc(f).

Theorem 3 (Mazur). Let E be an elliptic curve defined over Q. Then the rational torsion subgroup E(Q)tor
is isomorphic to one of the following fifteen groups:

Z/mZ for 1 ≤ m ≤ 10 or m = 2

Z/mZ for 1 ≤ m ≤ 4.

furthermore, each option actually occurs.

Over Q it is possible to get points that have do not have finite order. Over a finite field Fq, of course,
an elliptic curve E can have only a finite number of points, and thus all points have finite order. We will
not spend much time studying the points of infinite order, except to see what happens when reducing such
points mod p.

We conclude this section by introducing the divisions polynomials. Let E be an elliptic curve in Weier-
strass form defined over a field K with char(K) ̸= 2. Let

f0(x) = 0, f1(x) = 1, f2(x) = 1

f3(x) = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8

f4(x) = 2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ (b4b8 − b26).

Let f̃(x) = 4x3 + b2x
2 + 2b4x+ b6, and for n ≥ 5 let fn(x) be defined by the recursive formulas

f2n = fn(fn+2f
2
n−1 − fn−2f

2
n+1)

f2n+1 =

{
f̃2fn+2f

3
n − fn−1f

3
n+1 if n is even,

fn+2f
3
n − f̃2fn−1f

3
n+1 otherwise,

If P = (x, y) is a point on E, then

nP =

{
O if ψn(x, y) = 0(
ϕn(x,y)
ψ2

n(x,y)
, ωn(x,y)
ψ3

n(x,y)

)
otherwise,
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where

ψn =

{
(2y + a1x+ a3)fn if n is even,

fn otherwise,

and
ϕn = xψ2

n − ψn−1ψn+1 and 2ψnωn = ψ2n − ψ2
n(a1ϕn + a3ψ

2
n).

In particular, we see that P ∈ E[n] if and only if ψn(x) = 0. These equations generally become easier to
work with when a1 = a3 = 0, which will always be the case in these notes

For example, suppose a1 = a3 = 0. If n = 2, then we have ψ2 = 2y,

ϕ2 = x(2y)2 − f3 and 2ω2 = f4.

Since 4y2 = f̃ , then
ϕ2(x) = x4 − b4x2 − 2b6x− b8

hence we obtain the same x-coordinate from doubling formula as before, except with slightly less generality.
The y-coordinates match too, though it is best to use the an’s not the bn’s when verifying this.

Exercises

1. Use implicit differentiation to compute ψ3. Check your answer with sage.

2. Let p be an odd prime, and consider E : y2 = x3 +Ax2 + x over Fp, where A ̸= ±2 in Fp.

(a) Prove that if
(
A2−4
p

)
= 1, then E has full 2-torsion.

(b) Prove that if
(
A2−4
p

)
= −1, then has exactly one of x ≡ ±1 mod p as an x-coordinate of a

4-torsion point.

(c) Conclude that ap ≡ p+ 1 mod 4 in both cases.

3. Let A ∈ Z− {−2, 2}. Then E : y2 = x3 +Ax2 + x is an elliptic curve, with non-trivial 2-torsion.

(a) Apply the rational root theorem to ψ3 to prove that E has trivial 3-torsion over Q.

(b) Factor ψ4 over Q. Show that while x = ±1 are roots of ψ4, they generally do not yield corre-
sponding y values in Q.

(c) Show that ψ4 factors completely over Q(
√
A− 2,

√
A+ 2), and moreover that E has full 4-torsion

over this field.

(d) Use your previous observations to find conditions on A such that E does not have a point of order
4 defined over Q. Conclude by invoking Mazur’s theorem, that E(Q) has Z/2Z as its torsion
subgroup.

(e) Solve y2 = x3 +Ax2 + x for A and select x and y appropriately to construct examples of elliptic
curves that having a point P ∈ E(Q) such that P is not a torsion point. Note that for your
previous work to hold, you must have A ∈ Z.
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6 Endomorphisms

Definition 7. Let E be an elliptic curve, O be the identity element. An endomorphism of E is a homomor-
phism

φ : E → E.

When considering the kernel of an endomorphism of an elliptic curve over a field K, we consider all
points in the algebraic closure of that field, i.e. not only elements in K, but also roots of any polynomial
with coefficients in K. One option for an endomorphism is to send everything to O, for which all points
on the elliptic curve are in the kernel of φ, in particular the kernel is infinite, even when K is a finite field
(since the algebraic closure of K is not finite). As it turns out, any other homomorphism of elliptic curves
is surjective and has a finite kernel.

Definition 8. The degree of an endomorphism φ, denoted by degφ, is defined to be | kerφ| if this quantity
is finite, and zero otherwise.

Definition 9. The set of endomorphisms of E defined over a given field L is denoted EndL(E). The set of
all endomorphisms of E is denoted by End(E).

Example 1. It should be clear that for m ∈ Z+ the multiplication by m map is always an endomorphism
of E. If we regard (−1) · P as giving the inverse of P , and 0 · P as sending everything to O, then we obtain
an endomorphism for every integer m, i.e. we have Z ⊂ End(E). Since the kernel of the multiplication by
m map is the m torsion, then we have deg(m) = m2, and it should be clear that holds also for negative m
and zero.

Example 2. If E is defined over Fpn , then the frobenius automorphism σn : x 7→ xp
n

acts trivially on the
coefficients of the elliptic curve, and as an automorphism, it commutes with both addition and multiplication.
It follows that

σn(x3 + a2x
2 + a4x+ a6 − (y2 + a1xy + a3y))

= (σn(x))3 + a2(σ
n(x))2 + a4σ

n(x) + a6 − ((σn(y))2 + a1σ
n(x)σn(y) + a3σ

n(y))

= x3 + a2x
2 + a4x+ a6 − (y2 + a1xy + a3y),

thus if (x, y) is a point on E, then so is (σn(x), σn(y)). Furthermore, since the formulas for addition on E
are defined over Fpn , then the same type of calculation, shows that σn commutes with the addition law,
i.e. σn(P + Q) = σn(P ) + σn(Q). In particular, if mP = O, then mσn(P ) = σnO = O, i.e. if P is in the
m-torsion, then so is σn(P ). For these reasons, σn induces an endomorphism of E, which will be denoted
with ϕn.

The Frobenius endomorphism plays a very important role for elliptic curves. Let E be an elliptic curve
over Fq, where q = pn as usual. Then there exists aq ∈ Z such that ϕn satisfies

(ϕn(P ))2 − aq(ϕn(P )) + qP = 0, (31)

for all P ∈ E(K). Note that aq, q, and 0 are also treated as endomorphisms and − and +, refer to addition
on the elliptic curve. It is striking that aq is related to the number points of E defined over Fq as provided
by the following theorem
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Theorem 4 (Hasse). Let E be an elliptic curve defined over Fq. Then

|E(Fq)| = q + 1− aq

where |aq| ≤ 2
√
q.

If E is defined over Fq then it is also defined over any extension of Fq, in particular over the finite
extensions Fqk . Hasse’s theorem still applies over these extensions, but as it turns out it is not necessary
to compute aq from scratch. One way of looking at equation (31) is to say that ϕn satisfies the polynomial
x2 − aqx + q. If α, β are complex roots of this polynomial, then aq = α + β. When aq is written this way,
then we have

Theorem 5. Let α and β be the complex roots of x2 − aqx+ q. Then for all k ∈ Z+

aqk = αk + βk.

If q = p, then apk can also be calculated with the recursion

apk+1 = apkap − papk−1 for k ≥ 1

where a1 = 2.

The discriminant of x2 − aqx + q is a2q − 4q. If q = p, then
√
p is not an integer, thus the inequality

in Hasse’s theorem is strict, and so a2p − 4p is negative. As a consequence, the roots α and β belong to an
imaginary quadratic number field.

The two examples above provide the easiest examples of endomorphisms, but depending on the elliptic
curve and the base field in question there may be other endomorphisms. Given any two endomorphisms ϕ
and ψ, it can be shown that ϕ ◦ψ and ϕ+ψ are endomorphisms, where + denotes the group law on E. It is
easy to show that these operations give EndL(E) and End(E) a ring structure, hence End(E) is called the
“endomorphism ring” of E. The following theorem describes what can happen in general.

Theorem 6. If E is an elliptic curve, then End(E) is isomorphic to one of the following

1. Z,

2. an order in an imaginary quadratic number field,

3. an order in a quaternion algebra.

In the first case, E is often said to have “trivial endomorphism ring,” in the second case E is said to have
complex multiplication (CM for short), in the third case E is said to be supersingular or superspecial.
The third case can only occur in positive characteristic.

It is important to understand that the base field of E is implied. For example, if E is defined over Q,
only the first two options are possible since Q has characteristic zero, but upon E reducing mod p, thus
changing the base field to positive characteristic, then the third option becomes possible. Indeed, Elkies has
proved the following:

Theorem 7. If E is an elliptic curve defined over Q, then there are infinitely many primes p such that E
becomes supersingular over Fp.
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The term “supersingular” is very misleading, because elliptic curves in Weierstrass form (3) are not
singular at all. Moreover, most modern definitions of elliptic curves include smoothness in the definition, in
spite of the existence of singular models such as y2 = f(x) where f has degree 4. The point is that such
models are nonetheless equivalent to a curve in Weierstrass form, and a curve given by (3) is an elliptic curve
if and only if it is smooth. Unfortunately the term supersingular persists in the literature so it is important
to know both. In these notes we will attempt to use the term “superspecial.”

To determine when an elliptic curve over is superspecial, we have the following result due to Deuring.

Theorem 8. Let p be an odd prime, and let K be a field of characteristic p.

1. Let E/K be an elliptic curve with Weierstrass equation y2 = f(x), where f ∈ K[x] is a separable cubic
polynomial. Then E is superspecial if and only if the coefficient of xp−1 in f (p−1)/2 is zero.

2. Let m = (p− 1)/2 and define a polynomial

Hp(t) =
m∑
i=1

(
m

i

)2

ti.

Let λ be in the algebraic closure of K, and different from 0 and 1. Then the elliptic curve Eλ : y2 =
x(x− 1)(x− λ) is superspecial if and only if Hp(λ) = 0. Additional, if λ ∈ Fp, then |Eλ(Fp)| = p+ 1.

We will not discuss the proof in full detail here, aside from pointing out a corollary. For an elliptic curve
in the form

E : y2 = f(x)

over Fq, if we wanted to compute |E(Fq)| directly, we could simply plug in all possible choices of x and
determine whether or not f(x) is a square. If f(x) = 0, then there is only one corresponding point, with y
coordinate zero. If f(x) is a non-zero square then there are two points. After accounting for the point at
infinity, we have

|E(Fp)| = 1 +
∑
x∈Fp

(
1 +

(
f(x)

p

))
= 1 + p+

∑
x∈Fp

(
f(x)

p

)
,

where
(

·
p

)
is the Legendre symbol. Then by Euler’s criterion, which is really a fact about cyclic groups, we

have (
f(x)

p

)
= f(x)

(p−1)
2 ,

which is now familiar from theorem 8. If we let Ap denote the coefficient of xp−1 in f
(p−1)

2 , then after some
more algebra we obtain

|E(Fp)| ≡ 1 +Ap mod p.

Then by comparing with Hasse’s theorem 4, we find that Ap ≡ −ap. It follows that E is superspecial if and
only if ap ≡ 0 mod p. Then, by looking once again at the bound |ap| ≤ 2

√
p, it follows that ap = 0 if p ≥ 5.

We can generalize all of this to extensions of Fp. Let χ be the composition of the maps

F×
q → F×

q /(F×
q )

2 → {±1},

and extend to zero by defining χ(0) = 0. Then everything works the same as before, and we get the following
corollary.
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Corollary 1. Let q ≥ 5 be odd, and let E be an elliptic curve over Fq given by a Weierstrass equation
y2 = f(x) where f is a separable cubic. Then E is superspecial if and only if aq = 0.

Exercises

1. Let E1 : y2 = x3 + Ax2 + x over Fp where
(
A2−4
p

)
= −1, and let E2 be the twist of E1. Prove that

the trace of E2 is the negative of the trace of E1, so

|E1(Fp)| = p+ 1− ap and |E2(Fp)| = p+ 1 + ap.

2. Let E : y2 = x3 + x, and for p = 11 and p = 13, do the following steps:

(a) Use the Legendre symbol to compute |E(Fp)|.
(b) Use corollary 1 to decide whether E is superspecial over Fp.
(c) Using sage or magma compute roots α and β for x2 − apx + p, then compute ap2 and ap3 using

both of the methods in theorem 5.

3. Let EA : y2 = x3 + Ax2 + x be an elliptic curve in Montgomery form, and let f(x) denote the cubic
polynomial on the right hand side. Use sage or magma to compute the coefficient of xp−1 in f(x)(p−1)/2

for p = 11 and p = 13. Your result will be a polynomial in A over Fp, so then factor it to determine
the values of A, for which EA is superspecial.
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7 Point counting

We have seen earlier that the points on an elliptic curve over Fq can be counted by brute force, using the
Legendre symbol in the case p = q, or χ more generally. However, if q is large, then an efficient algorithm is
needed. The first such algorithm was presented by Schoof. First, recall that

|E(Fq)| = q + 1− aq

where aq is the trace of the Frobenius endomorphism ϕn. The goal is therefore to compute aq directly by
using the properties of ϕq. The characteristic polynomial of ϕq is x

2−aqx+q, and as a linear transformation
ϕq satisfies its own characteristic polynomial, thus

(ϕn)2(Q)− aqϕn(Q) + qQ = O

for all Q ∈ E(Fq). If we take Q ∈ E[ℓ] for some prime ℓ, then ϕn(Q) ∈ E[ℓ] also, which means that aq and
q can be reduced mod ℓ without changing the validity of the above equation. If we can determine aq mod ℓ
for enough primes, so that their product is larger than 4

√
q, then the Hasse bound |aq| < 2

√
q shows that

aq is determined completely.

Example 14. Consider the elliptic curve E : y2 = x3 + 13x2 + x over F167. We already know that E(F167)
contains points of order 4, and p ≡ 3 mod 4, so

ap = p+ 1− |E(F167)| ≡ 0 mod 4.

We could look mod higher powers of 2 if we wanted to, but instead we will compute the action of Frobenius
on the ℓ-torsion for ℓ = 3 and 5. We first need to find the smallest field over which we have full ℓ-torsion.
We can ask sage to try factoring the division polynomials.

EllipticCurve(GF(167),[0,13,0,1,0]).division_polynomial(3).factor()

The output of sage tells us that the polynomial is irreducible and has degree 4, so it splits over F1674 , and if
P is a non-trivial 3-torsion point, then it’s x-coordinate lies in F8874 . That does not mean the y-coordinate
lies in F1674 : plugging into x3 +3x2 + x gives us an element of F1674 , but not necessarily a square, but if we
extend to F1678 , then we are guaranteed to have a square root. It turns out that F1678 is also sufficient for
full 5-torsion.

Now we get sage to compute the action of Frobenius as follows:

p=167;A=13;K.<z8>=GF(p^8);R.<x,y>=K[];E=EllipticCurve(K,[0,A,0,1,0]);f=y^2-(x^3+A*x^2+x)

tor3=[E(v[0],f(x=v[0]).factor()[0][0](y=0)) for v in E.division_polynomial(3).roots()]

P3=tor3[0];Q3=tor3[1];R3=E(P3[0]^p,P3[1]^p);S3=E(Q3[0]^p,Q3[1]^p)

matrix([reduce(lambda x,y:x+y,reduce(lambda x,y:x+y,

...[[ [i,j] for i in range(3) if i*P3+j*Q3==P] for j in range(3)])) for P in [R3,S3]])

Here is an explanation of each line of code.

The first line of code, defines the field K = F1678 , the elliptic curve E, the ring R of polynomials in two
variables over K, and the polynomial f in that ring defining the elliptic curve.
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The second line of code computes half of the non-trivial 3-torsion points. In particular each x-coordinate
only occurs once.

The third line computes a basis. Usually we would need to check that we do not have two points that
belong to the same cyclic subgroup, but we have 3-torsion points and the only way for two distinct non-
trivial 3-torsion points to belong to the same cyclic subgroup is if they are inverses of each other, i.e. the
x-coordinates are the same. Since we have distinct x-coordinates, we can pick any two of the points we
computed. We pick the first two and call them P3 and Q3. We then define R3 and S3 by the action of
Frobenius, making sure to tell sage that these are still points on E.

Line 4, is a brute force calculation of all linear combinations of P3 and Q3 to see which ones give us R3
and S3. The output is the following matrix: [

1 1

1 0

]
.

The trace of this matrix is 1, so we now know that ap ≡ 1 mod 3. We do the same for the 5 torsion, being
a little more careful this time when constructing the basis. We do not need to repeat the first step. The
second step needs to be redone with 5 instead of 3. Then before forming a basis we check that we have a
pair of points not belonging to a cyclic subgroup:

[tor5[1]==n*tor5[0] for n in range(5)]

Output: [False, False, False, False, False]

So tor5[1] and tor5[0] do not belong to the same cyclic subgroup and can be used as a basis. Then
the rest is the same as before after changing every 3 to a 5. The output is the matrix[

0 1

3 0

]
The trace of this matrix is 0, so we now know that ap ≡ 0 mod 5. Note that the matrices we found are
not unique: a matrix always depends on the choice of basis. But the other matrices that can occur are
conjugates of the ones we found, and they have the same characteristic polynomials, meaning in particular
that both the trace and determinant remain the same.

Since 4 · 3 · 5 = 60 > 4
√
167, we have gone far enough to determine the value of ap completely. If we

apply the Chinese Remainder Theorem to the system

ap ≡ [0, 1, 0] mod [4, 3, 5]

we obtain ap ≡ −20 mod 60, where we use symmetric residues to satisfy |ap| ≤ 2
√
167, thus ap = −20. Sage

also has the built-in capability of computing the trace:

EllipticCurve(GF(167),[0,13,0,1,0]).trace_of_frobenius()

Now that we have computed ap, then what is the order of E and its twist? We have

p+ 1− ap = 168 + 20 = 188 = 22 · 47 and p+ 1 + ap = 168− 20 = 148 = 22 · 37

respectively.

Exercises

1. Consider the elliptic curve E : y2 = x3 + 10x2 + x over F7. Extend F7 to a field over which E has
full 3-torsion. Compute the action of Frobenius on the 3-torsion, obtaining an explicit matrix, then
determine the exact trace a7, and the order of both E and its twist.
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8 Koblitz Curves

A Koblitz curve is given by
Ea : y2 + xy = x3 + ax2 + 1 (32)

where a ∈ F2. Let P = (x1, y1), Q = (x2, y2), and P +Q = (x3, y3), then −P = (x2, x2 + y2), and

λ =


x21 + y1
x1

if P = Q

y1 + y2
x1 + x2

otherwise

ν =


x21 if P = Q

x1y2 + x2y1
x1 + x2

otherwise

x3 = λ2 + λ+ a+ x1 + x2 y3 = (λ+ 1)x3 + ν

(33)

In each case, the number of points in F2 is easy to compute by brute force, specifically we find

|E0(F2)| = 4 and |E1(F2)| = 2.

By Hasse’s theorem 4, the trace of frobenius is −1 for E0 and 1 for E1. For E0, ϕ satisfies x2 + x + 2 and
its complex roots are

α =
−1 +

√
−7

2
and β =

−1−
√
−7

2
(34)

and so by theorem 5, we have
a2k = αk + βk

for α and β given by (34), or we can use the recursive formula from the same theorem; see the exercises for
|E1(F3k)|. It is now an easy task to compute the trace of frobenius over arbitrary extensions of F2.

Example 15. For E0, we computed a2 = −1. By the recursive formula we have

a4 = a22 − 2a1 = (−1)2 − 2 · 2 = −3
a8 = a4a2 − 2a2 = (−3)(−1)− 2 · (−1) = 5

a16 = a8a2 − 2a4 = (5)(−1)− 2 · (−3) = 1

a32 = a16a2 − 2a8 = (1)(−1)− 2 · (5) = −11.

On the other hand since α and β are complex conjugates, when expanding αk or βk using the binomial
expansion theorem, we only need to consider the real terms, since the imaginary terms cancel. Moreover the
real parts of αk and βk are equal, thus for k = 5

α5 + β5 =
2

25

(
−1 +

(
5

2

)
7−

(
5

4

)
72
)

=
1

16
(−1 + 10 · 7− 5 · 49) = −176

16
= −11.

Then by Hasse’s theorem
|E0(F32)| = 32 + 1− (−11) = 44 = 22 · 11.

The ease of calculating the trace of frobenius is part of the idea behind Koblitz curves. Another part of
the idea comes from the fact that we can use the frobenius endomorphism to speed up point addition. The
frobenius endomorphism ϕ of the elliptic curve E0 satisfies

ϕ2 + ϕ+ 2 = 0.
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For n ∈ Z+, consider the binary expansion n = (nmnm−1 · · ·n1n0)2. We replace each 2i, by (−ϕ−ϕ2)i, then
apply the binomial expansion theorem and repeat with the coefficients until we have

n =

m∑
i=0

ni(−ϕ− ϕ2)i =
r∑
j=0

bjϕ
j ,

for some r where bj ∈ {−1, 0, 1} for all j. Since ϕd acts trivially on F2r , then we can reduce r to a value less
than d, when acting on points defined over F2r

Example 16. Take n = 6. Then

6 = 2 + 22 = −ϕ− ϕ2 + (−ϕ− ϕ2)2 = −ϕ− ϕ2 + ϕ2 + 2ϕ3 + ϕ4

= −ϕ+ (−ϕ− ϕ2)ϕ3 + ϕ4 = −ϕ− ϕ5.

As we have seen in example 15, we have |E0(F32)| = 22 · 11. The point

P = (α3 + α2 + 1, α3 + α+ 1)

is a point of order 11 on E0, where α satisfies the irreducible polynomial x5 +x2 +1. Also, since x5 + x2 +1
divides x32 − x but does not divide x, then α also satisfies α31 = 1 in F32. We compute

ϕ(P ) = ((α3 + α2 + 1)2, (α3 + α+ 1)2) = (α6 + α4 + 1, α6 + α2 + 1)

= (α(α2 + 1) + α4 + 1, α(α2 + 1) + α2 + 1)

= (α4 + α3 + α+ 1, α3 + α2 + α+ 1)

and since ϕ5 acts trivially on F32 then it acts trivially on P . Therefore

6P = −ϕ(P )− P = −(α4 + α3 + α+ 1, α3 + α2 + α+ 1)− (α3 + α2 + 1, α3 + α+ 1)

= (α4 + α3 + α+ 1, α4 + α2) + (α3 + α2 + 1, α2 + α) = (α, α4 + α3 + α2 + 1)

where the last step is obtained with the help of

λ =
α+ α4

α+ α2 + α4
= α2 and ν =

α3 + α2 + α+ 1

α+ α2 + α4
= α4 + α2 + α+ 1.

None of what we have done is really unique to characteristic 2. In odd characteristic, we could still begin
with |E(Fp)| over a small field Fp, compute α and β, compute the trace of frobenius for Fpk , etc. But once
we get to the point of representing n in base p, we can only get down to bj ∈ {1− p, . . . ,−1, 0, 1, . . . p− 1}.
As a consequence, we still get a speedup for odd p, but we get less of one as p grows, so in the sense of giving
the best speedup, Koblitz curves are optimal.

Exercises

1. Compute roots α and β of x2 − x + 2. Then compute a8 with α3 + β3 and by the recursive formula.
Let ℓ be the largest prime dividing |E1(F8)|. Use sage or magma to find a point P of order ℓ on E1

defined over F8. Finally, compute 5P both with and without the frobenius endomorphism.
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9 Divisors

Let C be a curve defined over a field K, and let f : C → P 1
K be a rational function. Suppose that f has zeros

at P1, P2, . . . Pr, with orders e1, e2, . . . er respectively, and poles at Q1, Q2, . . . Qs with orders d1, d2, . . . ds
respectively. Then the divisor of f is the “formal sum”

div(f) = e1[P1] + e2[P2] · · ·+ er[Pr]− d1[Q1]− d2[Q2] . . .− ds[Qs]. (35)

We call this a formal sum because the Pi and Qi are regarded as independent objects, somewhat like
independent variables. For example if P1 = (1, 0), and n1 = 3, then n1[P1] does not mean (3, 0), it means
something more like we have three copies of (1, 0)...but we allow negatives too. Similarly addition and
subtraction are not meant to suggest that we are adding or subtracting coordinates. The coefficients in the
formal sum above have an important meaning, since they carry information about the zeros and poles of the
function f , and so trying to combine them would be disastrous, since we would loose that information.

As an example, consider the ordinary rational function f(x) = x2(x− 1). Then f vanishes at the points
x = 0 and x = 1 with orders 2 and 1 respectively, and has a pole at infinity with order 3. Why does f has a
pole at infinity with order 3? This is easiest to see by projectivizing f . Let x = X0

X1
. Then

f

(
X0

X1

)
=
X2

0 (X1 −X0)

X3
1

= X2
0 (X1 −X0)X

−3
1 ,

and now the factor 1/X3
1 makes sense for a pole of order 3. Furthermore, by exponent rules we see that

it makes sense to treat a pole of order 3, as vanishing with order −3. Using the projective coordinates
(X0 : X1), the points x = 0 and x = 1 are (0 : 1) and (1 : 1) and the point at infinity is (1 : 0), so the divisor
of f is

div(f) = 2[(0 : 1)] + [(1 : 1)]− 3[(1 : 0)].

Thus we see that the total number of zeros is 3 and the total number of poles is 3 (counting with multiplicity
in each case). This is a general fact of rational functions. If f = g/h is a rational function where g and h are
polynomials, and if we define the degree of f to be the maximum of the degrees of g and h, then we have
the following

Proposition 2. A rational function f of degree n ≥ 1 takes on each complex value exactly n times, counting
with multiplicity, and also has n poles counting with multiplicity.

Proof. If λ ∈ C is arbitrary, then the numerator of f −λ has exactly n roots by the fundamental theorem of
algebra, and the fact that there are n poles as well is clear by projectivizing.

Thinking of f as a map P1
C → P1

C, then this proposition says that f is surjective, and if P is an arbitrary
point in the image, then |f−1(P )| ≤ n. Equality holds in the case where all points in the set f−1(P ) have
multiplicity 1. As a consequence, it is often useful to think of the degree of a map in terms of the cardinality
of pre-images of individual points. This proposition remains true in the case where C is a non-singular
algebraic curve. 1

1From an analytic perspective this can be proved by Stokes’ theorem (Calc III). The complex algebraic curve C is viewed
as a real surface (by ignoring the complex structure). The surface is compact so its boundary is empty and when computing
the integral of the function f − λ over the surface, Stokes’ theorem gives equality with an integral over the boundary. The
boundary integral vanishes since the domain is empty.

27



As a consequence of this proposition we see that given a rational function f , the sum of the coefficients
of its divisor div(f) must be zero. We often consider more general divisors

D = n1[P1] + n2[P2] + · · ·+ nk[Pk] (36)

with prescribed multiplicities ni, but such a divisor cannot possibly belong to a rational function f , unless

n1 + n2 + · · ·nk = 0.

This provides the motivation for the degree of a divisor D of the form (36), which is defined as

deg(D) = n1 + n2 + · · ·nk.

Thus if f : C → P1
K is a rational function, then deg div(f) = 0. The converse, however is not necessarily

true. It is true if C is P1
K , but if C is an elliptic curve, then there are no rational functions that vanish at

only one point and have only one pole, each with multiplicity 1. For example, consider the elliptic curve

E : y2 = x(x− 1)(x− λ)

where λ is different from zero and 1. Then the function defined f(P ) = x(P )−a, by taking the x-coordinate of
the point P on C, is a rational function. To determine the corresponding divisor, we consider the intersection
of x = a with the curve E. Generally, there are two points on E with x-coordinate equal to a, which are
additive inverses of each other say Q1 and Q2. The exceptional case occurs when a = 0, 1, or λ which case
x = a is tangent to the curve, in other words f vanishes at one of the 2-torsion points say Q with multiplicity
2. By projectivizing, we see also that f has a pole of order 2 at O = (0 : 1 : 0), thus the divisor is

div(f) =

{
[Q1] + [Q2]− 2[O] if a is different from 0, 1, or λ

2[Q]− 2[O] if a is different from 0, 1, or λ

so even though f(P ) = x(P )− a is linear as a function from P2 to P1, if we take an arbitrary point in P1, its
pre-image is infinite and we do not get a finite pre-image until we restrict f to a curve. When restricting f , to
the elliptic curve E, we see that the pre-images points generally have a cardinality of 2 and thus f : E → P1

has degree 2.
On the other hand, if we take a line that is not vertical, then we will get three points of intersection with

E, which defines a rational function f : E → P1 of degree 3. In particular, the horizontal line y = 0 intersects
with the three 2-torsion points. Since the 2-torsion points add to O, then we see another example where the
points on E at which a given rational function vanishes add up to O when added with their multiplicities
(using the addition law on the elliptic curve), and this generalizes:

Proposition 3. Let E be an elliptic curve defined over K, and let P1, P2 . . . Pk be points on E, such that

n1P1 + n2P2 + · · ·nkPk = O,

then there exists a rational function f : E → P1
K such that

div(f) = n1[P1] + n2[P2] + · · ·nk[Pk]− (n1 + n2 + · · ·nk)[O].
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10 Weil pairing

The Weil pairing is defined as follows.

Definition 10. Let P,Q be m-torsion points of E, so mP = mQ = O, hence by proposition 3, there exist
rational functions fP and fQ, with divisors

m[P ]−m[O] and m[Q]−m[O]

respectively. Let S be any point of E such that S /∈ {O, P,−Q,P −Q}. Then the Weil pairing of P and Q
is

em(P,Q) =
fP (Q+ S)fQ(−S)
fP (S)fQ(P − S)

.

The Weil pairing has some remarkable properties, summarized in the following theorem

Theorem 9. 1. em(P,Q) is always an m-th root of unity.

2. em(P,Q) is bilinear (i.e. it is linear in both components).

3. em is alternating (i.e. em(P, P ) = 1 for all P ∈ E[m])

4. em is non-degenerate (i.e. if em(P,Q) = 1 for all Q ∈ E[m], then P = O)

As a consequence, if the Weil pairing can be constructed, then the discrete log problem on E can be
reduced to the discrete log problem on F×

q (which is much easier to solve). We show now how this can be
done by an algorithm due to Victor Miller.

Algorithm 1. Let E be an elliptic curve, and let P = (xP , yP ) and Q = (xQ, yQ) be non-trivial points of
E. Let λ be the slope of the line L connecting P and Q (the slope of the tangent line at P if P = Q). Define
the rational function

gP,Q =

{
y−yP−λ(x−xP )
x+xP+xQ−λ2 if L is not vertical

x− xp if L is vertical,

which has divisor [P ]+[Q]− [P+Q]− [O]. Then a rational function fP with divisor m[P ]− [mP ]−(m−1)[O]
can be constructed as follows.

Let m = (mn−1 . . .m1m0)2 be the binary expansion of m.
Initialization step: T ← P, f ← 1, i← n− 2
While i ≥ 0

f ← f2 · gT,T
T ← 2T
If mi = 1

f ← f · gT,P
T ← T + P

i← i− 1
Return f

Note, when implementing this algorithm over a finite field, some care needs to be taken in the definition
of gP,Q. Intuitively we like to think of vertical lines as corresponding to λ =∞, however a straight forward
implementation of λ over finite fields will probably yield λ = 0 instead. Since we also get λ = 0 for horizontal
lines, it is not practical to use the value of λ alone as a strategy to check whether L is vertical.
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Example 17. The elliptic curve E : y2 = x3 + x over F43 is superspecial, and has full 11-torsion over
E(F432). E[11] has generators

P = (13, 24) and Q = (21α+ 6, α+ 23)

where α2 − α+ 3 ≡ 0 mod 43. Since 11 = (1011)2, then n = 4 and the steps of Miller’s algorithm for fP are
broken down as follows

i mi fP T

1 P

2 0 gP,P 2P

1 1 g2P,P g2P,2P 4P

g2P,P g2P,2P g4P,P 5P

0 1 g4P,P g
2
2P,2P g

2
4P,P g5P,5P 10P

g4P,P g
2
2P,2P g

2
4P,P g5P,5P g10P,P 11P

and likewise for fQ, simply by replacing P with Q. Note, that P and Q are not 2-torsion points, nor are the
other multiples of P and Q occurring in the algorithm. However, 10P + P = O and 10Q+Q = O, so only
in that case the tangent line is vertical. The point S = (42, 16) has order 4, thus is suitable for computing
the Weil pairing. We will forgo the full calculation, but we will show the computation of gP,P (Q+S), which
is one of the factors in fP (Q+ S). Since

λ =
3 · 132 + 1

2 · 24
=

508

48
= 7

in F432 , then

gP,P =
y − 24− 7(x− 13)

x+ 13 + 13− 72
=
y − 7x− 19

x+ 20
.

We compute Q+ S using addition on the elliptic curve, and the result is (10α+ 5, 18α+ 3), so by plugging
in

gP,P (Q+ S) =
(18α+ 3)− 7(10α+ 5)− 19

(10α+ 5) + 20
= 5α+ 16.

Thankfully, sage has the facility to compute the Weil pairing in full. We do this with the following code:
K.<z43>=GF(43^2);E=EllipticCurve(K,[0,0,0,1,0])

P=E(13,24);Q=E(21*z43+6,z43 + 23)

P.weil_pairing(Q,11)

Output: (9*z43 + 19)

meaning e11(P,Q) = 9α+19. If we reverse P and Q, then we get e11(Q,P ) = 34α+28. Both are 11th roots
of unity in F432 , in fact that is why we need F432 and not F43, because 11 needs to divide the order of the
multiplicative group. It is also true that e11(P,Q) and e11(Q,P ) are multiplicative inverses of each other.

Definition 11. Let E be an elliptic curve over Fq and let ℓ be the largest prime dividing E(Fq). Then the
embedding degree is the smallest integer k such that ℓ|qk − 1. That is to say, k is the order of q mod ℓ.

Exercises

1. Using the same data above, compute g2P,2P (S)

2. Use sage to construct the Weil pairing of y2 = x3 + 6x2 + x over F832 with ℓ = 7.
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11 Elliptic Curve Diffie-Hellman

The general setup is this. Let E be an elliptic curve defined over a finite field Fq. Let ℓ be the largest prime
dividing |E(Fq)|, and let Q be a point of order ℓ on E. To generate a public and private key pair, Alice must
must choose a random number KA from {2, . . . , ℓ− 1} used for encryption. The point PA = KA ·Q is then
the public key. The decryption key is just the inverse of KA mod ℓ, and is computed by an extended gcd
algorithm.2

Example 18. Alice and Bob wish to communicate using the elliptic curve E : y2 = x3+71x2+x over F8147

from example 12. The point P = (3270 : 7691 : 1) has order ℓ = 2081, which is the largest prime dividing
E(F8147). Alice and Bob each go onto random.org to pick a random number.

1. Alice gets KA = 1779 which is her secret key. She computes PA = 1779P = (6472 : 3278 : 1), which is
her public key.

2. Bob gets KB = 1425 which is his secret key. He computes PB = 1425P = (2516 : 5975 : 1), which is
his public key.

Alice and Bob do not reveal KA and KB to each other, but they do reveal PA and PB .

1. Using Bob’s public key and her secret key, Alice computes 1779PB = (2718 : 5748 : 1).

2. Using Alice’s public Key and his secret key, Bob computes 1425PA = (2718 : 5748 : 1).

Of course in view of example 12, Alice and Bob really only do this calculation using X and Z. In particular
Alice only needs to send 6472, Bob, and he only needs to send 2516 to Alice. But this example was computed
with sage. While there are protocols for encryption and decryption in Diffie-Hellman key exchange, Alice
and Bob already agree on a common secret number, namely 2718. This number can be used to set up a key
for a symmetric encryption algorithm such as AES, which is significantly faster.

Considering the heavy load that internet servers experience, and the general expectation that online
communication should be practically instant, a great deal of effort has been spent to speed up the elliptic
curve point addition algorithms and also to limit the amount of data that is sent. For example, As we have
seen above, Koblitz curves are designed to have fast addition with the help of the frobenius endomorphism,
and indeed he was one of the people to initiate the study of elliptic curve cryptography. At one time people
thought that using the extra endomorphisms available to superspecial curves would be helpful, but eventually
it was recognized that the low embedding degree of such curves made it easier to construct the Weil pairing.
Once the weil pairing is constructed, the problem of breaking the encryption can be transfered to F×

qk
where

it is easier to solve (see the MOV attack below).
Since PA is a point on E, then we generally would expect that both the x and y-coordinates need to

be sent. Numerous “point compression” algorithms have been published and patented, which allow for only
a small number of bits of the y-coordinate to be sent. Many of the patents apply only in characteristic 2.
However, as Bernstein has observed, if one wishes to avoid the patents, the easiest approach is simply to
work with elliptic curves over Fp, with p a sufficiently large odd prime, and avoid sending the y-coordinate
altogether (for curves in Weierstrass form such as Montgomery curves). For Edwards curves with the addition
law as specified by (22), we saw that if P = (x0, y0) then −P = (−x0, y0), so it would be the x-coordinate
that does not need to be sent instead.

2Probably Schönhage’s extended binary gcd, which has subquadratic efficiency.
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For concreteness, consider the NIST recommendations for key strength:

AES RSA DH ECDH Hash (SHA or SHA3)

128 3072 3072 256 256

192 7680 7680 384 384

256 15360 15360 512 512

All values in bits.

If we are doing ordinary Diffie Hellman with an N bit prime, the process of modular exponentiation
(in uniform time) requires 4(N − 1) multiplications.3 The fastest known multiplication algorithm has time
complexity O(N logN log logN), thus the total time complexity of exponentiation is O(N2 logN log logN),
with an additional factor of 4 incurred. In the case of elliptic curves, the amount of multiplication and
addition required depends largely on the model of the elliptic curve, and on the size of the coefficients. For
Montgomery curves with small coefficients it is possible to get down to 15 big number multiplications, and
again for an N bit prime there are N−1 steps, so we get the same time complexity, and for fixed N the ratio
of the factors is 4/15. However, the number of bits required for DH and ECDH are different, 3072/256 = 12,
and because of the N2 we get a speed improvement of 122, so at the chosen level of security the elliptic curve
algorithms are roughly (4 · 122)/15 = 38.4 times faster. The higher levels yield even better improvement
factors. Furthermore, by sending only the x coordinate, only 256 bits of data are sent instead of 3072 bits,
which is also a significant improvement in terms of data transmission. We conclude, therefore, that the
patented point compression algorithms are totally beside the point.

The basic criteria for safety for elliptic curves in Bernstein’s view, and mine, are as follows.

Safety criteria. Choose a large odd prime p and an elliptic curve E over Fp, satisfying all of the
following conditions

1. The largest prime ℓ dividing E(Fp) is greater than some specified bound. This is computed by first
computing ap using the SEA algorithm, then factoring p+ 1− ap.

2. The embedding degree is greater than some specified bound. This is computed as the multiplicative
order of p mod ℓ.

3. The CM discriminant is greater than some specified bound in absolute value. This can be check by
verifying that the square-free part of 4p− a2p is greater than that bound.4

4. The addition law on E must be implemented in “uniform time,” meaning that on average the com-
putation time is the same, even when comparing with trivial or pathological cases like adding the
identity.

5. There should be no way to manipulate the constants in the elliptic curve making it easier to attack.

3We first square repeatedly N − 1 times, and then multiply N − 1 times, each time we square or multiply we must also
reduce mod p, which takes an extra multiplication (by 1/p) and subtraction, for a total of 4(N − 1) multiplications and N − 1
subtractions). Since subtraction is asymptotically faster than multiplication, it can be ignored, and the computation of 1/p is
universal within the problem, and thus can be precomputed once and for all.

4The exact value of the discriminant depends on whether or a2p − 4p ≡ 1 mod 4. If this congruence holds then D is the

squarefree part of a2p − 4p, otherwise we multiply the squarefree part by 4. But D is always negative, and multiplying by 4 only
makes it easier for the chosen bound to be satisfied.
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The last two criteria deserve some explanation. If addition for an elliptic curve is implemented in a way
that has detectable biases in speed, then an attacker could observe how long the calculations take and use
the biases to determine the secret key. This is a universal problem in cryptography not just for elliptic
curves. Say that you compute nP , by writing n in base 2, double repeatedly to get 2kP for all k, and then
add only the points needed. Then

15P = 8P + 4P + 2P + P and 9P = 8P + P

take a different number of operations, and therefore a different amount of time. Thus an attacker can tell
how many zeros occur in the expansion for n. To get the same number of operations, you need to throw in
the identity for each occurrence of 0 in the binary expansion of n, like this:

9P = 8P +O +O + P.

So when it was said above that modular exponentiation takes 4(N − 1) multiplications, this is really exact
in uniform time, since it must always take the same number of operations. Uniformity in time is possible to
achieve for all elliptic curves, but it is easier for some than for others. In the case of Edwards curves, we
are helped by the fact that there is no need for a separate doubling formula. For curves where the doubling
formula is separate from the general formula, we must take exquisite care that amount of doubling and
addition used is the same every time. As example 12 shows, this is true for Montgomery curves, so long as
n is chosen so that 1 is the first and last bit in the binary expansion of n.

The issue of constants that can be manipulated is somewhat of a tricky question to pin down. We will
illustrate the issue with an example of how the constant b can be manipulated for curves of the type

y2 = x3 − 3x+ b.

What is alarming is that it is precisely curves of this type that NIST has included in their list. Granted
their list is quite old and outdated by now. Montgomery curves do have some threat of manipulation if only
one of E and its twist is safe (see the exercises).

When looking at the remaining criteria, it would seem that Koblitz curves are ruled out by the condition
that p is large. If we were to drop the condition of large p, then Koblitz curves do very well with large ℓ
and large embedding degree, but they still fail the CM discriminant criterion. Is this really such a problem?
After all, every elliptic curve over a finite field has CM, because of the Frobenius endomorphism, so then
why should the size of the discriminant matter? The speedups of the Frobenius endomorphism benefit both
the person trying to secure their communications as well as the attacker, and in practice it would seem that
the attacker gets somewhat of an edge. The speed advantage diminishes as the prime p increases in size, as
pointed out already at the end of the section on Koblitz curves. If we are increasing p anyway, we might as
well make it large enough so that all arithmetic is done over Fp. Since the Frobenius endomorphism acts
trivially over Fp, then that would seem to take them completely out of the picture. But that if the Frobenius
endomorphism is completely out of the picture over Fp, then why should the discriminant matter? Sure,
large p makes sense, but again, why the discriminant? The only reason that seems to make sense would
be the existence of an efficient attack by lifting to a number field. No such attack is currently known, but
there is also no known proof that such an attack can’t exist. As such, the safety criteria take the cautious
approach.

By now it should be clear that the design of a secure cryptosystem requires an understanding of everything
that could possibly go wrong. For this reason we turn our attention now to attacks on elliptic curves, then
we conclude the section by describing how to construct curves meeting the safety criteria.
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11.1 Manipulating constants

It was mentioned above that the constant b in E : y2 = x3 − 3x + b can be manipulated in an attack. The
reason is that the constant b does not occur in the addition algorithms at all. If P = (x1, y1) and Q = (x2, y2)
are points on E the slope of the line through P and Q (tangent to the curve if P = Q) is

λ =

{
3(x2

1−1)
2y2

if P = Q
y1−y2
x1−x2

otherwise.

Consider the equation for the line through P and Q in point slope form: y− y1 = λ(x−x1). By subtracting
the equations y2 = x3 − 3x+ b and y21 = x32 − 3x1 + b, b is completely eliminated:

y2 − y21 = (x3 − 3x+ b)− (x31 − 3x1 + b)

(y − y1)(y + y1) = (x− x1)(x2 + xx1 + x21 − 3(x+ x1))

λ(y + y1) = x2 + xx1 + x21 − 3(x+ x1).

We then finish the calculation by eliminating y, and using (x−x2)(x−x3) = x2−s1x+s2, where s1 = x2+x3
and s2 = x2x3 are the elementary symmetric polynomials in two variables. We thus obtain

x3 = λ2 − x1 − x2 + 3 and y3 = −λ3 + (2x1 + x2 − 3)λ− y1

Surely an addition law not depending on b sounded like a good idea for improving computation speed, and
the choice of a4 = −3 makes sense from this perspective as well, since it makes the slope λ particularly
simple. But the trouble is that an attacker could change the value of b while keeping the base field Fq the
same, and get enough information to determine the key just by sending a few messages to the victim.

Example 19. Let’s say that Carol chooses to use the curve E : y2 = x3− 3x+10 over the finite field F1153.
Since |E(Fq)| = 1123 is a prime also, this curve looks pretty safe. Q = (933, 788) is a generator. Carol goes
onto random.org and chooses KC = 633. Seeing that Carol is using the finite field F1153, Eve searches for
curves have points of smaller order over this field. She discovers:

1. The curve E : y2 = x3−3x+3 has order 22 ·33 ·11; the points P3 = (24 : 107 : 1) and P11 = (848 : 77 : 1)
have order 3 and 11 respectively.

2. The curve E : y2 = x3 − 3x+ 8 has order 2 · 32 · 5 · 13; the point P5 = (443 : 232 : 1) has order 5

3. The curve E : y2 = x3 − 3x+ 12 has order 23 · 3 · 72; the point P7 = (796 : 922 : 1) has order 7.

Eve pretends that each of these is a public key, and sends them to Carol to establish communication.
Carol unwittingly computes

633 · P3 = (0 : 1 : 0), 633 · P5 = (724 : 401 : 1), P7 = (33 : 369 : 1), 633 · P11 = (219 : 722 : 1),

and uses them to establish communication with Eve. So far Eve does not even know what points Carol
computed, but there are only a small number of cases to check, 3 + 5 + 7 + 11 = 26 (which is much smaller
than 1123) so she systematically goes through each case comparing with the results that Carol sent, and
stopping immediately when she gets a match.
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As you can see (0 : 1 : 0) is the identity, so in all likelihood Carol sent Eve that message in the clear, Eve
recognized it immediately, and didn’t need to compute anything. Since P3 has order 3, then Even already
knows KC ≡ 0 mod 3. For the rest, Eve finds

KC ≡ 3 mod 5, KC ≡ 3 mod 7, KC ≡ 6 mod 11,

which probably took her 3 + 3 + 6 = 12 tries, which more or less makes sense, since on average we expect it
to take half of the total number of cases. From these four congruences Eve can then recover KC = 633 by
the Chinese remainder theorem.

Why was this attack possible? First, because the addition law for E : y2 = x3 − 3x+ b does not depend
on b, and second because Carol failed to check whether the points she was adding were actually on her curve.
Since the addition law does not depend on b it is really better thought of as a group law on the projective
plane over Fq itself. A point P has an order n with respect to this group law, irrespective of which curves it
lies on. Any elliptic curve E on which P does lie will have n dividing |E(Fq)|. Therefore since Carol’s curve
has prime order greater than 11, none of the points computed by Eve can lie on it. Indeed, sage will not let
you add the points above on Carol’s curve, because sage recognizes that they are not on the curve, and sage
will complain accordingly. To prevent this attack on her curve Carol is forced to check whether the points
sent to her are valid, which increases the computation time. On the other hand, if the group law depends
uniquely on the choice of the elliptic curve, then this attack is not possible. As such, it seems that the wiser
decision is not to use curves of the type E : y2 = x3− 3x+ b at all, but to search for other models that don’t
have this peculiar feature. If we send only the x-coordinate, then Eve cannot tamper with the y-coordinate.
For an Elliptic curve E over a finite field, an x-coordinate is always on E or its quadratic twist. We could
check to see if the x-coordinate is valid, but Bernstein points out that even this may be skipped in the case
of Montgomery curves. The reason is that the group law depends on A, and is the same both for E and its
twist, so if both curves are safe then Eve doesn’t get very far.

11.2 The MOV attack

The MOV attack is named after the people who discovered it (Menezes, Okamoto, and Vanstone), and it relies
on the elliptic curve having low embedding degree. Since superspecial elliptic curves have low embedding
degree, this is what makes them unsuitable.

Example 20. Consider the elliptic curve from example 17, namely E : y2 = x3 + x. If it is considered over
F43, then P = (13, 24) has order 11, and indeed |E(F43)| = 22 · 11, so ℓ = 11 is the largest prime factor. If
David goes onto random.org and picks KD = 6 as his secret key, then 6P = (4, 5) is his public key. Eve
knows that E has embedding degree 2, and so she sets up the Weil pairing, with Q = (21α+6, α+23). She
finds

e11(P,Q) = 9α+ 19 and e11(6P,Q) = 11α+ 34,

the first of which is familiar to us from 17. She now needs to find k such that

(9α+ 19)k = 11α+ 34

in F×
432 . As indicated by the NIST table above, 256 bits is considered acceptable for elliptic curves, but it is

basically broken for ordinary Diffie-Hellman. The fastest method known for breaking Diffie-Hellman in F×
q

is called “index calculus.” In any case, it can be checked that

(9α+ 19)6 = 11α+ 34

in F×
432 , so Eve wins again.
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11.3 Pollard rho

The main idea behind the Pollard rho algorithm is to have a function f : E → E that is iterated, i.e. if P
is a point on E then we consider the points Pn = f(P )n, constructed by repeatedly applying f to P . What
we are looking for is a pair of distinct points Pi and Pj such that f(Pi) = f(Pj). Such a pair is called a
“collision,” see the diagram below.

The shape of the diagram looks like the Greek letter ρ, hence the name. The average length of time that
it takes to find a collision can be estimated in terms of “waiting time,” in the sense of probability. Let P
be the base point used in the Diffe-Hellman setup with order ℓ, and let PC be Carol’s public key. Eve must
find n such that nP = PC . To do this, she uses the function

f(Q) =


P +Q if 0 ≤ x(Q) < p

3 ,

2Q if p3 ≤ x(Q) < 2p
3 ,

PC +Q if 2p
3 ≤ x(Q) < p.

We can apply f repeatedly to any point in the group generated by P , but for our purposes we will define

Pi = f i(P + PC) = αiP + βiPC

for some αi, βi ∈ 0, 1, . . . ℓ− 1. Then α0 = β0 = 1, and the definition of f leads to the recursive formulas

αi+1 =


αi + 1 if 0 ≤ x(Q) < p

3 ,

2αi if p3 ≤ x(Q) < 2p
3 ,

αi if 2p
3 ≤ x(Q) < p,

and βi+1 =


βi if 0 ≤ x(Q) < p

3 ,

2βi if p3 ≤ x(Q) < 2p
3 ,

βi + 1 if 2p
3 ≤ x(Q) < p.

If a collision is found, then

αiP + βiPC = αjP + βjPC =⇒ (αi − αj)P = (βj − βi)PC .

Furthermore, if βj − βi ̸≡ 0 mod ℓ, then it has an inverse and thus Eve obtains

KC ≡ (βj − βi)−1(αi − αj) mod ℓ.

If we look only at the sequence P0, P1, P2 . . ., then all previous results must be kept when searching for a
collision. However, Pollard observed that by looking at two sequences in parallel, a collision could still be
found, while keeping only the most recent point in each sequence. Specifically, we define

Q0 = P0 = P + PC , Pi+1 = f(Pi) and Qi+1 = f2(Qi).
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Example 21. Carol is using the elliptic curve E : y2 = x3 + 13x2 + x over F67. The point P = (21 : 73 : 1)
has order ℓ = 47. She goes on random.org and getsKC = 37 as her secret key. She computes PC = (7 : 73 : 1)
and sends it to David to establish communication. Eve intercepts PC , and while Carol’s choices are about
the best that can be hoped for, for a prime p of this size, the prime p is rather small. Eve therefore sets to
work with Pollard rho. For p = 167, the cut-offs in the definition of f are

p

3
= 55

2

3
and

2p

3
= 111

1

3
,

thus Eve obtains the following table

i Pi Qi αi(Pi) βi(Pi) αi(Qi) βi(Qi)

0 (126 : 94 : 1) (126 : 94 : 1) 1 1 1 1

1 (121 : 123 : 1) (54 : 6 : 1) 1 2 1 3

2 (54 : 6 : 1) (126 : 73 : 1) 1 3 2 4

3 (121 : 44 : 1) (0 : 1 : 0) 2 3 3 5

4 (126 : 73 : 1) (2 : 88 : 1) 2 4 5 5

5 (21 : 94 : 1) (130 : 138 : 1) 2 5 7 5

6 (0 : 1 : 0) (19 : 81 : 1) 3 5 8 6

7 (21 : 73 : 1) (18 : 83 : 1) 4 5 9 7

8 (2 : 88 : 1) (33 : 148 : 1) 5 5 20 14

9 (28 : 38 : 1) (28 : 129 : 1) 6 5 42 28

10 (130 : 138 : 1) (21 : 94 : 1) 7 5 44 28

11 (31 : 8 : 1) (21 : 73 : 1) 7 6 46 28

12 (19 : 81 : 1) (28 : 38 : 1) 8 6 48 28

13 (130 : 29 : 1) (31 : 8 : 1) 9 6 49 29

14 (18 : 83 : 1) (130 : 29 : 1) 9 7 51 29

15 (89 : 98 : 1) (89 : 98 : 1) 10 7 52 30

From the last row, we see that

52P + 30PC = 10P + 7PC =⇒ 42P = −23PC =⇒ 27P = 2PC

and (−23)−1 ≡ 2 mod 47, so 2 · 42 ≡ 37 mod 47, thus Eve recovers Carol’s secret key. As can be seen from
the algorithm above, there are multiple ways we may be allowed to terminate earlier. Certainly once we
obtain the identity, we should know that we have a solution:

3P + 5PC = O =⇒ 3P = −5PC ,

and since (−5)−1 ≡ 28 mod 47, Eve again gets 3 · 28 ≡ 37 mod 47. We also see both (28 : 38 : 1) and
(28 : 129 : 1) occurring in the table, which we know are additive inverses, giving Eve another opportunity to
stop early. There are other improvements that could be made as well, but none of them change the overall
asymptotics. The number of steps expected before a collision occurs is proportional to

√
ℓ as ℓ grows.

11.4 Safe curves

In practice, it seems that designing safe cryposystems with Edwards curves is a bit easier than with curves
in Weierstrass form. The group law has a nice symmetric form, which makes uniformity in time easy to
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achieve. Even though the formulas depend on both x and y it is possible to send only the y-coordinate. If
an invalid y-coordinate is sent, then it will not be possible to reconstruct the x-coordinate meaning Eve has
no hope of sending invalid data. The downside is that the formulas and the construction of the x-coordinate
may be a little slower. To meet the safety criteria for and Edwards curve, we can take one of two approaches:

1. Choose d and then vary p until the safety criteria are met, or

2. Choose p and then vary d until the safety criteria are met.

The first choice (whether d or p) could be done at random to remove suspicion that the numbers were chosen
with a hidden agenda. While p must be large, there does not seem to be a particular reason why d needs to
be, in particular all of the examples of Edwards curves on Bernstein’s website have small values of d and he
lists the embedding degree, CM discriminant, and size of ℓ. In any case, once the curve E and prime p are
set, a point P on E is chosen at random. Then if |E(Fp)| = m · ℓ, where ℓ is the largest prime factor, we
compute mP . If mP ̸= O, then we take mP to be the base point, otherwise we pick another random point
and try again. Empirical tests for small primes p, suggests that m = 4 is common. Whether much control
can be gained over the prime ℓ is less clear.

For Montgomery curves, both the curve E and its twist should be checked, with the idea that only the
x-coordinate is sent and we do not check which of the two curves it is on. If the usual formulas for addition
are used then we also require that A2 − 4 is a quadratic non-residue mod p. Bernstein shows how to drop
this condition in another article by changing the addition law. Finally, in order to get true uniformity, both
the first and last bit of any encryption key must be 1. So, clearly there are extra steps in checking the safety
of a Montgomery curve, but since addition formulas are quite fast. Again, while p must be large, it is still
possible to meet all of the safety criteria with a small value of A. On the other hand, the data for small
primes provide some strong hints about what optimal design might look like (See the problems).

Exercises

1. (optional) Write a program in sage or magma to compute Pollard Rho for the Koblitz curve E1 over
F27 with

P = (α6 +α2 +1 : α6 +α5 +α4 +α2 +α+1 : 1) and PC = (α3 +α+1 : α6 +α4 +α3 +α2 +α : 1)

where α satisfies x7 + x+ 1.

2. Use sage or magma to execute the MOV attack on y2 = x3 + 6x2 + x over F43 with

P = (4 : 32 : 1) and PD = (16 : 31 : 1).

3. Given the elliptic curve
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12 Problems

1. In this problem we will study curves in montgomery form EA : y2 = x3 + Ax2 + x in an attempt to
determine what effects rank might have on security.

1. Find a value of A ∈ Z for which EA has rank 0 over Q. Let

SA(N) =

{
p : p is prime, p ≡ 1 mod 4 and

(
A2 − 4

p

)
= −1

}
,

Reduce mod p, for all p ∈ S(N), and check the CM discriminant, embedding degree, and largest prime
factor ℓ for both EA and its twist.

2. Starting with the curve you found in part 1, choose x0 at random such that α =
√
x30 +Ax20 + x0 is

irrational, then construct the field extension K = Q(α). Check that the new point (x0, α) obtained on
EA is not a torsion point, so that EA has positive rank over K. Determine which p in SA(N) split over
K, which are inert, and which ramify. Divide the data found in the previous part into these cases, and
detect any biases that occur.

3. Repeat the above steps with EA having rank 1 over Q.

2. Let 2n be an even number. Even though the Goldbach conjecture has not been proved, the emperical
data for it is quite strong, and in fact suggests that as n grows, the number of ways that 2n = ℓ1 + ℓ2 grows.
Let p = 4n− 1 = 2(ℓ1 + ℓ2)− 1 and ap = 2(ℓ2 − ℓ1). Then

p+ 1− ap = 4ℓ1 and p+ 1 + ap = 4ℓ2 (37)

is a possible option for the number of points on an elliptic curve E and its twist over Fp, so long as |ap| < 2
√
p

or equivalently if a2p − 4p is negative. The discriminant is related to the squarefree part. By pluging in, we
find

a2p − 4p = 4((ℓ1 − ℓ2)2 − 2(ℓ1 + ℓ2) + 1).

Using sage or magma obtain data for the following questions, and if possible try to formulate the asymptotics
suggested by the data. Proving the asymptotics may be hard.

1. How often is D = ((ℓ1 − ℓ2)2 − 2(ℓ1 + ℓ2) + 1) squarefree?

2. For fixed p and all ℓ allowed by equation (37) and |ap| < 2
√
p, how often does p mod ℓ have order ℓ−1?

3. If possible describe the relationship between the previous two results. Are the probabilities ofD square-
free and maximal embedding degree independent? Does one imply the other? Is there correlation?

4. For fixed p ≡ −1 mod 4, look at all elliptic curves E1 : y2 = x3 +Ax2 + x, and their twists E2 : By2 =

x3 +Ax2 + x, satisfying
(
A2−4
p

)
= −1.

(a) How many have the property that a2p − 4p = 4D where D is squarefree?

(b) How many have maximal embedding degree for both curves?

(c) How many have the property that |E1(Fp)| = 4ℓ1 and |E2(Fp)| = 4ℓ2 for odd primes ℓ1 and ℓ2?

(d) As p grows, can you describe asymptotics for the upper and lower bounds of |A|? I.e. is it possible
to achieve these conditions with small A even when p is large?

(e) As p grows, can you describe the probability that all of the above conditions are met?

(f) Is the any benefit to picking ℓi−1
2 to be a Sophie Germain prime? Are the probabilities any better?
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