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Let φ : X → Y X = Y = Gm = multiplicative group =
P1(C) \ {0,∞}.
φ : Y → X
φ : x 7→ xN

Fix a rational point p ∈ Gm (thought of in X , the target of the
map φ).
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Consider the set V = φ−1(p) = {x ∈ Gm| φ(x) = p}, i.e.{
x ∈ Gm| xN = p

}
.

fp(x) = xN − p

First, consider the case that p = 1. Then V is the set of
solutions to fp(x) = xN − 1. These are the N th roots of unity.
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Gal(Q(ζN)/Q) = (Z/NZ)×. Let i , N be relatively prime. Then
σi : ζN 7→ ζ i

N .

Davis 6



Motivation
Background

Origami

When fp(x) = xN − p is irreducible, the picture becomes the
following:
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Gal(sf (xN − p)/Q) is a subgroup of AGL1(Z/NZ).
There is a Galois representation

ρN,p : GQ → AGL1(Z/NZ)

This is given by σ 7→
(

a b
0 1

)
such that σ(ζN) = ζa

N and

σ( N√p)
N√p = ζb

N with a ∈ (Z/NZ)× and b ∈ Z/NZ.
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Let E be an elliptic curve over Q. Fix a positive integer N. We
define multiplication by N on E , denoted [N] to be adding a
point to itself N times. We define the N-division points of E :

E [N] =
{

P ∈ E(Q) : [N]P = O
}
.
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Facts:
The N-division points form a group that is isomorphic to
(Z/NZ)2. For example, E [2] ' (Z/2Z)2, a Klein 4-group.
The Galois group GQ permutes the N-division points. We
denote the representation by ρE ,N .

We will write Q(E [N]) to mean the field obtained by adjoining all
of the coordinates of the N-division points of E to Q.

Fix a prime ` and define the Tate module to be he inverse limit
T`(E) = lim←−

n
E [`n]
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There is a representation ρE ,` from GQ acting on T`(E) over Q
into Aut(Z2

` ), which after a choice of basis can be identified with
GL2(Z`).

Q(T`(E))

Q

≤ GL2(Z`)
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Consider the case that E is an elliptic curve over Q without
complex multiplication. In this case, a result of Serre
shows that the image of ρE ,` has finite index in GL2(Z`) for
all `. Also, the representation is surjective except for a finite
set of primes SE .
` = 2 The map ρE ,2 is surjective if and only if ρE ,8 is
surjective.
` = 3 The map ρE ,3 is surjective if and only if ρE ,9 is
surjective.
` ≥ 5 The map ρE ,` is surjective if and only if ρE ,` is
surjective.
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Let E be given by y2 = x3 + Ax + B. Fix a point P ∈ E(Q)
given by P = (z : w : 1). Consider the set

V = [N]−1P =
{

Q ∈ E(Q)| [N]Q = P
}
.

For example, when P = O, this set is the set of N-division
points.

This is no longer a group in general, but we can still adjoin the
coordinates of such points to Q and find the Galois group of the
extension.
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Q([N]−1P)

Q(E [N])

Q

(Z/NZ)2

GL2(Z/NZ)
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The Galois group of Q([N]−1P) over Q is a subgroup of the
affine general linear group

1→ (Z/NZ)2 → AGL2(Z/NZ)→ GL2(Z/NZ)→ 1

e.g. for N = 2

1→ (Z/2Z)2 → S4 → S3 → 1


 a b e

c d f
0 0 1

 : a,b, c,d ,e, f ∈ (Z/NZ) and ad − bc 6= 0


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Again, fixing ` and taking an inverse limit yields a representation

ρE ,`,P : GQ → Aut(Z2
` ) ' AGL2(Z`)
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There is an exact sequence (due to Grothendieck and others)
of fundamental groups

1→ π1(XQ)→ π1(X )→ GQ → 1

which group-theoretically gives rise to a representation

ρX : GQ → Aut(π1(XQ)).

There are comparison theorems that allow one to determine
the geometric fundamental group by considering the variety X
over C.
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Any two-generated group should arise as the group of deck
transformations of some cover of a once-punctured elliptic
curve. So far, we have only encountered the abelian deck
groups Z2

` . We will restrict to studying pro-` groups (for now
pro-2) and look for some barely non-abelian examples.
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Define

M2 =
{

a,b, c|a4,b4, c2, c = aba−1b−1,ac = ca,bc = cb
}

Then M2 is a group of order 32 whose abelianization is
(Z/4Z)2. Also, Q8, the finite group of order 8 of the quaternions
is a characteristic quotient of M2.
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Theorem (D., Goins)
Suppose that

ρE ,8 and ρE ,M2

are both surjective. Then, the representation to Aut(M) is
surjective.
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Let E be an elliptic curve over Q.

Definition
An origami is a pair (C, f ) where C is a curve and f : C → E is
a map branched above at most one point.
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Definition
A deck transformation or automorphism of a cover f : C → E is
a homeomorphism g : C → C such that f ◦ g = f .

Each deck transformation permutes the elements of each fiber.
This defines a group action of the the deck transformations on
the fibers.
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“An extraordinary origami curve" by Herrlich and Schmithüesen
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f = 8

e =
8 · 4

2
= 16

v =
8 · 4
4 · 2

= 4

Formula for Euler characteristic:

2− 2g = v − e + f

=⇒ g = 3
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Riemann-Hurwitz formula

f : Y → X

Then,

2g(Y )− 2 = deg(f ) · (2g(Z )− 2) +
∑
z∈Z

(eZ − 1)

Applying Riemann-Hurwitz with g(Y ) = 3, g(X ) = 1, we see
that there are 4 points ramified in Y , each with ramification
degree 2.
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In fact, Herrlich and Schmithüesen give that the map Y → Z is
given by (x , y) 7→ (x , y2) and Y : y4 = x3 + Ax + B. This is an
example of a superelliptic curve.
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Let ∆ = −16(4A3 + 27B2) and w2, φ2, ψ2 be the usual division
polynomials of elliptic curves as defined e.g. by Silverman.
Taking the resultant of φ2 − zψ2

2 and w2 − wψ3
2 yields

y4− 8wy3 + 6(2Az + 3B)y2−∆ = 0. Plugging in y2 for y yields

fE ,Q8,P = y8 − 8wy6 + 6(2Az + 3B)y4 −∆
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Theorem (D., Goins)

Fix a rational point P = (z : w : 1) ∈ E(Q). Consider the
extension FP = Q(sf(fE ,Q8,P))/Q given by the splitting field of
the polynomial fE ,Q,8,P . Then

Gal(FP/Q) ≤ Hol(Q8)

with equality if the polynomial is irreducible.
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1→ Q8 → Hol(Q8)→ Aut(Q8) ' S4 → 1

The group Hol(Q8) is a specific group of order 192.
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There is a quotient from ρE ,Q8,P : GQ → Hol(Q8) to
ρE ,Q8 : GQ → Aut(Q8)

Theorem (D., Goins)
The image of the quotient is given by the Galois group of the
splitting field of x4 − 4∆x − 12A∆.

Remark: This quartic polynomial defines the unique
S4-representation contained inside of the 4-division
representation of E . (See, for instance, Adelmann’s “The
decomposition of primes in torsion point fields".)

Davis 38



Motivation
Background

Origami

Thank you! Questions?

Davis 39


	Motivation
	Background
	Origami

