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The AGM

Let a ≥ b be positive real numbers and set

a1 = 1
2(a + b) (arithmetic mean)

b1 =
√

ab (geometric mean)

The Arithmetic Mean-Geometric Mean Inequality
1
2(a + b) ≥

√
ab

It follows that a1 ≥ b1, so we can iterate.

Example

n an bn

0 1.414213562373095048802 1.000000000000000000000

1 1.207106781186547524401 1.189207115002721066717

2 1.198156948094634295559 1.198123521493120122607

3 1.198140234793877209083 1.198140234677307205798

4 1.198140234735592207441 1.198140234735592207439
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Theorem and Definition

If a ≥ b > 0, define (a0,b0) = (a,b), (an+1,bn+1) = (1
2 (an + bn),

√
anbn).

Theorem

1 a = a0 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ · · · ≥ bn ≥ · · · ≥ b2 ≥ b1 ≥ b0 = b.

2 an − bn ≤ 2−n(a− b).

3 limn→∞ an = limn→∞ bn.

Definition

The arithmetic-geometric mean (agM for short) of a ≥ b > 0 is

M(a,b) = lim
n→∞

an = lim
n→∞

bn.

Examples

M(a,a) = a for any a > 0

M(
√

2,1) = 1.1981402347355922074 . . .
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An Integral Formula

Theorem

M(a,b)

∫ π/2

0

dφ
√

a2 cos2 φ+ b2 sin2 φ

=
π

2
.

Proof.

Let I(a, b) denote the integral and introduce a new variable φ′ such that

sinφ = 2a sinφ′/(a + b + (a− b) sin2 φ′).

“After the development has been made correctly, it will be seen” that

(a2 cos2 φ+ b2 sin2 φ)−1/2 dφ = (a2
1 cos2 φ′ + b2

1 sin2 φ′)−1/2 dφ′

If we set µ = M(a, b), it follows that

I(a, b) = I(a1, b1) = · · · = I(µ, µ) =
∫ π/2

0
dφ√

µ2 cos2 φ+µ2 sin2 φ
=

π

2µ
.
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An Elliptic Integral

Setting z = cosφ gives the elliptic integral

∫ π/2

0

dφ
√

a2 cos2 φ+ b2 sin2 φ

=

∫ 1

0

dz
√

(b2 + (a2 − b2)z2)(1− z2)

corresponding to the elliptic curve w2 = (b2 + (a2 − b2)z2)(1− z2).
The very first elliptic integral, discovered by Bernoulli in 1691, is

∫ π/2

0

dφ
√

2 cos2 φ+ sin2 φ

=

∫ 1

0

dz√
1− z4

.

This integral is denoted ̟/2 and equals the first quadrant arc length of

the lemniscate r2 = cos(2θ).
Theorem

M(
√

2,1) =
π

̟

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 6 / 22



An Elliptic Integral

Setting z = cosφ gives the elliptic integral

∫ π/2

0

dφ
√

a2 cos2 φ+ b2 sin2 φ

=

∫ 1

0

dz
√

(b2 + (a2 − b2)z2)(1− z2)

corresponding to the elliptic curve w2 = (b2 + (a2 − b2)z2)(1− z2).
The very first elliptic integral, discovered by Bernoulli in 1691, is

∫ π/2

0

dφ
√

2 cos2 φ+ sin2 φ

=

∫ 1

0

dz√
1− z4

.

This integral is denoted ̟/2 and equals the first quadrant arc length of

the lemniscate r2 = cos(2θ).
Theorem

M(
√

2,1) =
π

̟

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 6 / 22



Application

Properties of the agM

M(λa, λb) = λM(a,b)

M(a + b,a− b) = M(a,
√

a2 − b2) = M(a, c), c =
√

a2 − b2.

Take agM sequences {an}∞n=0, {bn}∞n=0 with a0 = 1,b0 = 1/
√

2. Define

cn =
√

a2
n − b2

n. Using properties of elliptic integrals, one can show:

Theorem

π =
4M(1,1/

√
2)2

1−∑
∞

n=1 2n+1c2
n

=
2M(
√

2,1)2

1−∑
∞

n=1 2n+1c2
n

.

This formula and its variants have been used to compute π to

1,000,000,000 decimal places.
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The Complex agM

When a,b ∈ C, one can still form the agM sequences

(a0,b0) = (a,b), (an+1,bn+1) = (
1

2
(an + bn),

√

anbn),

except that at each stage, we get two choices for the square root. This

leads to uncountably many possible sequences {an}∞n=0, {bn}∞n=0. But

some of them are nice.

Example

n an bn

0 3.0000000 1.0000000

1 2.0000000 −1.7320508

2 0.1339746 1.8612098i

3 0.0669873+ 0.9306049i 0.3530969+ 0.3530969i

4 0.2100421+ 0.6418509i 0.2836930+ 0.6208239i

5 0.2468676+ 0.6313374i 0.2470649+ 0.6324002i

5 0.24699625+ 0.6318688i 0.24699625+ 0.6318685i
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Right Choices and Good Sequences

We will assume a,b ∈ C with a,b 6= 0 and a 6= ±b.

Definition

Suppose that {an}∞n=0, {bn}∞n=0 are agM sequences for a,b. Then:

bn+1 is the right choice if |an+1 − bn+1| ≤ |an+1 + bn+1|, and if

equality occurs, we require Im(bn+1/an+1) > 0.

{an}∞n=0, {bn}∞n=0 are good sequences if bn+1 is the right choice for

all but finitely many n.

Note that a,b has only countably many good agM sequences.

Theorem

Let {an}∞n=0, {bn}∞n=0 be agM sequences of a,b as above. Then:

1 {an}∞n=0, {bn}∞n=0 always converge to a common limit.

2 The common limit is nonzero ⇐⇒ {an}∞n=0, {bn}∞n=0 are good

sequences
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Main Theorem

Definition

The values of M(a,b) are the common limits of good sequences.

The simplest value of M(a,b) is where bn+1 is the right choice ∀ n.

Theorem

Let a,b ∈ C with a,b 6= 0, a 6= ±b, and |a| ≥ |b|. Define

µ = simplest value of M(a,b), λ = simplest value of M(a + b,a− b).

Then all values µ′ of M(a,b) are given by

1

µ′
=

d

µ
+

ic

λ
,

where d , c are relatively prime with d ≡ 1 mod 4, c ≡ 0 mod 4.

The proof uses theta functions, modular functions, and modular forms!
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Theta Functions

For τ ∈ h = upper half plane, let q = eπiτ and define the theta functions:

p(τ) = 1 + 2q + 2q4 + 2q9 + · · ·
q(τ) = 1− 2q + 2q4 − 2q9 + · · ·
r(τ) = 2q1/4 + 2q9/4 + 2q25/4 + · · ·

Some Identities

p(τ)4 − q(τ)4 = r(τ)4

p(2τ)2 = 1
2
(p(τ)2 + q(τ)2)

q(2τ)2 = p(τ)q(τ) =
√

p(τ)2q(τ)2

Consequences

(a,b) = (p(τ)2,q(τ)2)⇒ (a1,b1) = (p(2τ)2,q(2τ)2)

M(p(τ)2,q(τ)2) = limn→∞ p(2nτ)2 = limn→∞ q(2nτ)2 = 1
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p(τ) = 1 + 2q + 2q4 + 2q9 + · · ·
q(τ) = 1− 2q + 2q4 − 2q9 + · · ·
r(τ) = 2q1/4 + 2q9/4 + 2q25/4 + · · ·

Some Identities

p(τ)4 − q(τ)4 = r(τ)4

p(2τ)2 = 1
2
(p(τ)2 + q(τ)2)

q(2τ)2 = p(τ)q(τ) =
√

p(τ)2q(τ)2

Consequences
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Apply to agM

The previous slide implies that M
(
µp(τ)2

︸ ︷︷ ︸

a

, µq(τ)2

︸ ︷︷ ︸

b

)
= µ.

Now define

k ′(τ) =
q(τ)2

p(τ)2
(k ′ is from the theory of elliptic integrals).

How to Compute Values of M(a, b)

Pick τ ∈ h such that k ′(τ) =
b

a
and set µ =

a

p(τ)2
.

Then µq(τ)2 =
a

p(τ)2
q(τ)2 = ak ′(τ) = b.

It follows that µ is a value of M(a,b).

Theorem

When a,b 6= 0,a 6= ±b, |a| ≥ |b|, all values of M(a,b) arise in this way.
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A Modular Function

Theorem

k ′(τ) is a modular function for the congruence subgroup

Γ2(4) =
{(

a b

c d

)

∈ SL2(Z)
∣
∣
∣

(
a b

c d

)

≡
(

1 b

0 1

)

mod 4,b ≡ 0 mod 2
}

.

and induces k ′ : h/Γ2(4) ≃ C \ {0,±1} (← b
a lives in here).

Consequences

Pick τ0 ∈ F with k ′(τ0) =
b
a . Then:

1) All solutions of k ′(τ) = b
a are

τ =
aτ0 + b

cτ0 + d
for

(
a b

c d

)

∈ Γ2(4).

2) µ = a
p(τ0)2 is the simplest value.
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fundamental domain

F

of Γ2(4)

1.5−.5−1
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A Modular Form and Proof of the Main Theorem

Theorem

p(τ)2 is a modular form of weight one for the congruence subgroup

Γ(2)0 =
{(

a b

c d

)

∈ SL2(Z)
∣
∣
∣

(
a b

c d

)

≡
(

1 b

c 1

)

mod 4,b, c ≡ 0 mod 2
}

.

Proof of the Main Theorem

The values are µ′ = a
p(τ)2 with k ′(τ) = b

a
. Then:

1

µ′
=

1

a
p(τ)2 =

1

a
p
(aτ0 + b

cτ0 + d

)2
=

1

a
(cτ0 + d)p(τ0)

2 since Γ2(4) ⊆ Γ0(2)

= d
p(τ0)

2

a
+ c

τ0p(τ0)
2

a
, µ =

a

p(τ0)2
= simplest value of M(a,b)

=
d

µ
+

ic

λ
, λ =

ia

τ0p(τ0)2
= simplest value of M(a + b,a− b)
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Gauss

Carl Friedrich Gauss was lived from 1777 to 1855. His published work,

starting with Disquisitiones Arithmeticae, established him as one of

greatest mathematicians of all time. After his death, an astonishing

amount of unpublished material was found (Nachlass in German).

Gauss and the agM

Gauss knew essentially everything in the previous part of the talk.

Most of this work was done during 1799 and 1800.

A paper published in 1818 defined the agM and proved that

M(a, b)

∫ π/2

0

dφ
√

a2 cos2 φ+ b2 sin2 φ

=
π

2
.

The quote “After the development has been made correctly, it will

be seen” is from this paper.

The rest of his work on the agM was never published!
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Gauss’s Mathematical Diary

Facts about the diary

It has 146 entries, dated from March 30, 1796 to July 9,1814.

The first entry, written one month before his 19th birthday, states

Principia quibus innititur sectio circuli, ac divisibilitas eiusdem

geometrica in septemdecim partes &c.

10 entries deal with the agM. We will discuss entry 98 (May 1799)

and entry 109 (June 1800).

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 16 / 22



Gauss’s Mathematical Diary

Facts about the diary

It has 146 entries, dated from March 30, 1796 to July 9,1814.

The first entry, written one month before his 19th birthday, states

Principia quibus innititur sectio circuli, ac divisibilitas eiusdem

geometrica in septemdecim partes &c.

10 entries deal with the agM. We will discuss entry 98 (May 1799)

and entry 109 (June 1800).

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 16 / 22



Gauss’s Mathematical Diary

Facts about the diary

It has 146 entries, dated from March 30, 1796 to July 9,1814.

The first entry, written one month before his 19th birthday, states

Principia quibus innititur sectio circuli, ac divisibilitas eiusdem

geometrica in septemdecim partes &c.

10 entries deal with the agM. We will discuss entry 98 (May 1799)

and entry 109 (June 1800).

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 16 / 22



Gauss’s Mathematical Diary

Facts about the diary

It has 146 entries, dated from March 30, 1796 to July 9,1814.

The first entry, written one month before his 19th birthday, states

Principia quibus innititur sectio circuli, ac divisibilitas eiusdem

geometrica in septemdecim partes &c.

10 entries deal with the agM. We will discuss entry 98 (May 1799)

and entry 109 (June 1800).

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 16 / 22



Entry 98

May 30, 1799

We have established that the arithmetic-geometric mean between 1

and
√

2 is π
̟ to the eleventh decimal place; the demonstration of this

fact will surely open an entirely new field of analysis.

From a 1786 paper of Euler:







∫ 1
0

dz√
1−z4

×
∫ 1

0
z2dz√
1−z4

= π
4

∫ 1
0

z2dz√
1−z4

= 0.55907011736

Since ̟
2
=

∫ 1
0

dz√
1−z4

, Euler’s results imply that

̟

2
×0.55907011736 =

π

4
⇒ π

̟
= 2×.55907011736 = 1.19814023472.

Yet Gauss computed that

M(
√

2,1) = 1.1981402347355922074
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Entry 109

June 30, 1800

Between two given numbers there are always infinitely many means

both arithmetic-geometric and harmonic-geometric, the observation of

whose mutual connection has been a source of happiness for us

For the agM, this refers to the countably many values when a,b ∈ C.

Gauss’s Version of the “mutual connection"

The agM changes, when one chooses the negative value for one of

n′,n′′,n′′′ etc.: however all resulting values are of the following form:

1

(µ)
=

1

µ
+

4ik

λ
.

In this quote, “negative value for one of n′,n′′,n′′′" refers to making bad

choices of bn+1. Also, µ is the “einfachste Mittel" (simplest mean).
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A “Most Important” Theorem

One of the properties used in the proof of the Main Theorem is

M(p(τ)2,q(τ)2) = 1,

i.e, the agM of p(τ)2 and q(τ)2 is always equal to 1.

Gauss’s Version

In Volume III of his collected works, this "most important" (höchst

wichtige) theorem is stated as follows:
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Fundamental Domains

Gauss knew that k ′(τ)2 was Γ(2)-invariant, and he also knew the

fundamental domain of Γ(2). This fundamental domain appears twice

in his collected works:

In Volume III, published in 1863 and edited by Ernst Schering:

In Volume VIII, published in 1900 and edited by Felix Klein:

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 20 / 22



Fundamental Domains

Gauss knew that k ′(τ)2 was Γ(2)-invariant, and he also knew the

fundamental domain of Γ(2). This fundamental domain appears twice

in his collected works:

In Volume III, published in 1863 and edited by Ernst Schering:

In Volume VIII, published in 1900 and edited by Felix Klein:

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 20 / 22



Fundamental Domains

Gauss knew that k ′(τ)2 was Γ(2)-invariant, and he also knew the

fundamental domain of Γ(2). This fundamental domain appears twice

in his collected works:

In Volume III, published in 1863 and edited by Ernst Schering:

In Volume VIII, published in 1900 and edited by Felix Klein:

David A. Cox (Amherst College) Gauss and the Arithmetic-Geometric Mean CTNT, August 10, 2016 20 / 22



An Entirely New Field of Analysis

Entry 98 of Gauss’s mathematical diary, dated May 30, 1799,

claimed that proving

(1) M(
√

2,1) =
π

̟

would “open an entirely new field of analysis”.

By December 1799, Gauss had proved (1), which establishes a

link between elliptic integrals and the agM.

This is nice but does not constitute a “new field of analysis".

However, when you bring the complex agM into the picture, along

with the connections to modular functions and modular forms,

then indeed we have a “new field of analysis".

Gauss kept his promise!
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Letter to Bessel

March 30, 1828

I shall most likely not soon prepare my investigations on

transcendental functions which I have had for many years – since 1798

– because I have many other matters which must be cleared up. Herr

Abel has now, I see, anticipated me and relieved me of the burden in

regard to one-third of these matters, particularly since he carried out

all developments with great concision and elegance.

By "one-third of these matters", Gauss meant his unpublished work on

elliptic functions, which I did not discuss in this lecture.

The other two-thirds consist of:

His work on modular functions and modular forms, and

His work on the arithmetic-geometric mean!
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