
INTRODUCTION TO THE LOCAL-GLOBAL PRINCIPLE

LIANG XIAO

Abstract. This is the notes of a series lectures on local-global principle and quaternion
algebras, given at Connecticut Summer School in Number Theory.

1. Day I: Quaternion Algebras and Qp

1.1. What are Quaternion Algebras?

1.1.1. Hamiltonian H. Recall that we setup mathematics in such a way starting with positive
integers N and integers Z to build Q as its quotient field, and then defining R using several
equivalent axioms, e.g. Dedekind cut, or as certain completions. After that, we introduced
the field of complex numbers as C = R⊕ Ri, satisfying i2 = −1.

One of the most important theorem for complex numbers is the Fundamental Theorem
of Algebra: all complex coefficients non-constant polynomials f(x) ∈ C[x] has a zero. In
other words, C is an algebraically closed field; so there is no bigger field than C that is finite
dimensional as an R-vector space.

(With the development of physics), Hamilton discovered that there is an “associative-but-
non-commutative field” (called a skew field or a division algebra) H which is 4-dimensional
over R:

H = R⊕ Ri⊕ Rj⊕ Rk

=
{
ai + bj + cj + dk

∣∣ a, b, c, d ∈ R
}
,

where the multiplication is R-linear and subject to the following rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j.

This particular H is called the Hamiltonian quaternion.
One simple presentation of H is:

H := C〈i, j〉
/(

i2 + 1, j2 + 1, ij + ji
)
.

Question 1.1.2. Are there other quaternions that look like the Hamiltonian quaternion?
Can we classify them?

1.1.3. Quaternion algebra. Over R, such quaternion algebra is unique, but over other fields,
there are plenty. For example, we can consider

(1.1.1) D = Q〈i, j〉
/(

i2 + 1, j2 + 1, ij + ji
)
,

or more generally, for any field k (of characteristic zero or just Q, at least today), and any
two elements a, b ∈ k× we put

(1.1.2) Dk,a,b := k〈i, j〉
/(

i2 − a, j2 − b, ij + ji
)
.
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For example, the quaternion in (1.1.1) is DQ,−1,−1. These Dk,a,b are called quaternion alge-

bras over k. In other literature, the quaternion algebras are often denoted by
(
a,b
k

)
. It is

conventional to put k = ij so that

ij = −ji = k, jk = −kj = i, and ki = −ik = j.

Like in the case of complex numbers, every element α = x+ yi + zj +wk has a conjugate:
ᾱ := x− yi− zj− wk. We note:

Tr(α) := α + ᾱ = 2x ∈ k;

Nm(α) := αᾱ = x2 − ay2 − bz2 + abw2 ∈ k.
(It looks like we are solving quadratic equations in a non-commutative ring.)

In particular, if Nm(α) 6= 0, then α has an inverse:

α−1 =
1

Nm(α)
α.

Quaternion algebras are called division algebras if every nonzero element of Dk,a,b has a
multiplicative inverse (both left and right), this is equivalent to the condition that x2−ay2−
bz2 + abw2 is always nonzero unless all x, y, z, w are zero.

Example 1.1.4. For a, b ∈ Q<0, DQ,a,b is a division algebra, because for rational numbers
x, y, z, w, x2 − ay2 − bz2 + abw2 = 0 would force x = y = z = w = 0 by positivity.

The matrix algebra M2(Q) is also a quaternion algebra (but not a division algebra), isomor-
phic to DQ,−1,1, in the sense that taking i =

(
0 −1
1 0

)
and j =

(
1 0
0 −1

)
defines an isomorphism

DQ,1,−1
∼= M2(Q).

Question 1.1.5. Are these Dk,a,b genuinely different? In Exercise 1.4.6, you will verify some
obvious equalities, like Dk,a,b = Dk,a,−ab = Dk,ac2,b for a, b, c ∈ k×.

When are these Dk,a,b division algebras?

Example 1.1.6. When k = R, there are (up to isomorphism) two quaternion algebras:

• H ∼= DR,a,b whenever a, b are both negative;
• M2(R) ∼= DR,a,b whenever at least one of a and b is positive.

1.1.7. Local-global approach. To answer to Question 1.1.5 (for general field k) directly is very
difficult; but the question is easier for some particular fields, like R.

In this lecture series, we address Question 1.1.5 in the case when k = Q, and our approach
takes the following form: for a quaternion algebra DQ,a,b with a, b ∈ Q, we consider

DQ,a,b ⊗Q R ∼= DR,a,b.

So if for two pairs (a, b) and (a′, b′), if DR,a,b 6∼= DR,a′,b′ (which can be tested easily using
1.1.6), then DQ,a,b 6∼= DQ,a′,b′ . In other words, what we are doing is:

• testing whether DQ,a,b is isomorphic to DQ,a′,b′ by tensoring over a bigger field k/Q
(which in our case will be “local fields”), where the corresponding question is easier
(namely, a local question); and
• there is a local-global principal we will prove at the end, which shows that, if DQ,a,b

and DQ,a′,b′ are isomorphic after tensoring with “all” local fields, then they are iso-
morphic.

Such type of argument is called a “local-global argument.”
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1.2. Introduction to Qp.

1.2.1. Local fields. The way we define the real numbers R (from Q) can be viewed as taking
the completion of Q with respect to the usual absolute value | · |∞, namely to adjoin limits
of Cauchy sequences in Q.

Q2

R
|·|∞ Q

|·|2

|·|3

|·|p

Q3

Qp.

In fact, besides the usual absolute value, there are other “absolute values” or norms on Q,
essentially one for each prime number p. Completion with respect to the norm associated to
the prime p gives the main player today: Qp.

Definition 1.2.2. Fix a prime p from now on. We define the p-adic valuation of a non-zero
integer a, denoted by vp(a), to be the maximal (non-negative integer) exponent n such that
pn|a (or sometimes we write pvp(a)||a). We put vp(0) = +∞. Clearly we have the following
properties:

(1.2.1) vp(ab) = vp(a) + vp(b) and vp(a+ b) ≥ min{vp(a), vp(b)}.
This p-adic valuation extends to a p-adic valuation on Q, given by

vp : Q // Z ∪ {∞}
x = a

b
� // vp

(
a
b

)
:= vp(a)− vp(b).

We can check that the expression above does not depend on the choice of the writing of x
as a rational number a

b
. The above properties (1.2.1) are still preserved.

Let us put it another way, define:

|a|p := p−vp(a) for a ∈ Q.
For example, p = 5, v5(14

75
) = −2, and

∣∣14
75

∣∣
5

= 25. For another, v5(100) = 2 and
∣∣100

∣∣
5

= 1
25

.

Let us formalize everything.

Definition 1.2.3. A valuation on a field k is a map

v : k −→ Z ∪ {+∞},
such that

(a) v(x) = +∞ if and only if x = 0,
(b) v(xy) = v(x) + v(y) for all x, y ∈ k, and
(c) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ k.

We point out that if v(x) 6= v(y), the inequality in (c) is an equality, namely v(x + y) =
min{v(x), v(y)} (see Exercise 1.4.8).

A norm on a field k is a map
| · | : k → R≥0

such that

(1) |x| = 0 if and only if x = 0,
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(2) |xy| = |x| · |y| for all x, y ∈ k, and
(3) (Triangle inequality) |x+ y| ≤ |x|+ |y| for all x, y ∈ k.

It is called non-archimedean, if the norm satisfies

(3’) (Strong triangle inequality) |x+ y| ≤ max{|x|, |y|}.
In this sense, we have just defined a valuation vp(−) on Q for each prime number p, and

a norm | · |p on Q for each prime number p.

Theorem 1.2.4. (Ostrowski) The following lits all the norms of Q:

(1) the trivial norm | · |triv, namely |x|triv = 1 if x 6= 0, and 0 if x = 0;
(2) (Essentially the real norm) | · |s∞ for s ∈ (0, 1]; and
(3) (Essentially the p-adic norm) | · |sp = p−svp(·) for s ∈ R>0.

Notation 1.2.5. In view of Ostrowski’s theorem, we say a place of Q to mean either a prime
number, or the real norm (often denoted by ∞). We may complete Q with respect to the
norm at each place, and get either Q∞ := R or Qp for some prime p.

Construction 1.2.6. We define the ring of p-adic integers Zp to be the completion of Z
with respect to the p-adic valuation. We can understand this using one of the following
equivalent ways.

Understanding I: A p-adic integer is a sequence of integers:

a1, a2, . . .

such that an ≡ an+1 (mod pn). (Note that an ≡ an+1 (mod pn) implies that |an+1 − an|p ≤
p−n which converges to zero.)

We can extend the p-adic valuation vp to Zp by setting

vp((an)n∈N) := lim
n→∞

vp(an);

this limit stabilizes as n� 0 (or the limit is 0 ∈ Zp).
Understanding II: A p-adic integer is a sequence of congruences

a1 mod p, a2 mod p2, a3 mod p3, . . . ,

such that an ≡ an+1 (mod pn).
Understanding III: A p-adic integer can be uniquely written as a infinite series

(1.2.2) a0 + a1p+ a2p
2 + · · · ,

with ai ∈ {0, . . . , p − 1}. This is called the p-adic expansion of the p-adic number. In this
format, we have

vp(a0 + a1p+ · · · ) = min{n; an 6= 0}.
Understanding IV: A p-adic integer is an infinite series

a0 + a1p+ a2p
2 + · · · with ai ∈ Zp.

Here we bring up a key point in p-adic analysis: due to the strong triangle inequality, an
infinite sequence converges if the limit of the norm of each term converges to zero (which
would imply that the limit of the partial sum am + · · · + an converges to zero as both
m,n→∞, as |am + · · ·+ an| ≤ max{|am|, |am+1|, . . . , |an|} → 0.
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Example 1.2.7. We perform a multiplication in the form of Understanding III. Say p = 5.

(1 + 5 + 2× 52 + · · · ) · (3 + 3× 5 + 4× 52 + · · · )
=1 · 3 + 5 · 3 + 1 · 3× 5 + 1 · 4× 52 + 5 · 2× 5 + 2× 52 · 3 + · · ·
=3 + 6× 5 + 12× 52 + · · ·
=3 + 1× 5 + 13× 52 + · · ·
=3 + 1× 5 + 3× 52 + 2× 53 + · · ·

Example 1.2.8. 2 is invertible in the ring Z7. Modulo 7, we can solve 2x ≡ 1 (mod 7), for
example x ≡ 4 (mod 7). Then we consider modulo 72, we solve 2x ≡ 1 (mod 72), we get
x ≡ 25 (mod 72). We continue this process to get a sequence of numbers

4 mod 7, 25 mod 72, 172 mod 73, . . .

This gives the multiplicative inverse of 2 in Z7.
In general, as long as a ∈ Z with p - a, then a is invertible in Zp. Or even more generally,

if a ∈ Zp with vp(a) = 0, then a is invertible in Zp. These numbers are call p-adic units.

Definition 1.2.9. We define Qp to be the fraction field of Zp, but in fact as illustrated in
the example above, Qp

∼= Zp[1
p
], because those p-adic integers that are not divisible by p are

already invertible in Zp.

1.3. Hensel’s Lemma.

Example 1.3.1. We start with an example: finding
√

2 in Z7. This is equivalent to solving
the equation

x2 = 2 in Z7.

Method I: We can try to formally do the following:

x = 21/2 = (9− 7)1/2 = 3 · (1− 7
9
)1/2

= ±3 ·
∞∑
n=0

(
1/2

n

)(
− 7

9

)n
,

where
(

1/2
n

)
:=

1
2

(− 1
2

)···( 3
2
−n)

n!
is the formal binomial coefficients. The series converges because(

1/2
n

)
∈ Z7 and v7((−7

9
)n) = n→∞.

Method II: We first solve the equation modulo 7. At this stage, we have a choice of square
root, either x ≡ 3 (mod 7) or x ≡ 4 (mod 7). We first consider the former case, and the
latter case can be obtained similarly (or by just taking the inverse). Now, we solve this
modulo 72 = 49. To solve it, we should take x = 3 + 7y for some y. So we are looking at the
equation:

(3 + 7y)2 ≡ 2 (mod 49),

9 + 42y + 49y2 ≡ 2 (mod 49),

7 + 42y ≡ 0 (mod 49),

1 + 6y ≡ 0 (mod 7).

So y ≡ 1 (mod 7). In other words, x ≡ 3 + 7 · 1 = 10 (mod 49).
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We can continue this by considering modulo 73 = 343. We set x = 10 + 49z and consider

(10 + 49z)2 ≡ 2 (mod 343),

100 + 20 · 49z + 492z2 ≡ 2 (mod 343),

98 + 20 · 49z ≡ 0 (mod 343),

2 + 20z ≡ 0 (mod 7) · · ·

Theorem 1.3.2 (Hensel’s Lemma). Let f(x) = anx
n + an−1x

n−1 + · · · + a0 ∈ Zp[x] be a
polynomial and let f̄(x) = ānx

n + ān−1x
n−1 + · · · + ā0 ∈ Fp[x] be its reduction modulo p

(where āi = ai mod p). Suppose that f̄(x) is a nonzero polynomial (namely f(x) is not
entirely divisible by p), and let ᾱ ∈ Fp be a simple zero of f̄(x). Then there exists a unique
zero α ∈ Zp of f(x) such that α = ᾱ mod p.

Proof. We will construct a sequence of elements α1 = ᾱ, α2, α3, . . . such that αi ∈ Z/piZ is
a zero of f(x) mod pn and αi = αi+1 mod pi.
α1 is already given to be ᾱ. Now suppose that we have already constructed αi. In

particular f(αi) ≡ 0 (mod pi). We pick an arbitrary lift α′i+1 of αi in Z/pi+1Z. It is then
clear that f(α′i+1) ≡ 0 (mod pi) but α′i+1 might not be a zero of f(x) (mod pi+1).

We want to show that we can modify α′i+1 to some α′i+1 + cpi with c ∈ {0, . . . , p− 1} such
that

f(α′i+1 + cpi) ≡ 0 (mod pi+1).

There is a formal Taylor expansion law:

f(a+ b) = f(a) + bf ′(a) + b2 · f
′′(a)
2!

+ · · ·
(Note that the seemingly denominators can be canceled by the coefficients coming out from
the derivatives; and this is a finite sum.) So we try to find c such that

f(α′i+1) + cpif ′(α′i+1) + (cpi)2 f
′′(α′i+1)

2!
+ · · · ≡ 0 (mod pi+1).

We may ignore the higher degree terms involving (cpi)r for r ≥ 2. So we want

f(α′i+1)

pi
+ cf ′(α′i+1) ≡ 0 (mod p).

By our assumption, ᾱ is a simple zero for f̄(x); so f ′(α′i+1) is in fact a p-adic unit. So we
can simply take

c =
f(α′i+1)

pif ′(α′i+1)
mod p.

�

Corollary 1.3.3. Assume p ≥ 3. For v ∈ Z×p to be a square in Zp, it is necessary and
sufficient to ask v̄ = v mod p is a square in Fp.
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1.4. Exercises.

Exercise 1.4.1. Are i2 − j2 and (i + j)(i− j) equal in H?

Exercise 1.4.2. Verify the following properties about conjugation for q = a+bi+cj+dk ∈ H.
We have q̄1 + q̄2 = q1 + q2, q̄1 · q̄2 = q2q1, ¯̄q = q, and q̄ = q if and only if q ∈ R.

Exercise 1.4.3. Show that the center of H is R, namely,{
q ∈ H

∣∣ qq′ = q′q for all q′ ∈ H
}
.

Exercise 1.4.4. Verify that H⊗R C := C〈i, j〉 ∼= M2(C). What is H⊗R H isomorphic to?

Exercise 1.4.5. Write down explicitly an R-algebra embedding of H into M2(C).

Exercise 1.4.6. For the quaternion algebra Dk,a,b defined in (1.1.2), show that

Dk,a,b
∼= Dk,b,a

∼= Dk,a,−ab.

Also, for elements r, s ∈ k×, we have

Dk,a,b
∼= Dk,ar2,bs2 .

Using these special isomorphisms, deduce that there are only two quaternion algebras over
R: namely, H = DR,−1,−1 and M2(R) ∼= DR,1,1 ∼= DR,−1,1

∼= DR,1,−1.

Exercise 1.4.7. For the quaternion algebra Dk,a,b, if a is a square in k, then Dk,a,b is
isomorphic to the matrix algebra M2(k).

Exercise 1.4.8. Let v be a valuation on a field k. For any two elements x, y ∈ k, if
v(x) 6= v(y), then v(x+y) = min{v(x), v(y)}. In particular, this means that all the triangles
in Qp are isosceles.

Exercise 1.4.9. Let R be an integral domain and let k := Frac(R) be its fraction field.
Suppose that we are given a valuation v on R, namely a map v : R → Z ∪ {0} satisfying
conditions Definition 1.2.3(a)(b)(c) for x, y ∈ R. Prove that v admits a unique extension to
a valuation on k.

Exercise 1.4.10. For r ∈ R>0, consider the following norm on Qp[x]: for f(x) = a0 + a1x+
· · ·+ anx

n ∈ Qp[x],
‖f(x)‖r := max

i

{
|ai|pri

}
,

namely we set ‖x‖r = r and for general polynomial, we just take the maximum.
Prove that this defines a valuation on Qp[x] and hence defines a valuation on Qp(x) by

Exercise 1.4.9.

Exercise 1.4.11. Prove the following stronger version of the Hensel’s lemma. Let f(x) ∈
Zp[x] be a polynomial and suppose that f̄(x) := f(x) mod p factors as ḡ(x)h̄(x) with
ḡ(x), h̄(x) ∈ Fp[x] coprime and ḡ(x) monic. Then there exists a unique factorization f(x) =
g(x)h(x) such that

ḡ(x) = g(x) mod p, h̄(x) = h(x) mod p,

and that g(x) is monic and deg g(x) = deg ḡ(x).
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2. Day II: Hilbert Symbols

2.1. Structure of Q×p .

Lemma 2.1.1. For each ā ∈ F×p , there is a unique (p− 1)st root of unity a whose reduction
modulo p is ā. This a is called the Teichmüller lift of ā.

Moreover, for ā, b̄ ∈ F×p , we have [ā] · [b̄] = [āb̄] ∈ Z×p .

Proof. Recall that the multiplicative group F×p is cyclic of order p− 1. So each element gives

a solution to the equation xp−1 − 1 = 0 in Fp, and by counting, they are all the solutions
(and they are distinct). By Hensel’s lemma (Theorem 1.3.2) the solution ā lifts uniquely to
a solution, denoted by [ā], of the equation xp−1− 1 = 0 in Zp, such that [ā] mod p = ā. This
[ā] is what we sought for.

To see [ā] · [b̄] = [āb̄], we observe that [ā] and [b̄] being (p− 1)st roots of unity implies that
[ā] · [b̄] is also a (p− 1)st root of unity, whose reduction modulo p is āb̄. By the uniqueness,
we see that [ā] · [b̄] = [āb̄]. �

The goal in this subsection is to prove the following:

Proposition 2.1.2. For a prime p ≥ 3, we have isomorphisms of topological groups:

Q×p
∼= // Z× Z×p

∼= // Z× (Z/pZ)× × Zp
pna (n, a)�oo

(n, [ā] · exp(px)) (n, ā, x),�oo

where exp(px) := 1 + px + (px)2

2!
+ · · · ∈ 1 + pZp which converges for x ∈ Zp, and [a] is the

Teichmüller lift of ā.
When p = 2, we need a small modification:

Q×2
∼= // Z× Z×2

∼= // Z× (Z/4Z)× × Z2

2na (n, a)�oo

(n, [ā] · exp(4x)) (n, ā, x),�oo

where exp(4x) := 1 + 4x+ (4x)2

2!
+ · · · ∈ 1 + 4Z2 which converges for x ∈ Z2, and

[1 mod 4] = 1 ∈ Z2 and [−1 mod 4] = −1 ∈ Z2.

Proof. First, any non-zero element of Qp can be written as a product pna with n ∈ Z and
a ∈ Zp such that a is not divisible by p. As explained in Example 1.2.8, a is invertible in Zp.
So we have a natural isomorphism

Q×p
∼= // Z× Z×p

pna (n, a)�oo

a � // (vp(a), ap−vp(a)).
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Now we study the group structure of Z×p . We write q = p if p ≥ 3 and q = 4 if p = 2, we
have maps in both directions

Z×p
mod q

--
(Z/qZ)×

[−]

ll

a � // a mod q

[ā] ā.�oo

When p ≥ 3, the reverse map is the Teichmüller map [−]. When p = 2, the reverse map
(Z/4Z)× → Z×2 sends 1 mod 4 to 1 ∈ Z×2 and sends −1 mod 4 to −1 ∈ Z×2 .

The mod q map is surjective; the composition [ā] mod q = ā is the identity. So we can
split off this factor as

Z×p
∼= // (Z/qZ)× × (1 + qZp)×

[ā]b (ā, b)�oo

a � // (a mod q, a · [a mod q]−1).

We finally come to give the structure of (1 + qZp)×. For this, we introduce two functions,
inverse of each other.

(1 + qZp)×
1
q

log(•)
-- Zp

exp(q•)
nn

1 + qa � // 1
q

log(1 + qa)

exp(qb) b.�oo

These two maps are given by

1
q

log(1 + qa) = 1
q

(
qa− (qa)2

2
+ (qa)3

3
− · · ·

)
= a− qa2

2
+ q2a3

3
− · · · ,

exp(qb) = 1 + qb+ (qb)2

2!
+ (qb)3

3!
+ · · · .

They clearly converge and have to be inverse of each other. �

2.2. Classification of quaternion algebras over R or Qp. We have done the classifica-
tion of quaternion algebras over R in Example 1.1.6. In this subsection, we study this over
Qp. We start with some general facts about quaternion algebras.

Lemma 2.2.1 (bis. Exercise 1.4.7). If a ∈ k× is a square, namely, a = (
√
a)2 for some√

a ∈ k×, then for any b ∈ k×, Dk,a,b is isomorphic to M2(k).

Proof. It is easy to check that the following map ϕ : Dk,a,b → M2(k) gives a (k-algebra)
isomorphism

ϕ(i) =
(√

a 0

0 −
√
a

)
and ϕ(j) =

(
0 b
1 0

)
.

The key here is that, for this carefully chosen map, ϕ(i)ϕ(j) = −ϕ(j)ϕ(i). �

Proposition 2.2.2. Suppose that a ∈ k× is not a square in k. Then the quaternion algebra
Dk,a,b for b ∈ k× is isomorphic to M2(k) if and only if b is a norm from k(

√
a), namely,

b = Nm(x+
√
ay) := (x+

√
ay)(x−

√
ay) = x2 − ay2 for some x, y ∈ k.
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Remark 2.2.3. In view of Lemma 2.2.1, the assumption that a ∈ k× is not a square in k is
not necessary, as in that case, Lemma 2.2.1 implies that Dk,a,b is isomorphic to M2(k) and b
is clear a norm from k(

√
a) = k.

Proof of Proposition 2.2.2. If b = x2 − ay2 for some x, y ∈ k, we can define a map ϕ :
Dk,a,b → M2(k) that gives a (k-algebra) isomorphism

ϕ(i) =
(

0 a
1 0

)
and ϕ(j) =

( x ay
−y −x

)
.

Note here that the key is that we can check

ϕ(j)2 =
( x y
−ay −x

)( x y
−ay −x

)
=
(

x2−ay2 xy−yx
−ayx−x(−ay) −ay2+(−x)2

)
=
(
b 0
0 b

)
, and

ϕ(i)ϕ(j)ϕ(i−1) =
(

0 a
1 0

)( x ay
−y −x

)(
0 1

1/a 0

)
=
( −ay −ax

x ay

)(
0 1

1/a 0

)
=
( −x −ay
y x

)
= −ϕ(j).

Conversely, we assume that there is an isomorphism ϕ : Dk,a,b → M2(k). Then ϕ(i) is a
matrix that satisfies ϕ(i)2 = a ·

(
1 0
0 1

)
(namely it is a zero of the equation x2 − a = 0). We

can always conjugate it into its “normal form,”, namely, there exists g ∈ GL2(k) such that

gϕ(i)g−1 =
(

0 a
1 0

)
So we can consider a new k-algebra isomorphism ϕ′ : Dk,a,b → M2(k) given by ϕ′(q) :=
gϕ(q)g−1. Thus ϕ′(i) =

(
0 a
1 0

)
.

Now, we put

ϕ′(j) =
(
x y
z w

)
, where (x, y, z, w) 6= (0, 0, 0, 0).

Then it must satisfy the conditions

ϕ′(i)ϕ′(j) = −ϕ′(j)ϕ′(i), namely,
(

0 a
1 0

)(
x y
z w

)
= −

(
x y
z w

)(
0 a
1 0

)
.

From this we deduce that y = −az and x = −w. Plugging this information to the equality
ϕ′(j)2 =

(
b 0
0 b

)
, we deduce that(

−w −az
z w

)2
=
(
b 0
0 b

)
, and hence w2 − az2 = b.

This implies that b is the norm of w + z
√
a ∈ k(

√
a). �

The following corollary is a variant of the Proposition above.

Corollary 2.2.4. Suppose that a ∈ k× is not a square in k. Let b′ be a norm from k(
√
a).

Then the quaternion algebra Dk,a,b is isomorphic to Dk,a,bb′.

Proof. We leave this as an exercise. �

Remark 2.2.5. At least for k = R or Qp, the converse of Corollary 2.2.4 is true, namely
if the quaternion algebra Dk,a,b and Dk,a,b′ are isomorphic if and only if b′/b ∈ k is a norm
from k(

√
a).

Definition 2.2.6. Let K denote either R or a p-adic field Qp. For two elements a, b ∈ K,
we define the Hilbert symbol of a and b relative to K to be

• (a, b) = 1 if DK,a,b is isomorphic to M2(K), and
• (a, b) = −1 otherwise.
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(Note: our definition is slightly different from but is equivalent to the usual definition.) By
Exercise 1.4.6, It is clear that if we multiply a or b by a square in K, the value of the Hilbert
symbol is unchanged. So the Hilbert symbol defines a map

(−,−) : K×/(K×)2 × K×/(K×)2 −→ {±1}.
Moreover, if either a or b is a square itself, (a, b) = 1.

Example 2.2.7. For K = R, (a, b) = 1 if either a or b is positive (namely a square); and
(a, b) = −1 if a < 0 and b < 0.

Lemma 2.2.8. The Hilbert symbols satisfy the following relations, for a, b, c, r, s ∈ k×.

(1) (a, b) = (b, a) = (a,−ab), (a, c2) = 1, and (a, b) = (ar2, bs2).
(2) (a, 1− a) = 1 if a 6= 1.
(3) if (a, b) = 1 then (a, b′) = (a, bb′).

Proof. (1) These equalities follow from the isomorphisms among the corresponding quater-
nion algebras, listed in Question 1.1.5 (and Lemma 2.2.1).

(2) follows from Lemma 2.2.2 because (when a is not a square) 1 − a is the norm of
1 +
√
a ∈ k(

√
a).

(3) By Proposition 2.2.2, (a, b) = 1 implies that b is a norm from k(
√
a), which further

implies DK,a,b′
∼= DK,a,bb′ by Corollary 2.2.4. �

Theorem 2.2.9. Fix the field K to be either R or a p-adic field Qp.

(1) All quaternion algebras DK,a,b with (a, b) = −1 are division rings and are isomorphic
to each other. So the isomorphism classes of quaternion algebras over K is uniquely
determined by the Hilbert symbol (−,−).

(2) The pairing (−,−) on K×/(K×)2 is symmetric and bilinear. Explicitly, when K = R,
we have

(a, b)∞ =

{
1 if a or b is positive

−1 if both a and b are negative.

When K = Qp, if a = pαu and b = pβv for u, v ∈ Z×p , then

(2.2.1) (a, b)p =

{
(−1)αβ·(p−1)/2

(
u
p

)β(v
p

)α
, if p > 2

(−1)
(u−1)(v−1)

4 · (−1)α
v2−1

8
+β u2−1

8 , if p = 2,

where
(
u
p

)
(and similarly

(
v
p

)
) is the quadratic residue, namely it is 1 if u is a square

modulo p, and −1 otherwise.
When p is odd, we also list its values on coset representatives of the quotient

K×/(K×)2. Let ᾱ denote a generator of the cyclic group (Z/pZ)×, and α := [ᾱ]
denote its Teichmüller lift as in Proposition 2.1.2. Then {1, α, p, pα} form a coset
representative of Q×p /(Q×p )2. The pairing (a, b)p is presented in the following two
tables.

(a, b)p for p ≡ 1 (mod 4) a = 1 a = α a = p a = pα
b = 1 1 1 1 1
b = α 1 1 −1 −1
b = p 1 −1 1 −1
b = pα 1 −1 −1 1

11



(a, b)p for p ≡ 1 (mod 4) a = 1 a = α a = p a = pα
b = 1 1 1 1 1
b = α 1 1 −1 −1
b = p 1 −1 −1 1
b = pα 1 −1 1 −1

Proof. We separate the cases depending on K. The bilinearity of the Hilbert symbol is a
corollary of the explicit formula we give.

When K = R, this is clear.
When K = Qp with p an odd prime, Proposition 2.1.2 says that Q×p is isomorphic to

Z× (Z/pZ)× × Zp as a topological group. It follows that

(2.2.2) Q×p /(Q×p )2 ∼=
Z
2Z
× (Z/pZ)×

((Z/pZ)×)2
× Zp

2Zp
.

Since (Z/pZ)× is a cyclic group of order p−1, the quotient (Z/pZ)×/((Z/pZ)×)2 has order 2
and is generated by a generator, say ᾱ, of (Z/pZ)×. We write α = [ᾱ] for its Teichmüller lift.
Since p is odd, Zp = 2Zp. The last term of (2.2.2) is trivial. So the total quotient (2.2.2) is
isomorphic to the Klein group with generators p and α (after realizing the elements in Q×p ).

This implies that the set {1, α, p, pα} form a coset representatives of the quotient Q×p /(Q×p )2.
We first verify (2.2.1); for which it suffices to discuss the case when α, β ∈ {0, 1}.
Case of α = β = 0: We need to show that DQp,u,v is isomorphic to M2(Qp) (if u, v ∈ Z×p ).

If either u mod p or v mod p (which is non-zero by our assumption) is a square in Fp then
Hensel lemma would imply that either u or v is square in Zp, we are done by Lemma 2.2.1.

We now assume that this is not the case. So we need to show that v is a norm from
Qp(
√
u), namely of the form x2 − uy2.

We first consider this modulo p. Since
√
u is not a square in Fp, Fp[

√
u] is a quadratic

extension of Fp, which must be isomorphic to the unique finite field of order p2. Its multi-
plicative group is a cyclic group of order p2− 1. The map s+

√
ut 7→ s−

√
ut for s, t ∈ Fp is

the unique automorphism of Fp[
√
u] that fixes Fp, which must be the same as raising to the

pth power in Fp2 . From this, we see that the norm map

Fp[
√
u]× ∼= F×p2 → F×p

is given by raising to the (p+1)st power, and can be identified with the map of cyclic groups

Z/(p2 − 1)Z −→ Z/(p− 1)Z, λ 7→ (p+ 1)λ.

In particular such norm map is surjective. So any element v̄ ∈ F×p is in the image of this norm

map, namely, v̄ = x̄2− ūȳ2 for some x̄, ȳ ∈ Fp. Moreover, in our situation with v̄ = v mod p,
ȳ cannot be zero because v̄ is not a square modulo p is either.

Now we want to lift the equality v̄ = x̄2 − ūȳ2 to an equality in Zp. For this, we pick an
arbitrary lift x of x̄. Then uy2 = x2−v has non-zero solutions (and hence different) solutions
modulo p. Hensel’s lemma (Theorem 1.3.2) allows us to give an element y ∈ Zp such that
uy2 = x2 − v. This completes the proof in this case.

Case of α = 0 and β = 1: We have a = pu and b = v for u, v ∈ Z×p .

In this case, we need to show that (a, b)p =
(
v
p

)
. If v mod p is a square modulo p, then it

is a square in Zp by Hensel’s lemma. In this case DQp,a,v is isomorphic to M2(Qp).
12



If v mod p is not a square in Zp (so v is not a square in Zp), we need to show that DQp,a,v

is not isomorphic to M2(Qp), or equivalently a is not a norm from Qp(
√
v), namely pu = a =

x2−vy2 does not have solutions in Qp. Suppose it does. Note that the p-adic valuations of x2

and vy2 are even integers, so by strong triangle inequality, we must have vp(x
2) = vp(vy

2) ≤ 0.
Say vp(x) = vp(y) = −n for n ∈ Z≥0. Then we have p2n+1u = (pnx)2 − v(pny)2. Modulo p,
we see that 0 = λ̄2− v̄µ̄2 for λ̄ = pnx mod p, and µ̄ = pny mod p. But this would then imply
that v̄ = (µ̄/λ̄)2 is a square in Fp, which contradicts our assumption.

Case of α = β = 1: For a = pu and b = pv, we have

(pu, pv)p = (pu,−p2uv)p = (pu,−uv)p =
(−uv
p

)
=
(−1

p

)(u
p

)(v
p

)
= (−1)(p−1)/2

(u
p

)(v
p

)
.

Now, we have to verify that when (a, b) = −1, the corresponding division algebras are
isomorphic. For this, we separate the congruences.

Case of p ≡ 1 (mod 4): This is the case when −1 is a square modulo p and hence a square

in Zp by Hensel’s lemma (Theorem 1.3.2). When p ≡ 1 (mod 4), the group (Z/pZ)× is a
cyclic group of order p−1 (which is divisible by 4). So −1 is a square modulo p. By Hensel’s
Lemma (Theorem 1.3.2), −1 has a square root in Zp. It follows that

(2.2.3) DQp,a,b
∼= DQp,a,−ab

∼= DQp,a,ab

in this case. taking a = α and b = p, we see that

DQp,a,ap
∼= DQp,a,p

∼= DQp,p,a
∼= DQp,p,ap.

Case of p ≡ 3 (mod 4): We leave this as an exercise. �

Lemma 2.2.10. Let p be an odd prime. Suppose that ū is not a square in Fp. for any
v̄ ∈ F×p , there exist exist non-zero elements x̄, ȳ ∈ Fp such that x̄2 − ūȳ2 = v̄ in Fp.

Proof. Since −1 is not a square in Fp, neither x̄ nor ȳ can be zero if (x̄, ȳ) is a solution.
Moreover, −1 being non-square implies that Fp[

√
−1] gives a quadratic extension over Fp,

and itself must be isomorphic to the finite field of p2 elements, namely, Fp2 . �

13



2.3. Exercises.

Exercise 2.3.1. Prove Corollary 2.2.4 by writing down an explicit isomorphism (hint: how
do we realize x + y

√
a in Dk,a,b?) Show that its inverse for k = R and Qp (in the sense of

Remark 2.2.5) follows from Theorem 2.2.9.

Exercise 2.3.2. There is a different definition of Hilbert symbols. For a, b ∈ K×,

• (a, b)′ = 1 if the equation z2 − ax2 − by2 = 0 has nontrivial solutions in K,
• (a, b)′ = −1 if otherwise.

Prove that (a, b) = (a, b)′.

Exercise 2.3.3. Assume that p > 2 is a prime number. This appeared in the course of the
proof of Theorem 2.2.9. Consider an equation ax2 +by2 = c with a, b ∈ Z×p and c ∈ Zp. Write

ā, b̄, and c̄ for the reduction of a, b, and c respectively. Suppose that we have a solution
x̄0, ȳ0 ∈ F×p of the mod p equation āx̄2 + b̄ȳ2 = c̄. Describe all solutions (x, y) to ax2 +by2 = c
for which (x, y) (mod p) = (x̄, ȳ).

Geometrically, if we think that the equation ax2 + by2 = c defines a curve in Z2
p, and its

reduction āx̄2 + b̄ȳ2 = c̄ defines a curve over F2
p, then our question is to describe the inverse

image of the point (x̄0, ȳ0) on the special fiber of the curve, under the mod p reduction map.

Exercise 2.3.4. Complete the proof of Theorem 2.2.9 in the case of p = 2, and the case
when p ≡ 3 (mod 4).

Exercise 2.3.5. For any a, b ∈ F×p , the quaternion algebra DFp,a,b is isomorphic to M2(Fp).
(Hint: use the criterion in Proposition 2.2.2 and the argument in case α = β = 0 in the
proof of Theorem 2.2.9.)

Exercise 2.3.6. We want to generalize the embedding of H into M2(C) in Exercise 1.4.5,
to an embedding of general quaternion Dk,a,b into a 2× 2-matrix ring. We assume that the
characteristic of k is not 2.

(1) For a ∈ k×, show that if a is a square, then k[t]/(t2 − a) is isomorphic to k× k; and if
a is not a square, k[t]/(t2 − a) is a degree 2 extension of k.

(2) Verify that the following map ϕ : Dk,a,b → M2(k[t]/(t2 − a)) defines a k-algebra
isomorphism.

ϕ(i) =
(
t 0
0 −t

)
, ϕ(j) =

(
0 b
1 0

)
.

(3) When a is a square in k, Lemma 2.2.1 implies that Dk,a,b is isomorphic to M2(k) by
giving an explicit isomorphism. How does that isomorphism compare to the map ϕ in (2)?

14



3. Day III: Local-global Principle

Definition 3.0.1. Recall that a place of Q is either a prime number p or ∞ (which corre-
sponds to the usual absolute norm). At each place, we have a completion of Q: either Qp or
Q∞ := R.

Let D = DQ,a,b be a quaternion algebra (associated to some a, b ∈ Q×).

• We say that D splits (or is unramified) at a place v if D⊗QQv = DQv ,a,b is isomorphic
to M2(Qv);
• otherwise D ⊗Q Qv is isomorphic to a unique division algebra over Qv by Theo-

rem 2.2.9, and we say D is ramified at v.

Conventionally, we say a quaternion algebra D over Q is definite if it is ramified at ∞, and
is indefinite if it splits at ∞.

Today, we prove the following theorem that classifies the quaternion algebras over Q.

Theorem 3.0.2. There is a one-to-one correspondence between the isomorphism classes of
quaternion algebras over Q and finite subsets of places of Q with even cardinality. For a
quaternion algebra D over Q, the corresponding finite set is

Σ(D) := {v a place of Q | D ⊗Q Qv is a division algebra}.

This theorem consists of the following statements:

(1) If D is a quaternion algebra, then the set of ramified places Σ(D) as defined above
is a finite set with even cardinality.

(2) Conversely, given a finite set Σ of places of Q with even cardinality, there exists a
quaternion algebra DΣ which exactly ramifies at the places in Σ.

(3) Finally, for any two quaternion algebras D and D′, if they are ramified at the same
set of places.

Remark 3.0.3. This theorem is a typical example of local-global principle we normally see
in mathematics. We should view it as a map (which I would call “global-to-local map”)

(3.0.1)
{

math objects over Q
}
−−−→

{
collections of math objects over each of Qv

}
given by changing the base from Q to Qv for each v.

(1) and (2) of Theorem 3.0.2 together can be interpreted as describing the image of this
map, or equivalently the “cokernel” of this map. (3) essentially says that this map is “injec-
tive”.

In mathematics, many mathematical problems over Q is broken up into several steps using
such a global-to-local map:

(i) Understand the base change of this math problem to Qv for each of the places of v.
(ii) Understand the kernel of the corresponding map (3.0.1) (which is probably often the

easier direction).
(iii) Understand the image/cokernel of the corresponding map (3.0.1), which is often

difficult.

3.1. Product formula for Hilbert Symbols.

Theorem 3.1.1 (Product formula). For two rational numbers a, b ∈ Q×, we write (a, b)v
for the Hilbert symbol of the pair (a, b) viewed as elements in Q×v . Then (a, b)v = 1 for all
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but finitely many places v of Q. Moreover, we have a product formula:

(3.1.1)
∏

v place of Q

(a, b)v = 1.

If D = DQ,a,b, then by definition (a, b)v = −1 if and only if v ∈ Σ(D). So Theorem 3.1.1
implies (1) of Theorem 3.0.2.

Remark 3.1.2. This type of product formula is a very common form of describing
A first example of such product formula is the following: for any element x ∈ Q×, we have

(3.1.2)
∏

v places of Q

|x|v = 1.

Here we normalize the norm so that |p|p = p−1. The proof of this is simple: since both side
of (3.1.2) is multiplicative in x, it suffices to check it for x = −1 and x = p for a prime p,
which is clear.

Proof of Theorem 3.1.1. By the formula (2.2.1) in Theorem 2.2.9, for an odd prime p, (a, b)p =
1 when both a and b have p-adic valuation 0. But given two non-zero rational numbers a
and b, there are only finitely many odd primes p for which the p-adic valuation of a or b is
nonzero. Adding the two places 2 and ∞, there are still only finitely many places v where
(a, b)v 6= 1. This shows the finiteness.

To see the product formula (3.1.1), we recall that Theorem 2.2.9 says that the Hilbert
symbol is symmetric and bilinear in both variables. So it is enough to check (3.1.1) for the
following list of cases (excluding the cases when a or b is 1 because that’s when (a, b)v = 1
for all v)

• a = b = −1. In this case (a, b)∞ = −1 and (a, b)2 = (−1)
(−1−1)(−1−1)

4 = −1. So (2.2.1)
holds.
• (a, b) = (−1, p) for p an odd prime. (−1, p)p =

(−1
p

)
and (−1, p)2 = (−1)(−1−1)(p−1)/4 =

(−1)(p−1)/2. They multiply to 1.

• (a, b) = (p, p) for an odd prime p. (p, p)p = (−1)(p−1)/2 and (p, p)2 = (−1)(p−1)2/4.
They also multiply to 1.
• (a, b) = (p, `) for two odd distinct primes p and `. This is the interesting case.

(p, `)p =
( `
p

)
, (p, `)` =

(p
`

)
, and (p, `)2 = (−1)(p−1)(`−1)/2.

The product formula (2.2.1) in this case is equivalent to the equality( `
p

)(p
`

)
= (−1)(p−1)(`−1)/2.

This is precisely the quadratic reciprocity! (So to some extent, the product formula
for Hilbert symbols is equivalent to Gauss’s quadratic reciprocity.)
• Cases involving the prime number 2 is left as exercises.

�
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3.2. Globalizing local quaternion. We verify (2). This is a combinatorial problem of
creating a pair of numbers a and b.

Lemma 3.2.1. For any given even subset Σ of places of Q, there exists a quaternion algebra
DΣ which is ramified exactly at Σ.

Proof. We will handle the case when ∞ /∈ Σ, and we leave it as an exercise for the readers
to deal with the case when ∞ ∈ Σ (which requires a little modification). Let p1, . . . , pr be
the odd primes that are contained in Σ. We shall define a quaternion algebra D = DQ,N,Q
where

• Q is a (huge) prime number such that Q mod p is not a square and Q ≡ 3 (mod 4)
(the existence of such Q is guaranteed by the Dirichlet’s theorem on primes in arith-
metic progression Theorem 3.2.2).
• N = εp1 · · · pr, where ε ∈ {±1} is a sign determined by the following table.

ε 2 ∈ Σ 2 /∈ Σ
p1 · · · pr ≡ 1 (mod 4) −1 1
p1 · · · pr ≡ 3 (mod 4) 1 −1

We now check that, this quaternion algebra D ramifies exactly at Σ.

• The place ∞: since Q is positive, D splits at ∞.
• For a prime ` - 2p1 · · · prQ, we have N,Q ∈ Z×` . By Theorem 2.2.9, D splits at `.
• At p = pi, pi||N and Q mod pi is not a square, so D is ramified at pi.
• At the place 2, our complicated choice of ε is designed so that DN,Q is ramified at 2

if 2 ∈ Σ and splits at 2 if 2 /∈ Σ, by Theorem 2.2.9.

It is not so easy to directly determine the ramification of D at Q, so at this point, we can
conclude that the set of ramified places of D is either Σ or Σ ∪ {Q}. But we know that the
set of ramified places of D always have even cardinality. So it must be equal to Σ. �

Theorem 3.2.2. Let a, b ∈ N be two coprime integers. Then in the arithmetic progression
{a+ bn}n∈N there are infinitely prime numbers.

3.3. Hasse–Minkowski theorem for quadratic forms. We are now left with proving
Theorem 3.0.2(3), namely, if D and D′ are two quaternion algebras over Q such that D ⊗Q
Qv
∼= D ⊗Q Qv for all places v of Q, then D ∼= D′.

We will only prove this when D′ = M2(Q), namely, if a quaternion algebra D over Q is
isomorphic to the matrix algebra over each Qv, then it is isomorphic to the matrix algebra
over Q. The general case uses a more involved argument.

Recall that the quaternion algebra Dk,a,b is isomorphic to isomorphic to M2(k) if and
only if b is a norm from k(

√
a), which is further equivalent to existing x, y ∈ k such that

b = x2 − ay2. Thinking of x and y as “rational numbers” represented by x/z and y/z, The
latter statement is equivalent to having nonzero solutions (x, y, z) ∈ k3\{(0, 0, 0)} such that
bz2 = x2 − ay2.

So we arrive at the following.

Lemma 3.3.1. The quaternion algebra Dk,a,b is isomorphic to M2(k) if and only if x2 =
ay2 + bz2 has nonzero solutions (x, y, z) ∈ k3 − {(0, 0, 0)}.

So we are left to prove that, for a, b ∈ Q×, the equation x2 = ay2 + bz2 has nonzero
solutions in Q if and only if it has nonzero solutions in Qv for all places v of Q. This is true
in a much more general setup.
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Theorem 3.3.2 (Hasse-Minkowski). Consider a Q-coefficient quadratic form

Q(x1, . . . , xn) =
∑
i≤j

aijxixj, aij ∈ Q.

It has non-zero solution in Q if and only if it has non-zero solution in Qv for any places v
of Q.

Proof. We will not prove this deep theorem here, but we will include a proof in the case
when the quadratic form is Q(x, y, z) = x2 − ay2 − bz2 (which was due to Legendre). The
necessity is clear, so we will prove sufficiency, namely, assuming that Q(x, y, z) has non-zero
solutions in Qv for every place v of Q, we want to show that Q(x, y, z) has non-zero solutions
in Q.

We may assume |a| ≤ |b| and both a and b are square-free integers. We run induction on
the size of |a| + |b|. When |a| + |b| = 2, or equivalently, |a| = |b| = 1, this can be easily
checked case by case (exercise).

We now assume that |a|+ |b| > 2 so that |b| ≥ 2. Write

b = ±p1 · · · pr.
For p = pi, we claim that a is a square modulo p. Indeed, we look at the solution x2 −
ay2− bz2 = 0 in Qp. This follows from the same argument of Theorem 2.2.9 Case α = 1 and
β = 0.

Since Z/bZ ∼= Z/p1Z × · · · × Z/prZ, we see that a is a square modulo b, i.e. there exists
b′ ∈ Z such that

bb′ = t2 − a
We may choose t so that |t| ≤ b

2
and thus |b′| < |b|. The key here is that bb′ is a norm from

Q(
√
a), namely the norm of t+

√
a ∈ Q(

√
a). So in particular, b is a norm from Q(

√
a) if and

only if b′ is a norm from Q(
√
a). Using Proposition 2.2.2, we know that z2 − ax2 − by2 = 0

has nonzero solutions if and only if b is a norm from Q(
√
a), which is further equivalent to b′

being a norm from Q(
√
a), which in turn is equivalent to z2− ax2− b′y2 = 0 having nonzero

solutions.
So the statement for (a, b) is reduced to the statement for (a, b′), which is know due to our

inductive proof (and that |b′| < |b|). This completes the proof. �
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3.4. Exercises.

Exercise 3.4.1. When a 6= −b ∈ k×, show that the following map ϕ : Dk,a,b → Dk,a+b,−ab is
an isomorphism

ϕ(i) = i′ + j′ and ϕ(j) = k′.

For example, we deduce DQ,2,3 ∼= DQ,5,−6 this way. Can you prove that these two quaternions
are isomorphic using Theorem 3.0.2? What is the corresponding set of ramified places?

Exercise 3.4.2. Complete the proof of Lemma 3.2.1 in the case when ∞ ∈ D.

Exercise 3.4.3. We explain that the quaternion algebra DQ,a,b contains lots of quadratic
extensions over Q. Check that

(xi + yj + zk)2 = ax2 + by2 − abz2.

So in particular DQ,a,b contains Q(
√
ax2 + by2 − abz2) for any x, y, z ∈ Q. (These fields all

embed in DQ,a,b but they do not commute with each other; so their non-trivial composites
cannot be embedded in D; so there is no contradiction on dimensions.)

Of course, it seems to be possible that ax2 + by2 − abz2 is a square for some particular
choices of x, y, z. But show that, if this happens for (x, y, z) 6= (0, 0, 0), D is isomorphic to
M2(Q).

Exercise 3.4.4. In this exercise, we study more systematically when the quaternion algebra
DQ,a,b contains a quadratic extension Q(

√
D) of Q. For this, we may assume that D is a

square-free integer.
In particular, a real quadratic field Q(

√
D) (i.e. D > 0) cannot be embedded into a

definite quaternion algebra.

Exercise 3.4.5. Recall that in algebraic number theory, for a finite extension K of Q, we
write OK for the ring of integers, consisting of elements that are “integral” over Z, namely,

OK :=
{
α ∈ K

∣∣ α is a zero of some monic polynomial xn + a1x
n−1 + · · ·+ an ∈ Z[x]

}
.

We can make an analogous definition for a quaternion algebra D = DQ,a,b over Q. Note that
an element q ∈ D always satisfies a quadratic equation

q2 − tr(q) · q + Nm(q) = 0,

for the trace and norm (which belong to Q) defined in 1.1.3. So explicitly, we can define the
ring of integers in D to be

OD :=
{
q ∈ D

∣∣ tr(q),Nm(q) ∈ Z
}
.

Show that the ring of integers of DQ,−1,−1 is

ODQ,−1,−1
= Z⊕ Zi⊕ Zj⊕ Z1+i+j+k

2
.

Exercise 3.4.6. If a quaternion algebra D over Q contains a quadratic field L, show that
OL ⊆ OD. Conversely, show that all the elements of OD is contained in OL for some
quadratic field L embedded in D. Moreover, all the units O×D are units in some O×L . (This
almost follows from the previous sentence; what is missing?)

Exercise 3.4.7. Let D be a quaternion algebra over Q.

(1) Show that an element q ∈ OD is a unit if and only if Nm(q) = ±1.
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(2) Find all the units in ODQ,−1,−1
. What is this group isomorphic to?

(3) Show that OD has only finitely many units if D is a definite quaternion, namely,
D ⊗Q R is isomorphic to the Hamiltonian quaternion.

(4) Show that if D is an indefinite quaternion algebra, OD has infinitely many units.
(Hint: use Exercise 3.4.4.)
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4. Day IV: Central Simple algebras

4.1. Central Simple Algebras and Brauer Groups. Central simple algebras are higher
dimensional generalizations of quaternion algebras.

Definition 4.1.1. Let K be a field. A central simple algebra over K is a matrix algebra
Mn(D) for some n ∈ N and some division ring D whose center is exactly K. (This is actually
an equivalent working definition; the common definition is a K-algebra C whose center is
exactly K, and such that all finitely generated C-modules are isomorphic to a (finite) direct
sum of a unique simple C-module.) When n = 1, we call D a division central algebra over
K.

Example 4.1.2. When K = R, all central simple algebras over R are Mn(R) and Mn(H).

Example 4.1.3. All quaternion algebras over K are central simple algebras.
Let L/K be a Galois extension whose Galois group is isomorphic to Z/nZ. Let σ ∈

Gal(L/K) be a generator and choose b ∈ K×. We define a central simple algebra

(L/K, σ, b) := L⊕ Lx⊕ Lx2 ⊕ · · · ⊕ Lxn−1,

where the multiplication is K-linear but subject to the following rules:

xα = σ(α)x, for all α ∈ K.
These central simple algebras are called cyclic algebras, and they have dimension n2. In this
sense, H = (C/R,−1).

Fact 4.1.4. For a division central simple algebra D over F and any (not necessarily finite)
field extension L/K, the tensor product D ⊗K L is a central simple algebra over L.

Moreover, there exists a finite (separable) field extension L/K, such that D⊗KL ∼= Mn(L).
In particular, dimK D = n2 is a square.

Fact 4.1.5. For central simple algebras C = Mn(D) and Mn′(D
′) over K, their tensor

product C ⊗K C ′ = Mnn′(D ⊗K D′) is also a central simple algebra over K. In particular,
D ⊗K D′ is again a central simple algebra over K, namely a matrix algebra in some (other)
division algebra over K.

Example 4.1.6. For a division algebra D, we can define an opposite division algebra (Dop, ∗)
such that d1 ∗ d2 := d2 · d1. (For quaternion algebras Dk,a,b, it is isomorphic to its opposite
Dop
k,a,b.) We can consider the action of D ⊗K Dop on D by

(d1, d2) · d := d1dd2.

This action is K-linear but not D-linear. So we get a ring homomorphism

D ⊗K Dop −→ EndK(D) ∼= MdimD(K).

In fact, this is an isomorphism.

Definition 4.1.7. The Brauer group of the field K is defined to be

Br(K) :=
{
C central simple algebras over K

}/
∼,

where C ∼ C ′ if (and only if) there exists natural numbers n,m ∈ N such that Mn(C) ∼=
Mm(C ′). (This is equivalent to C ∼= Mm(D) and C ′ ∼= Mn(D) for some division central
algebra over K.) In some sense, we are picking out the “essential part” of the central simple
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algebra, namely the “core” division central algebra, but ignoring the added matrix algebra
structure. We use [C] to denote the equivalent classes of central simple algebras.

The identity of the group Br(K) is [K]. The multiplication in Br(K) is defined to be the
algebra tensor product:

[C] · [C ′] := [C ⊗K C ′].
The inverse of [C] is [Cop]. Note that, by Fact 4.1.6, for a division central algebra D,
D ⊗K Dop ∼= MdimK D(K) ∼ K.

Remark 4.1.8. An equivalent definition of Br(K) is

Br(K) :=
{

division central algebras D over F
}
,

and the multiplication is given by the tensor product and then “deprive” the matrix algebra
part of the tensor product.

Example 4.1.9. For K = R, the only division central algebras over R are R and H, and
H⊗R H ∼= M4(R). So Br(R) ∼= Z/2Z.

Note that C is not a central simple algebra over R because the center of C is not R.

Example 4.1.10. Assume that the characteristic of K is not 2. For any quaternion algebra
D over a field K, D ∼= Dop (Exercise 4.4.1). So [D] · [D] = [M4(K)] = [K]. This means that
[D] has order 2 in Br(K) (if it is not the matrix algebra).

Conversely, one can show that each element [C] ∈ Br(K) of order 2 can be represented by
a quaternion algebra D.

4.1.11. Interpretation of Theorem 3.0.2. Using Example 4.1.10, we can make (3.0.1) precise:

Φ2 : Br(Q)[2-tor] −→
⊕

v place of Q

Br(Qv)[2-tor],

where [2-tor] means the subset of elements of order 1 or 2. The source of the map Φ2 is the
set of (isomorphism classes of) quaternion algebras over Q, and the target of the map Φ2 is
the set of collections (Dv)v of quaternion algebras for each place v of Q. Theorem 3.0.2 says
that the map Φ2 is injective, and its image is, if we identify each Br(Qv)[2-tor] with Z/2Z,
the collection (αv)v of elements αv ∈ Z/2Z such that αv = 0 for all but finitely many v, and∑

v αv ≡ 0 mod 2.
Phrasing this in another way, we consider a map⊕

v place of Q

Br(Qv)[2-tor]
inv−−−−−→ Z/2Z

sending [Dv] for any v to 0 if [Dv] is the identity element of Br(Qv)[2-tor], and to 1 if [Dv]
is the non-trivial element of Br(Qv)[2-tor]. Then Theorem 3.0.2 says that Φ2 defines an
isomorphism from Br(Q)[2-tor] to the kernel of the map inv.

4.2. Classification of Central Simple Algebras over Q. This classification is yet an-
other instance of the local-global principal.

Over R: We have seen that Br(R) = {[R], [H]}. For what follows, it is easier to identify

Br(R) with 1
2
Z/Z (as opposed to Z/2Z). We write this in the form of a map inv∞ : Br(R)

∼=−→
1
2
Z/Z.
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Over Qp: for p a prime number, there is a canonical isomorphism

invp : Br(Qp)
∼=−→ Q/Z =

⋃
n

1
n
Z/Z.

In particular, every element of Br(Qp) is torsion (meaning that if C is a central simple algebra
over Qp, then C ⊗Qp · · · ⊗Qp C︸ ︷︷ ︸

n times

is a matrix algebra for some n.

Explicitly, each coset element of the coset Q/Z is represented by a
n

for (a, n) = 1 and
a ∈ {0, . . . , n−1}. The division algebra Da/n with invariant a

n
can be constructed as follows.

Pick a degree n monic irreducible polynomial f̄(x) ∈ Fp[x] so that adjoining one zero ᾱ of
f̄(x) to Fp defines a degree n extension of Fp. The Galois group Gal(Fp(ᾱ)/Fp) ∼= Z/nZ
admits a canonical generator: the Frobenius σ, which sends ᾱ to ᾱp.

Pick any lift f(x) of f̄(x) into a monic polynomial in Zp[x] (of degree n). Then adjoining
one zero α of f(x) to Qp will define a degree n extension L of Qp. In fact one can prove
that this extension L/Qp is Galois whose Galois group Z/nZ, canonically isomorphic to the
Galois group Gal(Fp(ᾱ)/Fp) by looking at the action of the Galois group on α modulo p. In
this sense, we may extend the Frobenius σ on Gal(Fp(ᾱ)/Fp) to an element of the Galois
group Gal(L/Qp).

Then we can write explicitly

Da/n := L〈t〉
/(
tn − pa, tbt−1 − σ(b) for all b ∈ L

)
.

This is a central simple algebra over Qp which has dimension n over L and hence dimension
n2 over Qp.

Over Q: The description of the Brauer group over Q uses the same technique that we used
to classify the quaternion algebras. For each central simple algebra C over Q, we can base
change to Qp to get a central simple algebra C⊗QQp over Qp. This defines a homomorphism

Φ : Br(Q) //
∏

v places of Q Br(Qv).

C � //
(
C ⊗Q Qv

)
v

In fact the image of this map lands in the direct sum
⊕

v places of Q Br(Qv). (How much do

they differ?)

Theorem 4.2.1. The map Φ is injective and its image is precise the kernel of the following
map ∑

v

invv :
⊕

v places of Q

Br(Qv) −→ Q/Z.

Using the fancy language of exact sequences, we have

0→ Br(Q) −→
⊕

v places of Q

Br(Qv)
∑

v invv−−−−→ Q/Z→ 0

4.3. Failure of Local-global Principle and Tate–Shafarevich Group. In fact, the
local-global principle we advocate often fail beyond the cases we discussed here. But when-
ever it holds, it will have great influence and many applications in number theory. Or rather,
understanding the local-global principle is probably the most effective way we have so far to
attack an arithmetic and number theory questions over Q.

23



Here is a classical example where the local-global principal fails.

Theorem 4.3.1 (Selmer). The equation 3x3 + 4y3 + 5z3 = 0 has only the zero solution over
Q, but there is a nonzero solution over every completion Qv.
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4.4. Exercises.

Exercise 4.4.1. For quaternion algebras Dk,a,b, it is isomorphic to its opposite Dop
k,a,b.

Exercise 4.4.2. Suppose that K has a primitive nth roots of unity ζn, we can define a
central simple algebra

(
a,b
K

)
n

for a, b ∈ K× given by(a, b
K

)
n

= K〈i, j〉
/(

in − a, jn − b, ij− ζnji
)
.

Suppose that K( n
√
a) is a degree n extension of K, then it is cyclic of degree n (why?). Show

that this central simple algebra is the same as a cyclic algebra as defined in Example 4.1.3.

Exercise 4.4.3. The definition of the quaternion algebra Da/n in Subsection 4.2 makes
sense. Check that Da/n

∼= Da+n/n and Dop
a/n
∼= D−a/n.

Exercise 4.4.4. In this exercise, we outline a complete proof of Selmer’s example (Theo-
rem 4.3.1). The goal is to prove that

(4.4.1) 3x3 + 4y3 + 5z3 = 0

has only the zero solution over Q, but there is a nonzero solution over every completion Qv.
This requires the basic knowledge of algebraic number theory.

Existence of solutions over each Qp is essentially a Hensel type argument, which we follow
the method suggested by K. Buzzard.

(1) Show that there exist non-zero solutions to (4.4.1) over R.
(2) For p = 3, 5, show that there exist non-zero solutions to (4.4.1) over Qp.
(3) For p 6= 3, 5, show that there exist non-zero solutions to (4.4.1) over Qp.
(4) Show that there exists only zero solution to (4.4.1) over Q. Here is a list of steps:

(a) First changing the variables to turn (4.4.1) into X3 + 6Y 3 = 10Z3.
(b) Consider α = 3

√
6 and K = Q(

√
6), so that the above equation becomes

(X + αY )(X2 − αXY + α2Y ) = 10Z3

(c) Prove that OK = Z[α].
(d) Prove that Z[α] is a PID.
(e) The quotient Z[α]×/(Z[α]×)3 is represented by (1 − 6α + 3α2)k for k = 0, 1, 2.

(Remark: it is true that Z[α]× = ±(1− 6α+ 3α2)Z, but this takes more time to
prove.)

(f) Conclude that (4.4.1) has no non-zero solution over Q.
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