Chapter 5

L-functions

In this chapter we define the L-functions attached to elliptic curves
and modular forms, and we investigate when an elliptic curve and a
modular form could have the same L-function.

5.1. The L-function of an elliptic curve

Let E be an elliptic curve over Q given by a minimal model (as in
Definition 2.6.3):

Y2+ arzy + asy = 2° + axx® + aux + ag

with coefficients a; € Z. For p a prime in Z of good reduction for
E/Q, we define N, as the number of points in the reduction of the
curve modulo p, i.e., the number of points in E(F,). In other words,
N, is the number of points in

{OYU{(z,y) € F,2: v +ayzy +azy — 22 —azz® —agr —ag = 0 mod p}

where O is the point at infinity (see Section 2.6 and, in particular,
Hasse’s theorem 2.6.11). Also, let a, = p+1 — N,. We define the
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126 5. L-functions

local factor at p of the L-series to be

1 —a,T + pT?, if E has good reduction at p,

L(T) = 1 —1T, if E has split multiplicative reduction at p,
b 1+ T, if E has non-split multiplicative reduction at p,

1, if E has additive reduction at p.

Definition 5.1.1. The L-function of the elliptic curve E is defined
to be

L(E,s)=]] !

p>2 Lp (p _S) '
where the product is over all primes p > 2 and L, (T") is the local factor
defined above. L(E, s) is sometimes called the Hasse-Weil L-function

of E/Q.

Remark 5.1.2. The product that defines L(F, s) converges and gives
an analytic function for all R(s) > 3/2. This follows from Hasse’s
bound (Theorem 2.6.11), which implies that |a,| < 2,/p. However,
far more is true. Indeed, mathematicians conjectured that L(E, s)
should have an analytic continuation to the whole complex plane and
that it must satisfy a functional equation relating the values of L(E, s)
and L(E,2—s). For the precise functional equation see Theorem 5.1.9
below.

Example 5.1.3. Let E/Q be the elliptic curve with equation
v +y=a®— 2% — 10z — 20.

This is a minimal model for E/Q, and its discriminant is Ap = —115.
Therefore, p = 11 is the only prime of bad reduction for E/Q, and
the reduction is split multiplicative (see the discussion about Fj in
Example 2.6.7). Therefore,

1 1
L(B,s)=———1]- .
( 78) (1_11—s> 1)1;[2 1_app—s _|_p1—2.s

p#11
When expanded, the L-series attached to FE has the form
2 1 2 1 2 2 2 2 1
= ]_ _—_—— — _ _——t— — — — — — _—
L(E.s) > 3 F R T o 100 1
In general, one can always write L(E,s) = > - a,n"°, where the
a,, are characterized in Proposition 5.1.5 below. [ |
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Example 5.1.4. Let E/Q : y* = 23 — 1122 + 385. The curve E
has bad additive reduction at 2 and 11, split multiplicative at 5 and
non-split multiplicative at 7 and 461. Thus, by definition

L(E,s) = ((1=57)(1+7°)(1+461%))"

1 :

1—a.p=5$ 1-2s
primes p »P + p
p#2,5,7,11,461

I
—
I
|
4
|
I
|
4
|
4

Proposition 5.1.5. Let E/Q be an elliptic curve, and let L(E, s) be
its L-function. Define Fourier coefficients a,, for allm > 1 as follows.
Let a; = 1. If p > 2 is prime, we define

p+1—N, if E has good reduction at p;

1 if E has split multiplicative reduction at p;
Ay =
r -1 if E has non-split multiplicative reduction at p;
0 if E has additive reduction at p.

If n =p" for some r > 1, we define a, recursively using the relation
ap - Apr = Aprir +p-apr—1 if E/Q has good reduction at p

and ayr = (ap)" if E/Q has bad reduction at p. Finally, if (m,n) =1,
then we define app = G -ayn. Then the L-function of E can be written

as the series

L(B,s) = Z—"
n>1

The proof is left as an exercise (Exercise 5.7.2).

Remark 5.1.6. Notice that the recurrence formula ay -ay = ayr1 +
p - ap—1 (and apr = (ap)" in the bad reduction case) is strikingly
similar to the recurrence relation defining the Hecke operators T, for
k = 2, and also the recurrence relation satisfied by the eigenvalues
of an eigenform (see Definition 4.4.8, Remark 4.4.13 and Exercise
4.5.16). This is one of the first pieces of evidence that the L-function
of an elliptic curve may be connected to a modular form.
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Before we write down the functional equation for E/Q, we need
one more ingredient: the conductor of F/Q. For each prime p € Z,
we define the quantity f, as follows:

0, if E has good reduction at p,

1, if E has multiplicative reduction at p,

2, if E has additive reduction at p, and p # 2,3,
2 + 0p, if E has additive reduction at p =2 or 3,

where 0, is a technical invariant (see [Sil94], Ch. IV, §10; the invari-
ant d, describes whether there is wild ramification in the action of
the inertia group at p of Gal(Q/Q) on the Tate module T},(E)).

Definition 5.1.7. The conductor Ng,q of E/Q is defined to be
NE/Q = prpa
P

where the product is over all primes and the exponents f, are defined
as above.

Example 5.1.8. Let us see some examples of conductors.

(1) Let E/Q: y*> +y = 23 — 22 + 2 — 2. The primes of bad
reduction for £ are p = 5 and 7. The reduction at p = 5
is additive, while the reduction at p = 7 is multiplicative.
Hence Ngjg =257 = 175.

(2) As we saw above, the curve y% +y = 2% — 22 — 10z — 20 has
split multiplicative reduction at p = 11 and the reduction is
good elsewhere. Thus, the conductor is 11.

(3) The curves B4 : y? +y =23 —z and Ep : y?> +y = 2° +
2% — 232 — 50 are two non-isomorphic curves with conductor
equal to 37.

Theorem 5.1.9 (Functional equation). The L-series L(E, s) has an
analytic continuation to the entire complex plane, and it satisfies the
following functional equation. Define

A(E.s) = (Npyq)*/*(2m)°T(s) L(E. 5),
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where Ngq is the conductor of E and T'(s) = [ t*~le~'dt is the
Gamma function. Then

A(E,s)=w-A(E,2—35) withw==+1.

The number w = w(E/Q) in the functional equation is usually
called the root number of E, and it has an important conjectural
meaning (see the next section on the Birch and Swinnerton-Dyer con-
jecture). Theorem 5.1.9 was proved in 1999, since it follows from the
Taniyama-Shimura-Weil conjecture 5.4.5, which was proved by work
of Wiles, Taylor-Wiles, and Breuil, Conrad, Diamond and Taylor.

5.2. The Birch and Swinnerton-Dyer conjecture

Figure 1. Bryan Birch (left) and Sir Peter Swinnerton-Dyer
(right). Photograph courtesy of William Stein.

Conjecture 5.2.1 (Birch and Swinnerton-Dyer). Let E be an elliptic
curve over Q, and let L(E, s) be the L-function attached to E. Then:

(1) L(E,s) has a zero at s = 1 of order equal to the rank Rg of
E(Q). In other words, the Taylor expansion of L(E,s) at
s =1 is of the form

L(E.s) = Cy- (s — )R + Cy - (s — 1YREH1 4 Cy - (s — 1)REF2 1 ...

where Cy is a non-zero constant.



130 5. L-functions
(2) The residue of L(E,s) at s =1, i.e., the coefficient Cy, has
a concrete expression in terms of invariants of E/Q. More
concretely,
. L(E,s) || -Qg-Reg(E/Q)-[],cp
CO = lim Ry B .
s—1 (5 - 1) B |Et0rsi0n(Q)|
The invariants that appear in the conjectural formula for the

residue are listed below:

R is the (free) rank of E(Q) (see Section 2.7).

Qp = | B®) ‘d—;‘ is either the real period or twice the real

period of a minimal model for E, depending on whether
E(R) is connected.

|III| is the order of the Shafarevich-Tate group of E/Q (we
defined the 2-torsion of Sha, IIls, in Section 2.11).

Reg(E/Q) is the elliptic regulator of E(Q), as in Definition
2.8.4.

| E(Q)torsion| is the number of torsion points on E/Q, includ-
ing the point at infinity O (see Section 2.5).

¢p is an elementary local factor, equal to the cardinality of
E(Qp)/Eo(Qp), where Ey(Qy) is the set of points in E(Q,)
whose reduction modulo p is non-singular in E(F,). Notice
that if p is a prime of good reduction for E/Q, then ¢, =1,
so ¢, 7# 1 only for finitely many primes p. The number ¢, is
called the Tamagawa number of E at p.

In 1974 ([Tat74], p. 198), John Tate wrote about the BSD con-

jecture:

“This remarkable conjecture relates the behavior of a function

L at a point where it is not at present known to be defined (s = 1)
to the order of a group (1) which is not known to be finite!” Tate
is referring to the fact that, when the conjecture was first proposed,
the analytic continuation of L(FE,s) was not known, and we did not
know whether III was ever finite (nowadays we know many examples
where 11T is finite, but it is still not known for all elliptic curves).

Example 5.2.2. Let F/Q be an elliptic curve. By Theorem 5.1.9, the

function

L(E,s) = 3,51 axn~° has an analytic continuation to C.

In particular, if we restrict our attention to real values ¢, then L(E,t)
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Figure 2. L(Fo,t) for Fo:y? +y =23 — 22 — 10z — 20 and
-1 <t < 3.

is a real-valued function. Since L(F, s) is analytic, L(FE,t) should be
continuous and (infinitely) differentiable. Let E,, for r = 0,1,2 and
3, be elliptic curves defined by

Ey : vV*+y=2>—22-100—-20, Ei:y’+y=2a>—2z
Ey : y*+y=a34+22—-22, Ey:y>+y=2>—Tx+6.

The reader can check that the rank of E, is precisely r. In Figures
2 through 5 we show the graphs of L(F,,t) for —1 <t < 3. Notice
that the function L(FE,,t) seems to have a zero of order r at t = 1, in
agreement with the BSD conjecture. [ ]

Example 5.2.3. Let £/Q : y? = 23 —1156x. Recall that in Examples
2.10.4 and 2.11.2 we calculated Rg = 2, E(Q)torsion = Z/27 X 7./27,
and 1Ty = {(1,1)} (here III5 is just the 2-torsion of IIT). A non-trivial
calculation yields IIT = Iy = {(1,1)}. Figure 6 provides the values
of all the invariants that appear in the BSD conjecture. Thus,

1| - Qg - Reg(E/Q) - I, ¢p
= 6.3851519548 .. ..
|E(Q)torsion |2
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Figure 3. L(Eq,t) for By :y? +y=2% -2z and -1 <t < 3.
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Figure 4. L(FEy,t) for Eo - y? +y =23 +22 — 2z and —1 <t < 3.
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Figure 5. L(F3,t) for B3 :y?> +y=2° -7z +6and —1 <t < 3.

E/Q:y? =23 — 11562

Ry 2, <P = (_167 120)7Q = (_2748)>
|| 1
Qg 0.8993583214 ...

Reg(E/Q) det H({P,Q}) = 7.0996751824 . ..
EQ)torsion  Z/2Z x Z/2Z = {(0,0), (34,0))

HpZQCp 02-617:4'4

Figure 6. BSD data for the curve E/Q : y% = 23 — 1156z.

We can also calculate the value L(F, 1) and the values of the deriva-
tives L’(F,1) and L"”(E,1); i.e., we can approximate numerically
these values. For instance, one can use Sage (see Appendix A.3).
For a technical description of the algorithms involved, see [Dok04].
Once we have calculated these values, we can write the first few terms
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E/Q:y? =23 — 6724

REg 0

11| 4

Qg 0.5791156343. ..
Reg(E/Q) det H({}) = 1

E(Q)torsion Z/2Z x Z./2Z = {(0,0), (81,0))

szch Ccy-cy1 =4-4

Figure 7. BSD data for the curve E/Q : y? = 23 — 6724x.

of the Taylor expansion of L(E, s) around s = 1.
L(E,s) =~ 9.508-1072"—(2.374-1023) . (s — 1)
+(6.3851519548) - (s — 1) 4 -~ .

Therefore, our approximate calculation suggests that L(E, s) has a
zero of order 2 at s = 1 and the residue is 6.3851519548 ..., in per-
fect agreement with the BSD conjecture (at least up to the given
precision). [ |

Example 5.2.4. Let E/Q : y? = 2% — 6724x. Recall that Examples
2.10.5 and 2.11.3 suggest that Rg = 0, F(Q)orsion = Z/27Z X Z)2Z
and |IIIz| = 4. A non-trivial calculation reveals that Rg is indeed 0
and |III| = |IIIy| = 4. Figure 7 provides the values of all the invariants
that appear in the BSD conjecture. Thus,

|- Qp - Reg(E/Q) - ], ¢»
= 2.3164625374 . . ..
|E(Q)torsion|2

We can approximate the first few terms of the Taylor expansion of
L(E,s) around s = 1.
L(E,s) ~ 2.3164625374 — (7.8248271660) - (s — 1)
+(25.7352635691) - (5 — 1)2 + - .

Therefore, our approximate calculation suggests that L(FE,s) does
not vanish at s = 1, and L(FE, 1) = 2.3164625374. . ., again in perfect
agreement with the BSD conjecture. ]
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The following is an easy consequence of the BSD conjecture (Ex-
ercise 5.7.3). Recall that the root number of E is the sign in the
functional equation of L(E, s).

Conjecture 5.2.5 (Parity Conjecture). The root number of E, de-
noted by w = w(F/Q), indicates the parity of the rank of the elliptic
curve; i.e., w = 1 if and only if the rank Rg is even, and w = —1 iff
the rank is odd. Equivalently,

w = (_1)0rd,—=1 L(E,s) _ (_1)rank(E(Q))
or ords—1 L(FE, s) = rank(F(Q)) mod 2.

See Exercise 5.7.3.

Definition 5.2.6. Let £/Q be an elliptic curve, and let L(E, s) be
the L-function attached to E. The analytic rank of E(Q) is defined
to be the order of vanishing of L(E,s) at s = 1, i.e.,

rank,, (£/Q) := ords—1 L(E, s).

In other words, rank,,(E/Q) is the order of the zero of L(E,s) at
s=1.

Thus, the first part of the BSD conjecture is the statement that
the analytic rank equals the (algebraic) free rank of the Mordell-Weil
group E(Q).

Example 5.2.7. Let £/Q : y?> = 23 —157%x. Recall that Proposition
1.1.3 says that the rational points on F/Q with y # 0 give right
triangles of area 157, so if we find a single non-trivial point on E we

prove that n = 157 is a congruent number (as defined in Example
1.1.2).

Comparing values of A(s) and A(2 — s), we calculate the root
number w = w(E/Q) = —1. Thus, the parity conjecture suggests
that F(Q) has odd rank, therefore > 1, and so F(Q) must be infinite.
However, a computer search only yields the trivial 2-torsion points
(0,0), (157,0) and (—157,0). We can calculate values of L(E, s) and
its derivatives at s = 1 and write down an approximate Taylor ex-
pansion:

L(E, s) ~ (11.4259445007) - (s — 1) — (49.9773214816) - (s — 1)+ - - - .
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Hence, the BSD conjecture suggests that Ry = 1 and

III] - Qg - Reg(E/Q) - I, ¢p
= 11.4259445007 . . ..
|-E((2)torsion|2

If we believe that Ry = 1 and we write P for a generator of F(Q)
modulo torsion, then one can show that III; must be trivial (and, in
fact, 1T is trivial as well, but this is much tougher to prove). Some
other invariants are easy to calculate:

Op = 0.4185259488 . . ., H cp=ca-cis7 =24, |E(Q)torsion| = 4.
p>2

However, Reg(E/Q) = (P,P) = 2 - E(P) is difficult to calculate be-
cause we do not know P (here h is the canonical height). But we can
solve for Reg(F/Q) in Eq. (5.1) and obtain

Reg(E/Q) = 2 - h(P) = 54.6008892938 . ..
and B(P) = 27.3004446469. ... That’s a huge height! Recall that

(5.1)

h(P) ~ %log max{num(z(P)),den(z(P))}

and so max{|num(z(P))|, [denom(z(P))|} ~ €>*6 ~ 5.157-10%3. This
calculation gives us a rough idea of the size of the numerator and
denominator of the x coordinate. With the help of homogeneous
spaces, and looking for points in the correct height range, we can
succeed at finding P. Tts coordinates P = (z(P),y(P)) are:

o(P) =  166136231668185267540804
B 2825630694251145858025

y(P) — 167661624456834335404812111469782006
150201095200135518108761470235125
and the canonical height of P is precisely 27.3004446469.. ., as pre-
dicted by the Birch and Swinnerton-Dyer conjecture. [ |

There has been a great amount of research on the BSD conjecture,
but the progress in the general case over Q is minimal (a lot is known
about BSD for elliptic curves over function fields). The conjecture has
been verified for many elliptic curves (for instance, see [GIJPST09],
[Mil10]), but there is little evidence in the form of proven theorems.
The following result is the strongest piece of evidence proved to date.
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Theorem 5.2.8 (Gross-Zagier, Kolyvagin). Let E/Q be an elliptic
curve of algebraic rank Rg. Suppose that the analytic rank of E/Q is
<1, e, ords—1 L(F,s) < 1. Then:

(1) The first part of BSD holds for E/Q, i.e.,
Rp = rank(E(Q)) = rank,,(E/Q) = ords—1 L(E, s).
(2) The Shafarevich-Tate group I associated to E/Q is finite.

5.3. The L-function of a modular (cusp) form

Let N,k > 1 and let f(z) be a cusp form of weight 2k for the con-
gruence subgroup I'g(N), i.e., f(z) € Sox(To(N)) in the notation of
Section 4.2 (and, in particular, Prop. 4.2.3). For any N > 1, the ma-
trix T = (1,1;0,1) belongs to I'g(N), and therefore f(z) = f(z + 1)
for all z € H. Moreover, f(z) is a cusp form and so f vanishes at all
the cusps of H*/T'o(N), and in particular it vanishes at oc. Hence
f(2) has a g-expansion expression of the form

F(z) =) and",

n>1
where ¢ = >™* for some coefficients a,, € C.

Definition 5.3.1. The L-function attached to a cusp form f(z) =
EnZl anq™ € Sk(To(N)) is defined by

a a
L(f,s)zZann_s:Zn—ZZG1+2—i+—+

n>1 n>1

Example 5.3.2. Let N = 11 and k£ = 1. The space M(I'¢(11)) is
a 2-dimensional C-vector space with basis elements {f, g} given in
Example 4.2.11. In particular, So(I¢(11)) is generated by

fla) = a—2¢% —¢*+2¢" +¢° +2¢° —2¢" — 2¢° —2¢'° + O(¢""),

where ¢ = €>™*. Hence the L-function associated to f is

2 1 2 1 2 2 2 2
L(fis)=1- oo fm == 2

The very attentive reader might recognize these few terms as the first

few terms in the L-function L(FE, s) that appeared in Example 5.1.3,

where E/Q is the elliptic curve with equation y? +y = 2% — 2% —
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10z — 20. Are they truly the same L-series? Further calculations
show that all terms agree as we increase the precision. We will see
that the Taniyama-Shimura-Weil conjecture 5.4.5, i.e., the modularity
theorem, implies that L(E,s) = L(f,s). Notice that the conductor
of E/Q is precisely N = 11, as we saw in Example 5.1.8. [ ]

Example 5.3.3. Let N = 37 and k¥ = 1. In Example 4.2.12 we
described the space S2(I¢(37)) with basis elements {f, g} given by
the g-expansions

fl@) = qg+¢—2¢"—q" —2¢° +3¢" —2¢'* — 4¢"* + O(¢"%),
9(0) = @ +2¢°—2¢" +¢° —3¢° — 4¢° — 2¢"° + 4¢"" + O(¢"?).

The L-functions attached to f and g are
L(fs) = l4p-mm— = L I

L(gvs) = ——t oo mtes s

Now, let £, and E be the elliptic curves of conductor 37 described
in Example 5.1.8. Then

L(Bns) =1+ 3~ o 32 4

and, indeed, we shall see that L(f,s) = L(Ep, s). How about E4?

2 3 2 2 6 1 6 4 5
LEss )=l 55 5 e = o 1
so L(E4,s) # L(g,s) or L(f,s). Is there some form F'(z) € Si(I'0(37))
such that L(Ea,s) = L(F,s)? If so, F(q) must be a linear combina-
tion A - f(g) + - g(q) for some A\, u € C. After a quick look at the
first few coefficients of the g-expansions of f and g, and those of the
series L(E 4, s), one can check that, if some F' works, then it must be

F(q) = f(q) —2¢(q), and indeed
(f—29)(q) = 1-2¢°—3¢*+2¢" ~2¢°+6¢° —¢"+6¢°+4¢"° ~5¢" +0(¢*?)

and so
2 3 2 2 6 1 6 4 5
L(f—2 =l-— 44+ ==+ —4+—-
(F=29.9) ¥ 3T 5 6 7 o100 1
Once again, we shall see that the Taniyama-Shimura-Weil conjecture
implies the equality L(f — 2¢g,s) = L(Ea4, s). [ ]
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5.4. The Taniyama-Shimura-Weil conjecture

In Examples 5.3.2 and 5.3.3, we have seen examples of elliptic curves
E/Q of conductor N and modular forms f € So(I'(N)) such that the
L-functions L(E, s) and L(f, s) seem to be identical.

Definition 5.4.1. We say that an elliptic curve E/Q is modular if
there is a cusp form f(z) such that

L(E,s) = L(f, s).

In the second half of the 20th century, many mathematicians grew
increasingly interested in the question of whether every elliptic curve
over QQ is modular. However, early on, it was noticed that not every
cusp form comes from an elliptic curve.

Notice that if £ is modular and L(E,s) = L(f,s) =, <, ann™?,
then a, must equal p + 1 — N, when p is a prime of good reduction
for E and, in general, a,, must coincide with those values defined in
Proposition 5.1.5. Hence, for a given elliptic curve, there is a clear
candidate for a cusp form f associated to the elliptic curve FE.

Definition 5.4.2. Let E/Q be an elliptic curve. We define the po-
tential cusp form associated to E to be a function fg : H — C defined
by its g-expansion
fE(q) = Zanqn7
n>1
where ¢ = €2 and the a, are defined in Proposition 5.1.5 (for
instance, if £/Q has good reduction at p, then a, =p+1— N,).

It is very far from clear that fg is a modular form. Let us sup-
pose for a moment that fg is indeed a modular form and L(E,s) =
L(fg,s). What kind of modular form should fg be?

(1) The examples suggest that, first of all, fr must be a cusp
form of weight 2 for I'o(N), where N = Ng is the conductor
of £/Q;

(2) If L(E,s) = L(fg,s), then, by the functional equation for
L(E,s) in Theorem 5.1.9, the L-function associated to fg,
that is L(fg, s), must also satisfy a functional equation;
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(3) If L(E,s) = L(fg,s), then L(fg,s) must have an Euler
product, since L(E, s) has one. We say that L(s) =) -, a,n™*°
has an Euler product if it can be written as a product
L(s) = [I,52 Lp(s) over all primes p > 2. Clearly, L(E, s) is
defined as an Euler product, so L(fz, s) must have an Euler
product as well.

The work of Hecke characterizes which cusp forms in S3(T'g(NV))
satisfy a functional equation and which cusp forms have an Euler
product. Recall that in Proposition 4.4.2 we defined +1-spaces of S
such that

S2(To(N)) = 83 (To(N)) @ Sy (To(N)).

Theorem 5.4.3 (Hecke; [DS05], §5.10). Let N,k > 1 and f(z) €
Sok(To(N)) be a cusp form such that f(z) is an eigenvector for the
operator wy, i.e., f(z) € 85, (Lo(N)) fore = +1 or —1. Then L(f,s)
has an analytic continuation to C. Moreover, if we define

A(f,8) = N*2(2m)*I(s)L(f, 9),

where T'(s) is the Gamma function, then A(f,s) satisfies the func-
tional equation

A(f» S) =& A(f2 - S)'

Recall (Definition 4.4.10) that we say that f(z) = >, 5,ang" is
an eigenform if f is an eigenvector for all Hecke operators T,,, n > 1,
simultaneously. We say that f(z) is a normalized eigenform if a; = 1.

Theorem 5.4.4 (Hecke; [DS05], §5.9). Let N,k > 1. Let f(2) be a
normalized eigenform of weight 2k for To(N) such that Tp,(f) = Ap- f
for every prime p > 2. Then L(f,s) has an Euler product of the form

1 1
L(f,5) = H - H = 2% 1 25"
pINli)\pp Sp’leprp Thp ’

Now we may use Hecke’s theorems to narrow down which cusp
forms may be associated to elliptic curves. Suppose that E/Q is an
elliptic curve with conductor N and let us assume that the potential
cusp form fg associated to F is indeed a cusp form. Then fr must
verify the following properties:
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(1) fe(z) € S2(T'o(N)). The level of fr(z) should be precisely
N and not lower; otherwise f would correspond to a curve
of lower conductor. Thus, we require fg(z) € S5V (Io(N)).
Note that the functional equation of fg determines NV, the
conductor/level.

(2) fe(z) must be in one of the e-spaces of cusp forms, i.e.,
fe € 537 (Lo(N)) NS5 (Lo(N))
for e = +1 or —1.
(3) fe(z) must be a normalized eigenform in S3V(I'g(V)), and

it needs to be an eigenvector for wy as well. Therefore,
fe(2) is a normalized newform (Definition 4.4.18).

Taniyama, Shimura and Weil are credited with the following for-
mulation of the modularity conjecture.

Conjecture 5.4.5 (Taniyama-Shimura-Weil). A series of the form
L(s) = Y, > ann"®° with a, € Z is the L-function L(E,s) of an
elliptic curve E/Q of conductor N if and only if L(s) = L(f, s) is the
L-function of a normalized newform of weight 2 for T'og(N).

The conjecture of Taniyama, Shimura and Weil was proved in
several stages.

e Eichler and Shimura ([Shi73|, Ch. 7, Thm. 7.14) showed
one of the directions of the equivalence in the conjecture:
if f(z) is a normalized newform of weight 2 for T'o(N),
then there exists an elliptic curve Ef/Q such that L(f,s) =
L(E fr S).

e Wiles [Wil95] and Taylor and Wiles [TW95] proved the
Taniyama-Shimura-Weil conjecture when E/Q is semistable
(i.e., if the conductor Ng is square-free or, equivalently,
when F/Q does not have any primes of bad additive re-
duction). This was the case that was needed to finalize the
proof of Fermat’s last theorem (see Section 5.5).

o Finally, Breuil, Conrad, Diamond and Taylor [BCDTO01]
showed that the conjecture is true for all elliptic curves over

Q.
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The Taniyama-Shimura-Weil conjecture is nowadays frequently
called the modularity theorem. We conclude this section with an
important equivalent formulation of the TSW conjecture:

Theorem 5.4.6 (Modularity theorem). Let E/Q be an elliptic curve
of conductor N, and let Xo(N) be given by an algebraic model over
Q (see Remark 3.6.4). Then there is a surjective algebraic map of
curves Vg N : Xo(N) — E defined over Q. (The map Vg N is called
a modular parametrization of E.)

5.5. Fermat’s last theorem

Theorem 5.5.1. The equation ™ 4+ y™ = z™ has no solutions in
integers x, y, z with xyz # 0, whenever n > 2.

Figure 8. Andrew J. Wiles (right) and his Ph.D. advisor,
John H. Coates (left).

Suppose that n, u, v and w are integers such that n > 2, vvw # 0
and

u + 0" =w™.
Therefore, either n is divisible by 4, i.e., n = 4k with k& > 1, and
(uF)* 4 (vF)* = (w*)*, or there is a prime divisor p > 3 of n, with
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n = ph and h > 1, such that (u")? + (v")P = (w")P. Fermat showed
that the equation 2% + y* = 2? has no solutions z,y,z € Z with
zyz # 0, so we conclude that P + y? = zP must have an integer
solution for some prime p > 3 and zyz # 0.

Thus, let us suppose that p > 3 and a? + P = P, with a,b,c € Z
and abc # 0. However, we know that this is not possible for p = 3,5
or 7.

e Leonhard Euler is generally credited for the proof of the
p = 3 case (although his solution, in 1770, had a major gap).
Kausler (1802), Legendre (1823) and many others have also
published proofs of this case.

e The case of p = 5 was first shown (independently) by Le-
gendre and Dirichlet, around 1825.

e The proof of Fermat’s last theorem for p = 7 is due to Lamé,
published in 1839.

Hence, we may assume that p > 11. It is worth pointing out that, in
1846, Ernst Kummer proved Fermat’s last theorem for regular primes.
Not all primes are regular: we know that there are infinitely many
irregular primes (the first few irregular primes are 37, 59, 67, 101, 103,
131, 149,...), but it is widely believed that there are also infinitely
many regular primes. In 1984, the proof of Mordell’s conjecture (now
known as Faltings’ theorem; see the paragraph on Higher degree in
Section 2.1) was announced which shows that, for a fixed n > 2,
" 4+ y™ = z™ may have at most a finite number of relatively prime
integer solutions.

The strategy that led to the first (correct) proof of Fermat’s last
theorem was layed out by Frey [Fre86] and Serre [Ser87]. Let p > 11
and suppose a, b, ¢ are relatively prime integers with a? + bP = ¢P and
abc # 0. In 1984, Frey discovered that the elliptic curve

E:y? =z(x — aP)(z + bP)

would be semistable with conductor Ng =[]y, ¢ (see Exercise
5.7.5) and would satisfy some other technical properties. Moreover,
Frey claimed that such a curve E/Q could not be modular; i.e.,
there is no weight 2 normalized newform f € S3(T'¢(Ng)) such that
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L(f,s) = L(E,s). The problem with the modularity of E was made
precise by Serre, and Ribet [Rib90] proved in 1986 that, indeed, E
cannot be modular.

Finally, in 1995, Wiles [Wil95] and Taylor and Wiles [TW95]
proved the Taniyama-Shimura-Weil conjecture 5.4.5 for all semistable
elliptic curves £/Q. Therefore, E : y* = z(z —aP)(x 4 bP) would have
to be modular if it existed. Hence, neither E nor the aforementioned
solution (a, b, c) to P 4+ yP = zP can exist, and Fermat’s last theorem
holds.

5.6. Looking back and looking forward

The quest to find a proof of Fermat’s last theorem lasted more than
350 years, and hundreds of mathematicians tried to attack the prob-
lem in many very different ways. It was simply a fantastic challenge
that piqued the interest of essentially every mathematician from Fer-
mat to Wiles. Still today, Fermat’s last theorem captivates the imag-
ination of math enthusiasts across the world. It is curious, though,
that Fermat’s last theorem has virtually no interesting consequences
other than the statement itself.

However, the study of the solutions of such a simple equation
(x™ + y™ = 2™) has been the driving force in developing an immense
amount of extremely interesting mathematics. The statement of Fer-
mat’s last theorem may not have relevant corollaries, but the tools
that were used in the proof are incredibly important and offer a vast
range of very useful applications.

The final stages of the proof of Fermat’s last theorem (as out-
lined in Section 5.5) represent one of the biggest triumphs of modern
mathematics — not just because a 358-year-old problem was solved,
but for the fundamental advances in the theory of elliptic curves and
modular forms that were produced in order to verify Fermat’s claim.
This was no small enterprise; we have already briefly described the re-
markable involvement of many important mathematicians (Shimura,
Taniyama, Weil, Frey, Serre, Ribet, Wiles, Taylor, Breuil, Conrad,
and Diamond, among many others). Just the proof of the modularity
theorem (Theorem 5.4.6) occupies more than 200 pages of research
articles (that’s only counting [Wil95], [TW95] and [BCDTO01]), and
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Figure 9. A 1670 edition of Diophantus’ Arithmetica, which
includes the original Greek text, a Latin translation, and Fer-
mat’s commentary: “Observatio Domini Petri de Fermat”. In
this page Fermat states his famous last theorem.

many books have been written to explain the brilliant mathematics
developed for the proof (see [CSS00] for a graduate-level textbook).
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Fermat’s last theorem has been proved, but the broad areas of
research that this book touches on (namely algebraic number theory,
algebraic geometry and their intersection, arithmetic geometry) have
seen an exponential growth over the last couple of centuries, and they
continue to grow at a vigorous pace. Nowadays, there is an immense
amount of research being done on elliptic curves, modular forms, and
generalizations of the modularity theorem to other settings (abelian
varieties, elliptic curves over number fields, etc.). Many questions
remain unanswered; for instance,

e Are there elliptic curves over Q of arbitrarily high rank? See
Conjecture 2.4.7 and the discussion in the same section.

e Is the Shafarevich-Tate group of an elliptic curve, II(E/Q),
always a finite group?

e [s the Birch and Swinnerton-Dyer conjecture true for all el-
liptic curves? See Conjecture 5.2.1 and Section 5.2. The
Clay Mathematics Institute has offered a reward of one mil-
lion dollars for a proof (or counterexample!) of this cele-
brated conjecture.

These are just three questions of great (huge!) interest to number
theorists, but there are many other interesting questions and chal-
lenging problems being formulated as the reader stares at this page.
The Preface to this book contains a list of suggested reading mate-
rial so that the reader can continue to learn (more rigorously, and in
depth) about elliptic curves, modular forms, and their L-functions.

5.7. Exercises

Exercise 5.7.1. Let E/Q be an elliptic curve and let p > 2 be a
prime. Define E™(F,) to be the set of all non-singular points on
E(F,), and write N® = |E"(F,)|. For instance, if p is a prime of
good reduction, then E™(F,) = E(F,) and NJ® = N, =p+ 1 — ay.
Suppose that £/Q has bad reduction at p. Show that:

p—1 if E has split multiplicative reduction at p;
Ny®={p+1 if E has non-split multiplicative reduction at p;
P if E has additive reduction at p.
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Conclude that L,(p~') = NES for every p > 2 (including good and

bad primes), where the function L,(T") appears in Definition 5.1.1.
(Hint: write E : f(z,y) = 0 and express f(z,y) = ((y — yo) — a(z —
70)) - ((y — yo) — Bz — m0)) — (z — 20)? where (x¢, 7o) is the singular
point for E(F,). Exercise 2.12.11 shows that there is (at most) one
singular point in E(IF,), at least for p > 3.)

Exercise 5.7.2. Prove Proposition 5.1.5. (Hint: ﬁ =1+z+a®+
~- =3 <ox", and use the Fundamental Theorem of Arithmetic.)

Exercise 5.7.3. Prove the parity conjecture 5.2.5, assuming the
Birch and Swinnerton-Dyer conjecture and the functional equation
of L(E, s). (Hint: use the Taylor expansion of L(E, s) around s = 1.)
Conclude that, if the root number w(E/Q) = —1, then F(Q) is infi-
nite.

Exercise 5.7.4. Let f(z) = }_, 5, ang" be a cusp form in S (I'o(N)),
and define the Mellin transform of f(z) by

F(s) = /OOC f(iy)ys%-

Show that f(s) = (2m)~*T'(s)L(f, s), where I'(s) is the Gamma func-
tion and L(f,s) is the L-function attached to f. (You may ignore
convergence issues and assume that integrals and infinite sums com-
mute.)

Exercise 5.7.5. Let p > 3 be a prime and suppose that a, b, c are
pairwise relatively prime integers such that a? + 0P = ¢P and abc # 0.
Let E/Q be the elliptic curve (Frey curve) defined by

E:y? = z(x — aP)(z + bP).
The goal of this exercise is to show that £ is semistable with conductor

Ni = [1jape t-

(1) Show that, after rearranging a, b and c if necessary, we can
assume that ¢ = Omod 2 and b = ¢ = 1 mod 4. (Hint: if
2|a and b = 3 mod 4, consider a? + (—c)? = (—b)?.)

(2) Calculate the discriminant A of E/Q.

(3) Show that E/Q has good reduction at all primes ¢ that do
not divide abe.
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(4) Show that if £ > 3 is a prime dividing abe, then E/Q has
bad multiplicative reduction at £.
(5) Show that E/Q has bad multiplicative reduction at £ = 2.
(Hint: use the following change of variables
X Y 33X
T YTRETR
to find another model isomorphic to F/Q. Show that this
model has coefficients in Z, and analyze the reduction at
=2
(6) Conclude that the conductor of E is precisely Ng = []|4p. -
(See Definition 5.1.7.)



Appendix A

PARI/GP and Sage

This appendix is meant as a brief introduction to the usage of the
software packages PARI/GP and Sage, oriented to the study of elliptic
curves and modular forms. The websites for these packages are:

e PARI/GP: http://pari.math.u-bordeaux.fr/
e Sage: http://www.sagemath.org/

but notice that you can call PARI/GP from Sage, so I would recom-
mend simply installing Sage on your computer. I strongly recommend
that you use the “notebook” option in Sage and interact with the soft-
ware through your favorite internet browser (e.g. Firefox). Sage can
also be found online (although the performance, usually, is slower
than a local version on your computer):

e Sage online: http://www.sagenb.org/

Both packages have online manuals and specific sections on elliptic
curves.

A.1. Elliptic curves

A.1.1. Definition of an Elliptic Curve. An elliptic curve is a
plane curve E given by a Weierstrass equation

y2 + a1y +asy = z° —|—a2z2 + a4 + ag

149
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with coefficients a1, ...,ag in some field F. If the field is of char-
acteristic different from 2 or 3, one can find an easier model of the
form

y> =2°+ Az + B.
In order to work with elliptic curves using the software packages, we
need to define the curves first:

e GP > E = ellinit([ay,as, as,as,ag))
e Sage > E = EllipticCurve([ay,as, a3, aq, ag))
e or Sage > E = EllipticCurve([A4, B]).

Once we have defined an elliptic curve E, we can calculate basic quan-
tities such as the discriminant, the j-invariant or any of the coefficients
b; or ¢; (as defined in [Sil86], Ch. III, §1):

e In GP, type E.disc, E.c4 or E. j,

e In Sage, type E.discriminant(), E.c4()
or E.j_invariant().

If the elliptic curve is given by a model of the form y? 4+ a2y + asy =
23 +asx? +asx+ag but you would rather have a model y2 = 23+ Ax+
B, use the command E.integral_short_weierstrass_model().

Remark A.1.1. Perhaps the two most useful Sage tricks are
the “Tab” key after an object and “?” after a command to get help.
For instance, if we have defined an elliptic curve E, then typing

E.

followed by the “Tab” key displays all possible commands that one can
use with an elliptic curve. This is very useful when we do not remem-
ber the exact syntax or we are wondering if Sage is capable of doing
some particular operation on E. Similarly, if we want to know more
about the usage of a particular command, then “E.command_name?”
will display a help box. For example, if we input E.discriminant?
then Sage tells us that this command returns the discriminant of E
and provides a couple of examples for the user.

A.1.2. Basic operations. Let us start by using the addition on an
elliptic curve. Let E be the curve given by Y2 = X341, and suppose
we have initialized E as above. This curve has points P = [0, 1] and
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Q =[-1,0]. Let us find P+ @ and 2P (the answers are [2, —3] and
[0, —1] respectively). The commands are:

e In GP, the commands are elladd(E,[0,1],[-1,0]) and,
in order to find 2P, one types ellpow(E, [0,1],2);

e Sage: First we create points on the curve: P = E([0,1]);
Q = E([-1,0]) and now we can do addition: type P+Q and
P+P, or calculate multiples by typing 2*P, 3*P, etc.

Notice that Sage will transform affine points to projective coordinates
(e.g., P = E([0,1]) returns (0 : 1 : 1) in Sage). If you want to
find points on a curve (up to a given bound B on the height of the
point), use E.point_search(B) in Sage.

A.1.3. Plotting. Here is an example of a 2D-plot with Sage:

E = EllipticCurve([0,0,0,0,1]1);

Ep = plot(E, -1,2.5,thickness=2);

pl1=(2,3); p2=(0,1); p3=(-1,0); p4=(0,-1); p5=(2,-3);
Li=line([pl,p3],rgbcolor=(1,0,0));
L2=1line([p5,p3],rgbcolor=(1,0,0));
L3=1line([p4,p3],rgbcolor=(1,0,0));

L4=1line([p2,p5] ,rgbcolor=(1,0,0));
L5=1ine([p4,p1],rgbcolor=(1,0,0));
Ti=text(’P’,[2,3.5]); T2=text(’2P’,[0.15,1.5]);
T3=text(’3P’,[-1,.5]); T4=text(’4P’,[0.15,-1.5]);
Ts=text (’5P’,[2,-3.5]);
P=point([pl,p2,p3,p4,p5],pointsize=30,
rgbcolor=(0,0,0));
PLOT=Ep+T1+T2+T3+T4+T5+L1+L2+L3+L4+L5+P; show(PLOT)
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The result is the graph that appears in Figure 3. The following is an
alternative way to plot points on a curve:

Q = E(2,3);
Qplot = plot(Q, pointsize=30)+plot(2*Q, pointsize=30);
show(Qplot)

A.1.4. Good and bad reduction. Given a prime p and an elliptic
curve F/Q given by a Weierstrass equation with integer coefficients,
we can consider E as a curve over Z/pZ. The primes that divide
the (minimal) discriminant are called bad primes or primes of bad
reduction. In Sage, you can find the minimal model of an elliptic
curve E by typing E.minimal_model(). For example, in Sage, the
commands

E=EllipticCurve([0,5,0,0,35]);

prime_divisors(E.discriminant())
will return [2,5,7,17]. You may also use
factor(E.discriminant()).

Then one can use the command kodaira_type() to find out the
precise type of reduction: IO is good reduction; Ij, where j > 0 is
some positive number, means bad multiplicative reduction; II, III,
IV or Ij*, for j >0, or IT*,IIT*,IV* mean additive reduction. For
an explanation of the terminology of Kodaira symbols, see [Sil&6],
Appendix C, §15. For our example E : y? = 23 4 522 + 35, we obtain

E.kodaira_type(2) returns IT (i.e., additive);
E.kodaira_type(5) returns II (i.e., additive);
E.kodaira_type(7) returns I1 (i.e., multiplicative);
E.kodaira_type(17) returns I2 (i.e., multiplicative);
E.kodaira_type(11) returns I0 (i.e., good).
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Note: if the equation is not minimal, some of the prime divisors of
the discriminant may not be bad after all. For example,

E=EllipticCurve([0,0,0,0,15625]);
prime_divisors(E.discriminant()) returns [2,3,5] but

E.kodaira_type(5) returns I0 (i.c., good).

This happened because the model y? = z® + 15625 is not minimal
(15625 = 5%); we should have used y? = x3 4 1 instead.

If E/Q has good reduction at p, then F defines an elliptic curve
over the finite field Z/pZ and we can count the number of points
modulo p (always including the extra point at infinity). N, denotes
this number of points while a, = p+ 1 — Np. In GP, the command
ellap(E,p) returns the coefficient a, and ellan(E,n) returns an
array with the first n coefficients ai for &k = 1,...,n.

In Sage, the command E.ap(p) returns a, while E.an(n) returns
the nth coefficient (and only the nth), and E.anlist(n) provides a
list of all the coefficients up to a,. In Sage you can also directly find
the number N,, by typing E.Np(p).

The conductor of E/Q is another associated quantity that is very
useful in practice:

e In Sage, type E.conductor(),
e In GP, type ellglobalred(E).

The command ellglobalred(E) returns an array [conductor, global
minimal model, product of local Tamagawa numbers|. In Sage, you
can find a minimal model of an elliptic curve E by typing the com-
mand E.minimal_model().

A.1.5. The torsion subgroup. It follows from the Mordell-Weil
theorem that the torsion subgroup of an elliptic curve (over a number
field) is a finite abelian group. Over Q, a theorem of B. Mazur says
that the torsion subgroup is one of the following: Z/nZ with 1 <n <
10 or n =12, or Z/27Z x Z/2mZ with 1 < m < 4. One can compute
the torsion subgroup as follows. The computation is easy, due to a
theorem of Nagell and Lutz:
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e In GP, the output of elltors(E) is a vector [t, [n, m],
[P,Q1], where t is the size of the torsion subgroup, which
is isomorphic to Z/nZ x Z/mZ, generated by the points P
and Q. If P is a torsion point, the command ellorder (P)
provides the order of the element.

e In Sage, E.torsion_order () returns the order of the group,
while G = E.torsion_subgroup() returns the group itself.
Then G.0 and G.1 return generators for G.

Remark A.1.2. Even though the Nagell-Lutz theorem provides a
simple algorithm to calculate the torsion subgroup of an elliptic curve,
this method may not be very effective (at least when the discriminant
is divisible by many primes). In general, there are better algorithms
(for example, see [Dou98]).

A.1.6. The free part and the rank. It also follows from the
Mordell-Weil theorem that the free part (here free is the opposite
of torsion) of the group of points E(K) on an elliptic curve (again
over a number field K) is generated by a finite number of points P,
Py, ..., Pg of infinite order. The number R of generators (of infinite
order) is called the rank of F(K). There is no known algorithm that
will always terminate and provide the rank and a set of generators.
However, the so-called “descent algorithm” will terminate in certain
cases (the descent procedure is an algorithm if IIT is finite, and we
conjecture that III is always finite). The following commands com-
pute lower and upper bounds for the rank and, in some cases, if they
coincide, provide the rank of the curve. There are also commands to
calculate generators; however, in many situations, the resulting points
will only generate a group of finite index in E(K) (the software will
warn you when this may be the case). Some of the algorithms take
an optional argument of a bound B.

In Sage, the command E.selmer_rank_bound() gives an upper
bound of the rank, and E.rank(), E.gens() try to find, respectively,
the rank and generators modulo torsion... but the computer may not
succeed! When these commands are called, Sage is using an algorithm
of Cremona in the background (see [Cre97]).
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A.1.7. Heights and independence. In order to determine if a set
of rational points is algebraically independent, we use a pairing arising
from the canonical height. The following commands calculate the
global Néron-Tate canonical height of a rational point P on a curve
E:

In GP use ellheight(E,P);
In Sage simply use P.height (), where P is a point on E.

It S ={P,...,P,} is a set of rational points, we can test whether
they are independent using the canonical height matrix. The height
pairing of P and @ is defined by (P,Q) = h(P + Q) — h(P) — h(Q),
where h is the canonical height on E. The height matrix relative to S
is a matrix H whose coordinate ij is given by (P;, P;). The canonical
height is a positive definite quadratic form on E(Q) tensored with
the reals. Thus, the determinant of H is non-zero if and only if the
points in S are independent modulo torsion.

In GP use S = [P1,P2,P3];
H=ellheightmatrix(E,S); matdet(H);
In Sage use E.height_pairing_matrix([P1,P2,P3]),

where P1, P2, P3 are points on F (previously defined). In GP, if
matdet (H) returns 0, one can calculate generators for the kernel of
H with matker (H). Each element of the kernel represents a linear
combination of points that adds up to a torsion point. In Sage, you
may use H.kernel () for the same purpose.

A.1.8. Elliptic curves over C. The period lattice of an elliptic
curve E/Q can be found by typing

L=E.period_lattice()
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and a basis for the period lattice is found simply using L.basis().
Using PARI/GP, one can start from a lattice and obtain the associ-
ated elliptic curve, as follows:
L=[1,I];
elleisnum(L,4) returns Gy(L),
which equals 2268.8726415. . .,
elleisnum(L,6) returns Gg(L),
which equals -3.97...E-33, i.e., 0,
thus, L corresponds to an elliptic curve
y? = 23 — (34033.089...)z.

The elliptic curve y* = 23 — (34033.089...)x is isomorphic to E/Q :
y? = a3 — x over C. Thus, C/(1,i) = E(C).

A.2. Modular forms

In this section, all commands we list are to be used in the Sage envi-
ronment.

A.2.1. The modular group and congruence subgroups. The
modular group and main congruence subgroups, defined for any N >
0 by

SL(2,Z) = {(“ Z):a,b,c,dez, ad—bc:l},

C

To(N) — {(Z Z)eSL(Q,Z):CEOmodN},

{(‘; Z)eFO(N):aEdzlmodN},

may be defined in Sage using SL2Z, GammaO(N), and Gammal(N), re-
spectively. Alternatively, SL(2,Z) can also be defined as I'g(1). Notice
that those 2 x 2 matrices that define elements of congruence subgroups
are stored in Sage as 4-dimensional row vectors. One can use the sub-
command .gens() on any of the modular and congruence groups to
find a set of matrices that generate (multiplicatively) the given group.

iy
3
[
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You can call the generators by using the suffix [0], [1], etc. Here
are some examples:

SL2z([1,1,0,11);

SL2Z.gens () returns two matrices

G[O]:((l) ‘01> Gm:((lJ 1)

H = GammaO(3).gens() returns six matrices

mo= (g )= (0 )= ().
H[3]:<; :;),H[zl]:(; :}),H[5]:<:§ 1)

The genus of the modular curve Xo(N) can be computed with the
command GammaO(N) .genus(). Similarly, Gamma(N) .genus() and
Gammal (N) .genus () return the genus of X (N) and X;(V), respec-
tively.

A.2.2. Vector spaces of modular forms. Let I' be a congruence
subgroup of SL(2,Z) and define:

e M;(T), the C-vector space of all modular forms for T' of
weight k;

e Si(T"), the C-vector space of all cusp forms for T of weight
k.

Suppose you have already defined a congruence subgroup G (for ex-
ample, G = GammaO(3)) and are interested in forms of weight k. The
vector spaces of modular forms and cusp forms can be defined in Sage
by
M=ModularForms (G,k) or ModularForms(G,k,prec=m)
if you want g-series expansions up to ¢";
S=CuspForms (G,k) or CuspForms(G,k,prec=m).

The precision is set to 6 by default. If you want to find the dimen-
sion or a basis, you can use the suffix .dimension() or .basis(),
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respectively. Here is an example:

M=ModularForms (GammaO(3) ,4, prec=10);

M.dimension() returns 2;

M.basis () returns the forms:

[1 + 240¢° + 21604¢° + 6720¢° + O(¢'?),

q+9¢% + 27¢° + 73¢* + 1264¢° + 243¢°

+344¢" + 585¢% + 729¢" + O(¢'?)].
The command CuspForms (Gamma0(3) ,4,prec=10) returns only the
0 vector space. Notice that even though the modular form ¢ + 9¢° +
27¢> + O(q*) vanishes at the cusp at infinity (because ap = 0 in the
expansion), it is not a cusp form for I'y(3) because it does not vanish
at all the cusps of X((3) (infinity is not the only cusp!). The com-

mand A11Cusps (N) produces a list of all (representatives of) cusps of
Xo(N).

A11Cusps (3) returns [(inf), (0)].

A.3. L-functions

Let E/Q be an elliptic curve, and let L(E,s) be the Hasse-Weil L-
function associated to E, as in Definition 5.1.1. This L-function is
defined in Sage using the command

L=E.lseries()

or one can use L=E.lseries().dokchitser() to use Dokchitser’s
algorithms to calculate values ([Dok04]). Once we have defined L =
L(E,s), we can evaluate L. For example:

E=EllipticCurve([1,2,3,4,5]);

L=E.lseries();

L(1) which returns 0,

L(1+I) = -0.485502124065793 + 0.627256178203893*1.
The value L(FE,1) = 0 is predicted in this case by the Birch and

Swinnerton-Dyer conjecture (Conjecture 5.2.1), since the rank of E is
> 0 (in fact, the rank is 1). One can also plot L(E,z) when x takes
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real values (because L(E,x) is real valued for x € R). For instance,
the graph in Figure 2 was created with the following lines of code:

EO=EllipticCurve([0,-1,1,-10,-20]);
LO=E0.1lseries() .dokchitser();
PO=plot(lambda x: LO(x).real(),0, 3);
show(P0O,xmin=-0.5, ymin=0, dpi=150).

If you want to create a PDF file with your graph, you can use

P=plot(lambda x: real(LO(x)),0, 3).save(
"bsdrankO.pdf",xmin=-0.5, ymin=-0.2, dpi=150).

You may also want to calculate the Taylor polynomial of L(E, s)
around the point © = a of degree n — 1 with L.taylor_series(a,n).

A.3.1. Data related to the BSD conjecture. The Shafarevich-
Tate group of E/Q is defined in Sage by E.sha() but, in general, it
is difficult to calculate its order. The user can calculate a conjectural
value of Sha by typing E.sha() .an(). The conductor N of E/Q is
calculated with E. conductor (). The Tamagawa product leN cp can
be calculated directly with E.tamagawa_product () or the individual
Tamagawa numbers ¢,, for each prime p|N, may be calculated with
E.tamagawa_number (p). The regulator of E/Q can be calculated by
E.regulator(). Finally, the real period Qg is calculated as follows:

E=EllipticCurve([1,2,3,4,5]);
M=E.period_lattice();
Then M. omega returns Qg = 2.78074001376673 . . ..

The reader should try to use the commands above to calculate
all the invariants listed in Examples 5.2.3 and 5.2.4 (see Figure 6 and
Figure 7).
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A.4. Other Sage commands

o Continued fractions:
continued_frac_list(N) returns the continued fraction of N;
continued_frac_list(N,partial_convergents=True) or
convergents(v) return convergents for the cont. frac. v.

e The Kronecker symbol (defined in Example 1.3.3):

n
kronecker (-n,m) returns the Kronecker symbol (—) .
m



Appendix B

Complex analysis

In this appendix we review some of the basic notions of complex
numbers and the theory of analytic and meromorphic functions on
the complex plane. This brief appendix is by no means a replacement
for a good course or a good book on complex analysis such as [Ahl79].

B.1. Complex numbers

The complex numbers, usually denoted by C, are defined as an exten-
sion of the real numbers R. Over the reals, the equation z2 4+ 1 = 0
has no solutions, so we define a new number 7 that satisfies i2 = —1.
Therefore 22 + 1 = 0 now has two solutions, namely i and —i. We
define C by adjoining our new number ¢ to R:

C={a+bi:abeR,i*=—-1)

The real and imaginary parts of a complex number = a + bi are
denoted, respectively, by f(a) = a and I(a) = b. If (o) =b =10
we say that « is a real number, and if R(«) = a = 0 we say that «
is purely imaginary. We can add and multiply two complex numbers
a = a-+bi and 8 = c¢+di to obtain a new complex number, as follows:

a+f (a+bi)+ (c+di)=(a+c)+ (b+d)i; and
a-B = (a+bi) (c+di) = (ac—bd) + (ad + be)i.

161
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The set of all complex numbers together with the operations of addi-
tion and multiplication form a field (see Exercise B.7.1).

There are two other operations on complex numbers that occur
often: complex conjugation and calculating the modulus, or absolute
value. The complex conjugate of a = a+bi is @ = a—bi. The modulus
or absolute value of « is

la| = Va-a=+/(a+bi)(a—bi) = a2 + b2,
Notice that, for any «, 5 € C, we have
atB=a+p, a-B=a-p, |af|=lal], and o+ 5| < o + |6].

We constructed the complex numbers by adjoining % to R so that
i € C and therefore the equation z2 +1 = 0 has two solutions in C.
But something extremely surprising happened in this construction.
It turns out that not only x? + 1 has a root in C but, in fact, every
polynomial with complex coefficients has a root in C. This is an
extremely important result:

Theorem B.1.1 (Fundamental Theorem of Algebra). Let p(z) be a
polynomial

p(2) = anz™ + an_12"" 1+ . 4 a1z +ag

with complex coefficients a; € C and degree > 1. Then there exists a
complex number a € C such that p(a)) = 0.

The proof is left to the reader (Exercise B.7.6).

B.2. Analytic functions

Definition B.2.1. Let « € C and § € R*. An open disc Ds(a) in

the complex plane, centered at o and of radius ¢ > 0, is the set
Ds(a) ={z€ C:|z—a| < d}.

Definition B.2.2. We say that a set S C C is open if for every o € S

there is a real number 6 > 0 such that Ds(«) C 5. We say that a set
T C Cis closed if the complement of 1" in C, i.e., C — T, is open.

Definition B.2.3. A non-empty connected open set in the complex
plane is called a region.
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Let U be a region in the complex plane and let f(z): U — C be

a complex-valued function on U. Let o € U. We say that f has a
derivative at a if the usual limit converges:

/ - flat+h) - f(o)

F'(0) = tim 1O 2 T0),

where h runs over complex numbers inside U that approach 0. Al-
ternatively (or more precisely), we can define f’(z) using € and § as
follows. We say that f has a derivative at « with value m = f’(«a) if
the following statement holds: for every real € > 0 there exists a real
0 > 0 such that, if h € Ds(a), then

flath) = f(e)

h

Definition B.2.4. Let U C C be a region and let f(z) be a complex-
valued function f : U — C defined for every z € U. We say that f(z)
is analytic (or holomorphic, or entire) on U if it has a derivative at
each z € U.

—m| < €.

Example B.2.5. The function f(z) = z is analytic on the whole
complex plane C (Exercise B.7.3). The function g(z) = 1/z is analytic
on C — {0}.

It is not hard to show that the sum, product and composition
of two analytic functions are also analytic. Thus, all polynomials
in one variable with complex coefficients define analytic functions.
Similarly, the quotient of two analytic functions is analytic except at
the zeros of the denominator. Thus, all rational functions (quotients
of polynomials) are analytic in the complex plane except at the zeros
of the polynomial in the denominator.

Remark B.2.6. Let U be a region of C and let f : U — C be an
analytic function. We write f(z) where z = x+yi € U, with z,y € R.
We may also write

f(z) = u(z) + v(2)i,
where u,v : U — R are real-valued functions. Since f is analytic on
U, the functions f, u and v are continuous on U (Exercise B.7.4).
Since f is analytic, the limit
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exists for every z € U. The parameter h runs over complex numbers
in U approaching zero, but we may restrict h to real values (thus,
we are calculating 0f/0z). The value of the limit in Eq. (B.1) does
not change under this restriction, and this means that the partial
derivative of f with respect to « equals f/(z). Hence

oy 0w v,

1) = dr 9z ' oz
Similarly, we may restrict h to purely imaginary values h = ik, and
then

flz+h) = f(z)

I L
_ . flz4ik) = f(z) . Of
= G T =gy,

It follows that f/(z) = (fi)% = (fi)g—z + g—;. Therefore,

_of _

Of Ou Ov. Ov Ou.
/ —_ ) — = — _— = — — —
F(z) = or (=9) Jdy Oz - 81’2 dy 0Oy

1.

The last equality implies that the real and imaginary parts of every
analytic function must satisfy the following differential equations:

ou Ov ou Ov
B . —_— = — 9 _— = ——,
(B.2) or 0Oy and dy ox

These are called the Cauchy-Riemann differential equations.

Differentiability (or being analytic) over C, as in Definition B.2.4,
is a much stronger condition than differentiability over R. Indeed, the
existence of a complex derivative implies that the function is in fact
infinitely differentiable and locally equal to its own Taylor series. We
explain what these terms mean in the following theorem.

Theorem B.2.7. Let U C C be a region and let f : U — C be
analytic. Then f has derivatives of all orders on U (i.e., the deriva-
tives f'(z), f"(2),... and, more generally, ) (z) for all n > 1 are
continuous and differentiable complex-valued functions on U ).
Moreover, for every o € U, the Taylor series of f(z) about z = «
converges to f(z) in some neighborhood of «. In other words, for
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every a € U, there is a real § > 0 such that the Taylor series

converges for all z € Ds(«), and T'(z;a) = f(2).

Conversely, if S(z) = Y 07 jan(z — @)™ is a power series with
complex coefficients a, with a radius of convergence R (i.e., S(2)
converges for all z € C with |z — a] < R), then S(z) defines an
analytic function on the open disc Dg(«).

Example B.2.8. Let f(z) = o, % The radius of convergence of
this series is infinite (over C as well as over R), so it defines an analytic
function in the complex plane. The function f(z) is, of course, the
complex exponential function which we discuss below in B.4 in some
more detail. Similarly, we define sin(z) and cos(z) using the usual
Taylor expansions

& 2n+1 ZQn

Sin(Z) _ Z(fl)mﬁ_lm’ COS(Z) = ;(71)2’@ (2n)' .

n=0

Since the radius of convergence of these series is infinite, sin(z) and
cos(z) define analytic functions on C.

B.3. Meromorphic functions

At this juncture, it is useful to extend the complex numbers by in-
troducing a point at infinity co. We will write C = C U {oo} for the
extended complex plane. We set the convention that every straight
line shall pass through the point at infinity. (Note that C is sim-
ply the projective line over C, i.e., P}(C). See Appendix C for an
introduction to the projective line and projective geometry.)

With this definition of co, suppose that f(z) is a complex-valued
function not defined at a. The expression

lim f(2) = o0

means that |f(z)| is unbounded as z approaches «. For instance,
f(z) = 1/z is not defined at 0 and lim,,o1/z = co. This “c0” is
the complex point at infinity, and it should not be confused with the
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infinity that we use in real analysis (“very, very far along the positive
z-axis”). In fact, in R, the limit lim,_,¢ 1/ is undefined (as the value
may be 0o depending on how we approach 0), but in @, the limit
lim,_,01/z = oo simply means that if z is close to 0, then 1/z is far
from 0 (in some direction, not necessarily along the z-axis).

Suppose that f(z) is some complex-valued function that is not
defined at « but is analytic in a neighborhood of ov. How can f fail to
be analytic at ? The function f(z) may have a removable singularity
(e.g., sin(z)/z), an essential singularity (e.g., sin(1/z)) or a pole (e.g.,
1/z). Here we will only discuss poles in some detail (for a complete
discussion, see [Ahl79], Ch. 4, §3).

Definition B.3.1. Let f be a complex-valued function, and let a €
C. We say that f has a pole (or isolated pole) at z = « if:

(1) The function f(z) is analytic on some disc Ds(a) centered
at «, except at « itself. In other words, f is analytic on the
punctured disc

{zeC:0< |z—al <4}
for some 0 > 0; and
(2) The limit of f at « is infinite:

Zh_r}ré f(z) = 0.

Definition B.3.2. A function f(z) is meromorphic in a region U if
f is analytic on U except for a set of isolated poles.

Remark B.3.3. Suppose that f(z) is meromorphic in a region U
with an isolated pole at a € U. It does not make sense to write f :
U — C, since lim,_,, f(a) = co. Instead, we may write f : U — C.

Example B.3.4. Let p(z) and ¢(z) be polynomials in C[z] such that
p and ¢ have no common factors. Then the rational function p(z)/q(z)
is a meromorphic function with isolated poles at the zeros of q(z).

Example B.3.5. The function sin(1/z) has infinitely many zeros
accumulating near z = 0 (there is a zero at each z = 1/(wk) for
each k > 1). Therefore, g(2) = (sin(1/2))~! is not meromorphic
because the singularity at 0 is not isolated. In fact, the function g
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has infinitely many poles in any open neighborhood of 0. Notice,
however, that (sin(z))~! is a meromorphic function.

Remark B.3.6. Let f(z) be a function that is analytic in a disc
Dpr(a) except, perhaps, at & € C. Then f(z) has a Laurent expansion

of the form

flz)= Z en(z —a)™.

n=-—o0o
Then, the function f(z):
(1) is analytic at o if ¢, = 0 for all n < 0 and f(«) = ¢ (if

f(a) # co, or if f(e) is undefined, then there is a removable
singularity at ),

(2) is meromorphic at « if there is some M > 0 such that ¢, =0
for all n < —M; i.e., the expansion of f(z) is of the form

o0

f(z) = Z en(z —a)",

n=—M

and

(3) has an essential singularity at « if there are infinitely many
n < 0 such that ¢, # 0.

B.4. The complex exponential function

The usual real exponential function e® can be extended to the field
of complex numbers as follows. Let z = x 4 yi with z,y € R. Then
we define e* by

e* = "V .= e”(cos(y) + sin(y)i).

Equivalently, e* can be defined as a Taylor series (which coincides
with the Taylor series of the real valued exponential function):

o0 n
z
ef = Z I
n!
n=0
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If z=2+yi with 2,y € R:
le*] = "] = |e” cos(y) + (e” sin(y))i]
= V(e cos(y))? + (e7sin(y))?

= e (cos?(y) +sin’(y)) = €.

Notice that, if # € R, then e’ is a complex number that lies on the

unit complex circle {z € C : |z| = 1}. Indeed, by the formula above,
|60i‘ _ |60+91‘| — el = 1.

In the theory of L-functions, we often calculate powers of natural
numbers n € N with complex exponents s € C. Next, we define

what n® means precisely. If n € N and s = z + yi € C, we define

n® = elos(ms jo

n® = elog(n)s — elog(n)erlog(n)yi
elog(”)‘”(cos(log(n)y) + sin(log(n)y)i)
n”(cos(log(n)y) + sin(log(n)y)i).

B.5. Theorems in complex analysis

In this section we state some of the most important and useful the-
orems about analytic functions. We have already stated two funda-
mental theorems, namely Theorems B.1.1 and B.2.7.

The first two theorems concern line integrals along closed curves.
If v is a closed curve (the starting point is equal to the end point)
in C, and f(z) is a function defined at every point of ~, then the
symbol [ , f(z)dz represents the line integral of f(z) along v. A curve
is contractible in a region U if it can be continuously shrunk to a
point, always staying inside U. The winding number of a curve -~y
with respect to a point a € C, denoted by n(y, ), counts the number
of times that the path v winds around a. The winding number is
positive if the curve goes around « in the counterclockwise direction,
and negative otherwise. (See [Ahl79], Ch. 4.)

Theorem B.5.1 (Cauchy’s Theorem). Let U be a region in C, let
f(2) be a complex-valued function that is analytic on U, and let v be
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any contractible closed curve contained in U. Then

/Yf(z)dz =0.

Theorem B.5.2 (Cauchy’s Integral Formula). Let f(z) be a function
that is analytic in a region U, and let v be a closed curve inside U.
For any point a not on vy, we have

n(m,0) - f(a) = —— / 1) g,

21 Z—«

where n(7y, a) is the winding number of v around c.

Cauchy’s Theorem B.5.1 has the following converse.

Theorem B.5.3 (Morera’s Theorem). If f(z) is defined and contin-
wous in a region U C C, and if f,y f(2)dz =0 for all closed curves 7y
in U, then f(z) is analytic in U.

Another important theorem about line integrals is the Residue
Theorem (see [Ah179], Ch. 4, §5.1). Before stating the next theo-
rem, we remind the reader that a region is by definition a non-empty
connected open set.

Theorem B.5.4 (The Maximum Principle). If f(z) is analytic and
non-constant in a region U, then its absolute value | f(z)| has no max-
imum in U. Alternatively, if f(z) is an analytic function on a closed

bounded set T, then the mazimum of |f(z)| occurs on the boundary
of T.

Theorem B.5.5 (Liouville’s Theorem). A function which is analytic
and bounded in the whole complex plane must be constant.

We say that o in a set S C C is an accumulation point in S if for
every 0 > 0 there is point § € S, 3 # a such that |3 — a| < J.

Theorem B.5.6. If f(z) and g(z) are analytic in a region U, and if
f(z) = g(2) for every z in a set S which has an accumulation point
in U, then f(z) is identically equal to g(z) on all points of U.

The previous theorem has some remarkable consequences: if f(z)
is analytic in U and it is identically zero in a set S C C that contains
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an accumulation point, then f(z) is identically zero. Also, we deduce
that an analytic function is uniquely determined by its values on any
set with an accumulation point in the region of analyticity.

Theorem B.5.7 (Conformal Mapping Theorem). A complex func-
tion is analytic if and only if it maps pairs of intersecting curves into
pairs that intersect at the same angle.

B.6. Quotients of the complex plane

In the theory of elliptic curves over C, we often work with a quotient
of the complex plane C modulo some lattice L. See Section 3.1 for
the definition of lattice, the definition of the quotient C/L and the
relationship to elliptic curves. In this section, we define what it means
for a map C/L — C to be analytic.

Let L C C be a lattice with a basis L = (w1, ws). Usually, we fix
a fundamental domain for L as follows

Fr={ w; +pwe € C: 0 < A\, u < 1}

For our purposes here, we will define a fundamental domain for C/L
for each a € C such that « is positioned in the interior of the domain:

Fro={a+ w1 +pws € C: —=1/2 < A\, < 1/2}
and we also define the interior of Fp, , by

fg’a ={a+ vy +pwe € C: —1/2 < A\, p < 1/2}.
Notice that .Fg’a is a region in C (it is non-empty, connected and
open), and « is at the center of the region. Notice that there is a
bijection
(B.3) TZJL,Q : C/L — ]:L,oz-
Let f : C/L — C be a complex-valued function that is well-defined for
every element of the quotient C/L. Let o mod L be such an element.
We say that f: C/L — C is analytic at « if the map

]?: .7—"2,(1 — C, ]?(z) = f(z mod L)

is analytic at a.

When we discuss maps between elliptic curves (e.g., Proposition
3.1.6), we talk about analytic maps f : C/L — C/L’, where L and
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L’ are lattices. What does “analytic” mean in this context? How do
we define analyticity? It is simply a matter of choosing correct charts
for each C/L and C/L’, as we shall see next.

Let f : C/L — C/L’ be a continuous map. Let a € C and suppose
that f(a mod L) = fmod L'. Let F} , be the region about « defined
above, and similarly define .7—'2,’ 5- Let € > 0 be small enough so that
the disc D.(f3) is completely contained in F? /- Then, by continuity
of f, there is a ¢ such that if |z — a] < §, then f(z mod L) is inside
D.(B). Pick ¢ small enough so that Ds(a) is completely contained
in .7-"2, o We are now ready to state our definition: we say that the
continuous map f : C/L — C/L' is analytic at « mod L if the map

~

FiDs(@) = De(B),  F(2) = 5(f(z mod L)) € D(B) € Fu s

is analytic at o, where 91,3 : C/L' — Fr/ g is the bijection we
defined in Eq. (B.3).

B.7. Exercises

Exercise B.7.1. The goal of this exercise is to prove that C is a field.

(1) Show that any non-zero complex number a = a + bi has a
multiplicative inverse which is also a complex number o =1 =

¢+ di with ¢,d € R.

(2) Convince yourself that C is a field; i.e., justify why C satisfies
each of the field axioms.

Exercise B.7.2. Let « be a complex number. Show that a € R if
and only if a« = @.

Exercise B.7.3. Show that f(z) = z is analytic on C. Also, show
that g,(z) = 2™ is analytic on C for every n > 1 and that the deriva-
tive is g/, (z) = nz"" L.
Exercise B.7.4. Let f(z) be a complex-valued function that is ana-
Iytic in a region U C C.
(1) Show that f is also continuous at every point of U (i.e.,
limp_,q f(h) = f(a) for every a € U).

(2) Let f(z) = u(z)+wv(2)i, where u(z) and v(z) are real-valued.
Show that « and v are continuous on U.
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Exercise B.7.5. Let f(z) be an analytic function on a region U,

and write R(f(z)) = u(z), S(f(z)) = v(z) for the real and imaginary

parts of f(z), respectively. We define the Laplacians of u and v by
0%u  0*u 0%v 0%

:@‘Fa—yz and A’U:@-l—@—y?.

Show that Au = Av = 0. (Hint: use the Cauchy-Riemann differential

equations, i.e., Eq. B.2.)

Au

Exercise B.7.6. Prove the Fundamental Theorem of Algebra B.1.1:
if P(z) is a non-constant polynomial, then there is a root of P in C.
(Hint: suppose that P(z) has no roots in C. Then 1/P(z) would be
analytic. Now use Liouville’s Theorem B.5.5.)



Appendix C

Projective space

C.1. The projective line

Let us begin with an example. Consider the function f(z) = % We

know from Calculus that f is continuous (and differentiable) on all of
its domain (i.e., R) except at x = 0. Would it be possible to extend
the real line so that f(x) is continuous everywhere? The answer is
yes, it is possible, and the solution is to glue the “end” of the real line
at co with the other “end” at —oo. We will describe the solution in
detail below. Formally, we need the projective line, which is a line
with points R U {o0}, i.e., a real line plus a single point at infinity
that ties the line together (into a circle).

The formal definition of the projective line is as follows. It may
seem a little confusing at first, but it is fairly easy to work and com-
pute with it. First, we need to define a relation between vectors of
real numbers in the plane. Let a,b,z,y be real numbers such that
neither (z,y) nor (a,b) is the zero vector. We say that (z,y) ~ (a,b)
if the vector (z,y) is a non-zero multiple of the vector (a,b). In other
words, if we consider (a,b) and (z,y) as points in the plane, we say
that (a,b) ~ (z,y) if they both lie in one line on the plane that passes
through the origin. Again:

(x,y) ~ (a,b) if and only if there is A € R such that © = Aa, y = Ab.
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For instance, (v/2,v/2) ~ (1,1). We denote by [z, y] the set of all
vectors (a, b) such that (z,y) ~ (a,b):
[z,y] = {(a,b) : a,b € R such that (a,b) # (0,0) and (z,y) ~ (a,b)}.

Finally, we define the real projective line by

P'(R) = {[z,y] : z,y € R with (z,y) # (0,0)}.

If you think about it, P*(R) is the set of all lines through the origin
(each class [z, y] consists of all points — except the origin — on the
line that goes through (z,y) and (0,0)). The important thing to
notice is that if [z,y] € P1(R) and y # 0, then (z,y) ~ (3:1), so the
class of [z,y] contains a unique representative of the form (a,1) for
some a = £ € R. This allows the following decomposition of PY(R):

P'(R) = {[z,1] : € R} U{[1,0]}.

The set of points {[z, 1]} are in bijection with R and, therefore, form
a real line. The point [1,0], which is the only point in P}(R) that
does not belong to the real line {[z, 1]}, is called the point at infinity
(see Figure 1).

[2,3] [1,1]

13,2]
{x11} . /

N
T

[1,0]

1 2 3

Figure 1. Some points in the projective line, e.g., [2,3] €
P1(R), and their representatives of the form [z, 1], e.g. [%, 1],
except for [1,0].
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Notice that when z € R gets large (i.e., * — oo or z — —00),
the point [z,1] € P}(R) corresponds to a line in the real plane that
is closer and closer to the horizontal line. Since the horizontal line
corresponds to the point [1,0] € P1(R), we see that as = gets large (in
either the positive or negative direction!), the points [z, 1] get closer
and closer to [1,0], the point at infinity. This is what we meant at
the beginning of this section by “glueing” both ends of the real line,
oo and —oo, at one point.

Let us see that, with this definition, the function f : R — R,
f(z) = 1/x is continuous everywhere when extended to P'(R). We
define instead an extended function F : P*(R) — P*(R) by

F([SL‘,y]) = [y,l’]
Notice that a point on the real line of P!, i.e., a point of the form
[z,1], is sent to the point [1,z] of P!, and (1,z) ~ (%,1) as long as
x # 0. So [z,1] with  # 0 is sent to [1,1] via F (i.e., the real point x
is sent to 1). Hence, F coincides with f on R—{0}. But F is perfectly
well-defined on z = 0, i.e., on the point [0, 1], and F([0,1]) = [1,0] so
that [0, 1] is sent to the point at infinity. Moreover, both sided limits
coincide:
lim F(lz,1)) = lim F(, 1)) = F([0,1)) = [1,0].

z—0t z—0~
C.2. The projective plane

We may generalize the construction above of the projective line in
order to construct a projective plane that will consist of a real plane
plus a number of points at infinity, one for each direction in the plane;
i.e., the projective plane will be a real plane plus a projective line of
points at infinity.

Let a,b,c,x,y,z € R such that neither (a,b,c) nor (z,y,z) are
the zero vector:

(r,y,2) ~ (a,b,c) if and ounly if there is A € R such that z = Aa,
y=Ab, 2= Ac.

We also define classes of similar vectors by
[,y,2] = {(a,b,¢c) : a,b,c € R such that (a,b,c) # 0 and (z,y,2) ~
(a,b,c)}.
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Notice that, as before, the class [z,y, z] contains all the points
in the line in R? that goes through (z,v,2) and (0,0,0) except the
origin. We define the projective plane to be the collection of all such
lines:

P?(R) = {[x,y, 2] : 7,y,2 € R such that (z,y,2) # (0,0,0)}.
If z # 0, then (z,y,2) ~ (£,%,1). Thus,

PR
P*(R) = {[z,y,1) : 2,y € R} U {[a,),0] : a,b € R}.
The points of the set {[x,y,1] : x,y € R} are in 1-to-1 correspondence

with the real plane R?, and the points in {[a, b,0] : a,b € R} are called
the points at infinity and form a P*(R), a projective line.

One interesting consequence of the definitions is that any two
parallel lines in the real plane {[x,y, 1]} intersect at a point at infinity
[a,b,0]. Indeed, let L :y =max+band L' : y = mx + b’ be distinct
parallel lines in the real plane. If points in the real plane {[z,y, 1]}
correspond to lines in R?, then lines in the real plane correspond to
planes in R3:

L=A{[z,y.z] :mzx—y+bz=0}, L ={[z,y,2]: mx—y+bz=0}.
What is L N L'? The intersection points are those [z, y, z] such that
mx —y + bz = max —y + b’z = 0, which implies that (b — b')z = 0.
Since L # L', we have b # b’ and, therefore, we must have z = 0.
Hence

LNnL = {[xr,mz,0]: xR} ={[1,m,0]},

and so the intersection consists of a single point at infinity: [1,m,0].

C.3. Over an arbitrary field

The projective line and plane can be defined over any field. Let K be
afield (e.g. K = Q,R,CorF,). The usual affine plane (or Euclidean
plane) is defined by

A*(K) = {(z,y) : 7,y € K}.
The projective plane over K is defined by
P?(K) = {[z,y, 2] : 2,, 2 € K such that (z,y,2) # (0,0,0)}.
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As before, (x,y,z) ~ (a,b,c) if and only if there is A € K such that
($, Y, Z) =A- (a7 b» C)'

C.4. Curves in the projective plane

Let K be a field and let C' be a curve in affine space, given by a
polynomial in two variables:

C: fla,y)=0

for some f(r,y) € K[z,y], eg. C :y? — 23 -1 = 0. We want to
extend C to a curve in the projective plane P?(K). In order to do
this, we consider the points in the curve (x,y) to be points in the
plane [£, % 1] of P?(K). Thus, we have

(2 (51

or, equivalently, zy? — z3 3 = 0. Notice that the polynomial

F(z,y,2) = zy?> — 2% — 23 is homogeneous in its variables (each mono-
mial has degree 3) and F(z,y,1) = f(x,y). The curve in P?(K),
given by

— Z

5:F(ac,y,z):zy2—:r3—z3:07

is the curve we were looking for, which extends our original curve C' in
the affine plane. Notice that if the points (z,y) € C, then [z,y,1] € C.
However, there may be some extra points in C which were not present
in C, namely those points of C at infinity. Recall that the points at
infinity are those with z = 0, so F(z,y,0) = —2 = 0 implies that
x = 0 also, and the only point at infinity in C is [0,1,0].

In general, if C C A%(K) is given by f(x,y) = 0 and d is the
highest degree of a monomial in f, then Ce P?(K) is given by

C: F(x,y,2) =0,

where F(z,y,z) = 2% f (£,%). Conversely, if C: Fl(z,y,z) =0is
a curve in the projective plane, then C : F(x,y,1) = 0 is a curve in
the affine plane. In this case, C is the projection of C onto the chart
z = 1; we may also look at other charts, e.g., x = 1, which would

yield a curve C' : F'(1,y,2) = 0.
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Here is another example. Let C be given by
C:y—22=0
so that C is a parabola. Then Cis given by
C: F(x,y,2) = 2°f (E,g) =2y —x? =0.
2z

The curve C has a unique point at infinity, namely [0,1,0]. This
means that the two “arms” of the parabola meet at a single point at
infinity. Thus, a parabola has the shape of an ellipse in P?(K). How
about hyperbolas? Let

C:z?—y?=1.

Then C : 22 — 42 = 22 and there are two points at infinity, namely
[1,1,0] and [1,—1,0]. Thus, the four arms of the hyperbola in the
affine plane meet in two points, and the hyperbola also has the shape
of an ellipse in the projective plane P%(K).

C.5. Singular and smooth curves

We say that a projective curve C : F(x,y, z) = 0 is singular at a point
P e C if and only if %—I;(P) = %—I;(P) = %—I;(P) = 0. In other words,
C is singular at P if the tangent vector at P vanishes. Otherwise, we
say that C is non-singular at P. If C is non-singular at every point,
we say that C' is a smooth (or non-singular) curve.

For example, C : zy? = 22 is singular at P = [0,0,1] because

F(z,y,2) = zy?> — 23 and

OF 2 OF _, OF .,

5__:6’8_11 yzagz

Thus, 32 (P) = §7(P) = §-(P) = 0 for P =[0,0,1].

Here is another example. The curve D : z%y? = z* 4 2* has
partial derivatives

OF 3 OF _ 4 OF
R
Thus, if P = [z,y, 2] € D(Q) is singular, then

—42% =0, 2y2?=0, and 2y°z—4z°=0.



C.5. Singular and smooth curves 179

10

7.5

-1 -0 1 2 3 4 5 6

Figure 2. The chart {[z,y, 1]} of the curve zy? = 3.

The first two equalities imply that 2 = 0 and yz = 0 (what would
happen if we were working over a field of characteristic 2, such as [Fy?).
If y =0, then z = 0 by the third equation, but [0,0,0] is not a well-
defined point in P?(Q), so this is impossible. However, if + = z = 0,
then y may take any value. Hence, P = [0,1,0] is a singular point.
Notice that the affine curve that corresponds to the chart z = 1 of D,
given by y2 = z* + 1, is non-singular at all points in the affine plane
but is singular at a point at infinity, namely P = [0, 1, 0].

An elliptic curve of the form E : y?> = 23+ Az + B, or in projective
coordinates given by zy? = x° + Axz? 4+ Bz?, is non-singular if and
only if 44% 4+ 27B? # 0. The quantity A = —16 - (443 + 27B?) is
called the discriminant of F.
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10

7.5

2.5

-2.5

-7.5

-10

1.5

0.5¢

S

-0.5

-1.5

Figure 3. The chart {[z,y,1]} of the curve z2y? = a* +
24 (above, non-singular) and the chart {[z, 1, z]} (below, the
curve is singular).



Appendix D

The p-adic numbers

In this appendix we briefly introduce the p-adic integers Z, and the
p-adic numbers Q,. We strongly recommend [Gou97] to learn more
about the p-adics.

Let p > 2 be a prime. The p-adic numbers may be thought of as
a generalization of Z/pZ. The main difference is that the p-adic num-
bers form a ring of characteristic zero, while Z/pZ has characteristic
p. In Z/pZ we only consider congruences modulo p, while in Z, we
consider congruences modulo p™ for all n > 0. The p-adic integers,
denoted by Z,, are defined as follows:

Zp =A{(a1,a9,...) : an € Z/p"Z such that ap41 = a, mod p™}.

In other words, a p-adic integer is an infinite vector (a,)5> such that
the nth coordinate belongs to Z/p"Z and the sequence is coherent
under congruences; i.e., a,+1 € Z/p"T17Z reduces to the previous
term a,, modulo p™. For instance,

(2,2,29,29,272,758,...)
are the first few terms of a 3-adic integer; notice that all the coordi-
nates are coherent with the previous terms under congruences modulo

powers of 3. The vector (2,2,2,2,...) is another element of Z3 (which
we will denote simply by 2).

181
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The p-adic integers have addition and multiplication operations,
defined coordinate-by-coordinate:

(@n)nZy + (bn)pZy = (an + by mod p")3Z,,

and

(an)nzr + (bn)nzy = (an - by, mod p™)72,.
The reader should check that the sum and product of two coherent
vectors is also coherent under congruences and, therefore, a new ele-
ment of Z,. These operations make Z;, a commutative ring with iden-
tity element 1 = (1,1,1,1,...) and zero element 0 = (0,0,0,0,...).

For any prime p > 2, the p-adic integers contain a copy of Z,
where the integer m is represented by the element

m = (m mod p, m mod p®, m mod p>,...).
For example, the number 200 in Z3 is given by
200 = (2,2, 11, 38,200, 200, 200, 200, 200, 200, . . .).

Thus, we may write Z C Z, (see Exercise D.2.1). However, there are
elements in Z, that are not in Z, so Z C Z,. Here is an example for
p = 7: we are going to show that Z-, unlike Z, contains an element
whose square is 2 (which we will denote by “v/2”). Indeed, 2 is a
quadratic residue in Z/7Z, and 2 has two square roots, namely 3 and
4 modulo 7. A standard theorem of number theory shows that, hence,
2 is in fact a quadratic residue modulo 7" for all n > 1. Thus, there
exist integers a,, such that a2 = 2 mod p” for all n > 1. Moreover, it
can also be shown that, if a,, is chosen, then there is a, 1 mod p"*!
with a,zl_H =2 mod p"*! and a,41 = a, mod p" (we say that a, can
be lifted to Z/p" "1 Z; see Exercise D.2.2). Indeed, here are the first
few coordinates of an element «a of Z7 such that o? = (2,2,2,...):

a = (3,10,108, 2166, 4567, . ..).

Thus, a should be regarded as “\/2 7 inside Z7, and —« is another
square root of 2.

The usual integers, Z, are not a field because not every element
has a multiplicative inverse (only £1 have inverses!). Similarly, the
p-adic integers Z, do not form a field either; e.g., p = (p,p,p,...)
is not invertible in Z,, but many elements of Z, are invertible. For
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instance, if p > 2, then 2 is invertible in Z,, (in other words, there is
a number % € Zp). Indeed, the inverse of 2 is given by

l_<1+p 1+ p? 1+4p” )

2 2 7 2 79
For example, in Zs, the inverse of 2 is given by (3,13,63,313,...).
It is easy to see that if @ = (a,)$2; with a; # 0 mod p, then « is
invertible in Z,. If a; = 0 mod p, then o is not invertible. Moreover,
for any o € Zj there is an r > 0 such that a = p"3, where 3 € Z), is
invertible.

Even though 7Z, is not a field, we can embed 7Z, in a field in the

same way that 7 sits inside Q. We define the field of p-adic numbers
by

Qp:{%:kEOandanp}.

Thus, every element of o € Q,, can be written as o = p"ff with r € Z
and an invertible 8 € Z.

D.1. Hensel’s lemma

The following results are used to show the existence of a solution to
polynomial equations over local fields. Here we will only discuss the
application to the p-adics, Q, (which is an example of a local field).
Notice the similarities with Newton’s method.

Theorem D.1.1 (Hensel’s Lemma). Let p > 2, let Q, be the field of
p-adic numbers and let Z,, be the p-adic integers. Let v, be the usual
p-adic valuation (i.e., vp(p°n) = e if n € Z and ged(n,p) = 1). Let
f(z) be a polynomial with coefficients in Z, and suppose there exist
oo € Zy such that

vp(f(@0)) > vp(f'(@0)?).
Then there exists a root o« € Q, of f(x). Moreover, the sequence
flev)
J' (i)

Qi1 = O —

converges to a. Furthermore;

oz (f)
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Corollary D.1.2 (Trivial case of Hensel’s lemma). Let p > 2, and
let Zy, and Qp be as before. Let f(x) be a polynomial with coefficients
in Zy, and suppose there exist oy € Zyp such that

f(a0) =0 modp, f'(ac) £ 0 mod p.
Then there exists a root a € Q, of f(x), i.e., f(a) =0.

Example D.1.3. Let p be a prime number greater than 2. Are there
solutions to 2 + 7 = 0 in the field Q7 If there are, —7 must be a
quadratic residue modulo p. Thus, let p be a prime such that

-

where (5) is Legendre’s quadratic residue symbol. Hence, there exist
ap € Z such that a3 = —7 mod p. We claim that 22 + 7 = 0 has
a solution in Q, if and only if —7 is a quadratic residue modulo
p. Indeed, if we let f(x) = 22 + 7 (so f'(x) = 2x), the element
o € Z, satisfies the conditions of the (trivial case of ) Hensel’s lemma.
Therefore, there exists a root o € Q, of 22 +7=0. [ |

Example D.1.4. Let p = 2. Are there any solutions to z2 +7 = 0
in Q2?7 Notice that if we let f(x) = 22 + 7, then f'(x) = 22 and, for
any «p € Zsg, the number f/'(cg) = 2qp is congruent to 0 modulo 2.
Thus, we cannot use the trivial case of Hensel’s lemma (i.e., Corollary
D.1.2).

Let ap = 1 € Zo. Notice that f(1) =8 and f’(1) = 2. Thus,
3=1y(8) > 1n(2%) =2

and the general case of Hensel’s lemma applies. Hence, there exists a
2-adic solution to z2 + 7 = 0. [ ]

D.2. Exercises

Exercise D.2.1. Show that if ¢ and ¢ are distinct integers (in Z),
then their representatives in Z, for any prime p > 2, given by ¢ =
(¢ mod p™)>2, and t = (t mod p™)5%, are also distinct in Z,.

Exercise D.2.2. Let p > 2 be a prime number.
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(1) Let b € Z with ged(b,p) = 1, and let n > 1. Suppose a,, € Z
such that a2 = b mod p™. Show that there exists a,.; €
Z such that a?,, = bmod p"*' and a,+1 = a, mod p".
(Hint: write a2 = b+ kp" and consider f(z) = a,, + xp".
Find z such that f(z)? = b mod p"*1.)
(2) Suppose a? = b mod p, where ged(b,p) = 1. Show that the
vector o = (an )2, defined recursively by
2
n

(27

Ap+1 = n — mod p >

is a well-defined element of Z, and, moreover, o = b, i.e.,
a® = (b mod p, b mod p*, b mod p*,...),
S0 « is a square root of b.
Exercise D.2.3. Find the first 4 coordinates of the 5-adic expansion
of % in Zs.

Exercise D.2.4. Find the first 4 coordinates of the 5-adic expansions
of £v/6 in Zs; i.c., find the first 4 coordinates of v and —a such that
a?>=61in Zs.






Appendix E

Parametrization of
torsion structures

In this appendix we provide one-parameter infinite families of elliptic
curves with all the possible torsion subgroups that may occur for ellip-
tic curves over Q. The main reference for this appendix is [Kub76|,
Table 3, p. 217.

In each table below, Figure 1 and Figure 2, we provide ellip-
tic curves F,, whose equations depend on two rational parameters
a,b € Q, and such that the torsion subgroup E, ;(Q)ors has a given
subgroup Gj i.e., the full torsion subgroup contains G as a subgroup,
but may be larger in certain cases (see Example E.1.1 below).

The families that appear in Figure 1 depend on two independent
parameters a, b, and the only condition that needs to be satisfied is
that the discriminant A, of E,; must be non-zero. This condition
on the discriminant is given in the second column of the table.

The families that appear in Figure 2 depend on one single rational
parameter ¢ € QQ, and a and b are rational functions in the variable ¢.
The curves E, p that appear in this table are all of the form

Eup:y* + (1 —a)zy — by = 2% — bz

The point (0,0) is a torsion point of the maximal order in the group.
The discriminant A, p of E, is always assumed to be non-zero.

187
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Ea,b/@ Aaz,b 7é 0 G
yr=a2%tar? +bx  a?b? 43 £0  Z/27
y? +ary+by =2 @b —270* £0 Z/37
v=z(@+a)(z+b) 0#a#b#0 Z/2Z&ZL/2Z

Figure 1. Two-parameter families of elliptic curves E, ;/Q
such that anb((@)tors has a subgroup G.
Curves of the form F,p : y? + (1 — a)zy — by = 2 — bx?
a b G
a=0 b=t YARYA
a=t b=t Z/5Z
a=t b=1t+t2 Z/6Z
a=t2—t b=t —t2 7|77
o= E0E) b= (2t —1)(t—1) 7./87
a=1t%(t—1) b=t2(t—-1)(t*—t+1) Z/9Z
o t(k=1)(2t—1) P (t—1)(2t—1)
4= =" 3111 b= =12 Z/10Z
a— t(1—2t()t(i3t12);3t+1) b= —q- 2t2t__21ti1 7./127.
a=0 b:tz—llb. VAPYASYAZYA
— — 2 —
a=10-2 b= =28 Z/2Z ® 7./6Z
_ (2t41)(8t2+4t41) _ (2t41)(8t2+4t+1)
0= SErneEe—nr 0T 8tZ_1)2 L]2L & L/8L

Figure 2. One-parameter families of elliptic curves E, ;/Q
such that Ea,b((@)tors has a subgroup G.

Example E.1.1. For each t € Q, according to Figure 2, the torsion

subgroup of the elliptic curve Fy; : y? + (1 — t)oy — ty = 23 — tx

2

contains G = Z/5Z as a subgroup, as long as the discriminant A, , =

to(t? — 11t —

1) is non-zero (thus, A;; = 0 if and only if ¢t = 0). In

other words, the point (0,0) of F;, is a torsion point of order 5.
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Notice, however, that this does not imply that the torsion sub-
group of E, +(Q) is identical to Z/5Z. For instance, let t = 12. The
torsion subgroup of the elliptic curve

Eis12: y2 —1lzy — 12y = 2 — 1222

is isomorphic to Z/10Z. The point (0,0) is a point of order 5, but the
point (—6, —18) has exact order 10.

Example E.1.2. According to Figure 2, each curve in the family
Y2+ (L4t =ty + (2 — 3y = 2% + (t2 — t3)2?

has a torsion point of exact order 7, namely P = (0,0), as long as
the discriminant A = ¢7(¢ — 1)7(¢3 — 8t2 + 5t + 1) is non-zero, which
can only happen for the rational values ¢ = 0 and ¢t = 1. By Mazur’s
Theorem 2.5.2, the only possible torsion subgroup for an elliptic curve
over Q that contains Z/7Z as a subgroup is Z/7Z itself. Thus, the
torsion subgroup of each elliptic curve in this family is exactly Z/77Z.

Similarly, if E, p is an elliptic curve in one of the families in Figure
2 that correspond to G in the list

Z)7Z, Z)9Z, Z)10Z, Z)12Z, 7.)2Z & L/6Z, or Z/2Z & Z/8Z,
then the torsion subgroup of E, ;(Q) must be exactly G.



