Chapter 2

Elliptic curves

In this chapter we summarize the main aspects of the theory of el-
liptic curves®. Unfortunately, we will not be able to provide many of
the proofs because they are beyond the scope of this course. If the
reader is not familiar with projective geometry or needs to refresh the
memory, it is a good time to look at Appendix C or another reference
(for example, [SK52] is a beautiful book on projective geometry).

2.1. Why elliptic curves?

A Diophantine equation is an equation given by a polynomial with
integer coefficients, i.e.

(2.1) flx1,29,...,2,) =0

with f(z1,...,2,) € Z[x1,...,2,]. Since antiquity, many mathe-
maticians have studied the solutions in integers of Diophantine equa-
tions that arise from a variety of problems in number theory, e.g.
3 —n2z is the Diophantine equation related to the study of the
congruent number problem (see Example 1.1.2).

Y=z

Since we would like to systematically study the integer solutions
of Diophantine equations, we ask ourselves three basic questions:

1The contents of this chapter are largely based on the article [Loz05], in Spanish.
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18 2. Elliptic curves

(a) Can we determine if Eq. (2.1) has any integral solutions,
x; € Z, or rational solutions, x; € Q7

(b) If so, can we find any of the integral or rational solutions?

(¢) Finally, can we find all solutions and prove that we have
found all of them?

The first question was proposed by David Hilbert: to devise a
process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.
This was Hilbert’s tenth problem out of 23 fundamental questions
that he proposed to the mathematical community during the Second
International Congress of Mathematicians in Paris in the year 1900.

Surprisingly, in 1970, Davis, Matiyasevich, Putnam, and Robin-
son discovered that there is no such general algorithm that decides
whether equation (2.1) has integer solutions (see [Mat93]). However,
if we restrict our attention to certain particular cases, then we can
answer questions (a), (b) and (¢) posed above. The most significant
advances have been obtained in equations with one and two variables:

e Polynomials in one variable:
f(x) =apx" + a1z ' 4+...+a, =0

with a; € Z. This case is fairly simple. The following crite-
rion determines how to search for rational or integral roots
of a polynomial: if ’5’ € Q is a solution of f(x) =0, then a,
is divisible by p and ag is divisible by g¢.

e Linear equations in two variables:
ax+by=d

with a,b,d € Z and ab # 0. Clearly, this type of equa-
tion always has an infinite number of rational solutions. As
for integral solutions, Euclid’s algorithm (to find ged(a, b))
determines if there are solutions z,y € Z and, if so, pro-
duces all solutions. In particular, the equation has integral
solutions if and only if d is divisible by gcd(a, b).

o Quadratic equations (conics):

az? +bxy 4+ cy® +de +ey = f with a,b,c.d,e, f € Z.
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Finding integral and rational points on a conic is a classical
problem. Legendre’s criterion determines whether there are
rational solutions: a conic C' has rational solutions if and
only if C' has points over R and over Q,, the p-adics, for all
primes p > 2 (see Appendix D for a brief introduction to
the p-adics). Essentially, Legendre’s criterion says that the
conic has rational solutions if and only if there are solutions
modulo p™ for all primes p and all n > 1 but, in practice,
one only needs to check this for a finite number of primes
that depends on the coefficients of the conic.

If C has rational points, and we have found at least
one point, then we can find all the rational solutions using
a stereographic projection (see Exercise 2.12.2). The inte-
gral points on C, however, are much more difficult to find.
The problem is equivalent to finding integral solutions to
Pell’s equation x> — Dy?> = 1. There are several methods to
solve Pell’s equation. For example, one can use continued

x

fractions (certain convergents 5 of the continued fraction

for v/D are integral solutions (z,y) of Pell’s equation; see
Exercise 2.12.2).

e Cubic equations:
aX?+bX2Y +eXY? +dY3 +eX? + fXY +gY2+hX +jY +k =0.

A cubic equation in two variables may have no rational solu-
tions, only 1 rational solution, a finite number of solutions,
or infinitely many solutions. Unfortunately, we do not know
any algorithm that yields all rational solutions of a cubic
equation, although there are conjectural algorithms. In this
chapter we will concentrate on this type of equation: a non-
singular cubic, i.e., no self-intersections or pinches, with at
least one rational point (which will be our definition of an
elliptic curve).

e Higher degree. Typically, curves defined by an equation of
degree > 4 have a genus > 2 (but some equations of degree
4 have genus 1; see Example 2.2.5 and Exercise 2.12.4). The
genus is an invariant that classifies curves according to their
topology. Briefly, if we consider a curve as defined over C,
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then C(C) may be considered as a surface over R, and the
genus of C' counts the number of holes in the surface. For
example, the projective line P*(C) has no holes and g = 0
(the projective plane is homeomorphic to a sphere; see Ap-
pendix C for a quick introduction to projective geometry),
and an elliptic curve has genus 1 (homeomorphic to a torus;
see Theorem 3.2.5). Surprisingly, the genus of a curve is
intimately related with the arithmetic of its points. More
precisely, Louis Mordell conjectured that a curve C' of genus
> 2 can only have a finite number of rational solutions. The
conjecture was proved by Faltings in 1983.

Figure 1. A surface of genus 0 (a sphere), and surfaces of
genus 1, 2, and 3 (with 1, 2, and 3 holes, respectively).
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2.2. Definition

Definition 2.2.1. An elliptic curve over Q is a smooth cubic projec-
tive curve E defined over Q with at least one rational point O € E(Q)
that we call the origin.

In other words, an elliptic curve is a curve F in the projective
plane (see Appendix C) given by a cubic polynomial F(X,Y,Z) =0
with rational coefficients, i.e.,

(2.2) F(X,Y,Z) = aX®+bX%Y +cXY?+dY?
+eX’Z + fXYZ +gY?Z
+hXZ2 4+ Y22+ kZ3 =0,
with coefficients a,b,c,... € Q, and such that E is smooth; i.e., the

tangent vector (g—)};(P)7 g—g(P), g—g(P)) does not vanish at any P € £

(see Appendix C.5 for a brief introduction to singularities and non-
singular or smooth curves). If the coefficients a, b, ¢, ... are in a field

K, then we say that E is defined over K (and write E/K).

Even though the fact that E is a projective curve is crucial, we
usually consider just affine charts of F, e.g. those points of the form
{[X,Y, 1]}, and study instead the affine curve given by
(2.3) aX?® +bX%Y +cXY? 4 dY?

+eX?2+ fXY +gY?+hX +5Y +k=0
but with the understanding that in this new model we may have left
out some points of E at infinity (i.e., those points [X, Y, 0] satisfying
Eq. 2.2).

In general, one can find a change of coordinates that simplifies
Eq. 2.3 enormously:

Proposition 2.2.2. Let E be an elliptic curve, given by Eq. 2.2,
defined over a field K of characteristic different from 2 or 3. Then
there exists a curve E given by

2y =2+ Axz? + B2®, A,Be K with 44°> +27B% #0
and an invertible change of variables 1 : E — E of the form

fl(X>YvZ) f2(X7Y7Z) fB(X»Y>Z)

w([X>Y’ Z]) - g1(X7Y7Z)7 QZ(X,Y,ZYQS(XyKZ)
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where f; and g; are polynomials with coefficients in K fori=1,2,3,
and the origin O is sent to the point [0,1,0] of E, i.e., »(O) = [0, 1,0].

The existence of such a change of variables is a consequence of
the Riemann-Roch theorem of algebraic geometry (for a proof of the
proposition see [Sil86], Chapter I11.3). The reference [SiT92|, Ch. L
3, gives an explicit method to find the change of variables ¢ : B — E.
See also pages 46-49 of [Mil06].

A projective equation of the form zy? = x% + Axz? + Bz3, or
y? = 23+ Ax+ B in affine coordinates, is called a Weierstrass equation.
From now on, we will often work with an elliptic curve in this form.
Notice that a curve E given by a Weierstrass equation y? = 23 + Az +
B is non-singular if and only if 443 4 27B% # 0, and it has a unique
point at infinity, namely [0, 1, 0], which we shall call the origin O or
the point at infinity of E.

Sometimes we shall use a more general Weierstrass equation
2 _ .3 2
Y- +a1xy +asy = x° + axx” + a4 + ag

with a; € Q (we will explain the funky choice of notation for the
coefficients later), but most of the time we will work with equations
of the form y? = x2 + Az + B. It is easy to come up with a change
of variables from one form to the other (see Exercise 2.12.3).

Example 2.2.3. Let d € Z, d # 0 and let E be the elliptic curve
given by the cubic equation

X3 +Y? =dz?

with O = [1,—1,0]. The reader should verify that E is a smooth
curve. We wish to find a Weierstrass equation for . Note that if we
change X =U+V,Y = -V,  Z =W, then we obtain a new equation

(2.4) U3 +3U%V +3UV? = dWw™.

Since this equation is quadratic in V', and cubic in W, with no other
cubic monomials that involve W, the variable W will end up playing
the role of x, and the variable V' will play the role of y in our Weier-
strass model. Next, we change variables to obtain a coefficient of 1
in front of V2 and W3. If we multiply Eq. (2.4) through by d?, we
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obtain
(2.5) d*U? + 3d°U>V + 3d*°UV? = d*W3,
and now we change variables x = 3dW, y = 9dV, and z = U. Then,

Eq. (2.5) becomes

dyz  y*z  2®
2.6 dz+ ==+ 20 =
2.6) Fre e Tap
or, equivalently, y%>z + 9dyz = x> — 27d%z, which is a Weierstrass
equation. Thus, [z,y,z] = [3dW,9dV,U] = [3dZ,—-9dY, X + Y] and

we have found a change of variables ¢ : E — E given by
w([Xv Y, Z]) = [3d27 —9dY, X + Y]

such that the image lands on the curve in Weierstrass equation E:
y?z 4+ 9dyz = 23 — 27d?z. The map 1 is invertible; the inverse map
Ny Ry ST

o) - |

9dz +y Yy oz
9d ' 9d’ 3d]’

In affine coordinates, the change of variables is going from X2 +Y?3 =
d to the curve y? + 9dy = 2° — 27d? via the maps:

3d 9dY
VX Y) = (X+Y’X+Y>’
_ 9d+y y
1 e — — —
e = (MEL-g).

We leave it as an exercise for the reader to verify that the model can
be further simplified to the form y? = 23 — 432d>. ]

Definition 2.2.4. Let E': f(z,y) = 0 be an elliptic curve with origin
O, and let E' : g(X,Y) = 0 be an elliptic curve with origin O’. We
say that E and E’ are isomorphic over Q if there is an invertible
change of variables 1 : E — FE’, defined by rational functions with
coefficients in Q, such that ¢(0) = O'.

Example 2.2.5. Sometimes, a curve given by a quartic polynomial
can be isomorphic over Q to another curve given by a cubic polyno-
mial. For instance, consider the curves

C/Q:V2=U*4+1 and FE/Q:y*=23—4z.
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The map v : C — E given by
v = (

20V +1) 4V + 1))
vz U3
is an invertible rational map, defined over Q, that sends (0,1) to
O, and ¥(0,—1) = (0,0). See Exercise 2.12.4. More generally, any
quartic
C:V?=aU' +bU3 + cU? + dU + ¢*

for some a,b,c,d,q € Z is isomorphic over Q to a curve of the form
E:y?+a12y+asy = 23 + asx? + asx + ag, also defined over Q. The
isomorphism is given in [Was08|, Theorem 2.17, p. 37.

Let F be an elliptic curve over Q given by a Weierstrass equation

E: y2 +arxy + azy = x>+ (12272 + ayr 4+ ag, a; €Q.

With a change of variables (z,y) — (u~2z, u~3y), we can find the

equation of an elliptic curve isomorphic to E given by
y? + (a1w)zy + (azu®)y = 2 + (au®)2? + (agu®)z + (agu®)

with coefficients a;u’ € Z for i = 1,2,3,4,6. By the way, this is one
of the reasons for the peculiar numbering of the coefficients a;.

Example 2.2.6. Let E be given by y? = 2% + £ + 2. We may
change variables by = = 6% and y = 6% to obtain a new equation
Y2 = X2 + 648X + 77760 with integral coefficients. [ ]

2.3. Integral points

In 1929, Siegel proved the following result about integral points F(Z),
i.e., about those points on E with integer coordinates:

Theorem 2.3.1 (Siegel’s theorem; [Sil86]|, Ch. IX, Thm. 3.1). Let
E/Q be an elliptic curve given by y? = x> + Az + B, with A, B € Z.
Then E has only a finite number of integral points.

Siegel’s theorem is a consequence of a well-known theorem of Roth
on Diophantine approximation. Unfortunately, Siegel’s theorem is not
effective and provides neither a method to find the integral points on
E nor a bound on the number of integral points. However, in [Bak90],
Alan Baker found an alternative proof that provides an explicit upper
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bound on the size of the coefficients of an integral solution. More
concretely, if x,y € Z satisfy y? = 2% + Az + B, then

max(|zl, |y|) < exp((l()6 -max(|A4], |B|))106).

Obviously, Baker’s bound is not a very sharp bound, but it is theo-
retically interesting nonetheless.

2.4. The group structure on F(Q)

From now on, we will concentrate on trying to find all rational points
on a curve F : y? = 2% + Az + B. We will use the following notation
for the rational points on E:

EQ) ={(z,y) € E|z,y € Q} U{O}
where O = [0, 1, 0] is the point at infinity.

One of the aspects that makes the theory of elliptic curves so
rich is that the set E(Q) can be equipped with a group structure,
geometric in nature. The (addition) operation on E(Q) can be defined
as follows (see Figure 2). Let E be given by a Weierstrass equation
y? = 2%+ Az + B with A, B € Q. Let P and Q be two rational points
in £(Q) and let £ = PQ be the line that goes through P and Q (if
P = @, then we define £ to be the tangent line to £ at P). Since
the curve F is defined by a cubic equation, and since we have defined
£ so it already intersects F at two rational points, there must be a

third point of intersection R in £ N E, which is also defined over Q,
and

LNEQ)={P,Q,R}.
The sum of P and @, denoted by P + @, is by definition the second
point of intersection with E of the vertical line that goes through R,
or in other words, the reflection of R across the z-axis.

It is easy to verify that the addition operation that we have de-
fined on points of E(Q) is commutative. The origin O is the zero
element, and for every P € F(Q) there exists a point —P such that
P+ (—P)=0. If E is given by y? = 2® + Az + B and P = (¢, %),
then —P = (z9,—yo). The addition is also associative (but this is
not obvious, and it is tedious to prove) and, therefore, (E,+) is an
abelian group.
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Figure 2. Addition of points on an elliptic curve

Example 2.4.1. Let E be the elliptic curve y? = 2% — 25z, as in
Example 1.1.2. The points P = (5,0) and Q = (—4,6) belong to
E(Q). Let us find P + Q. First, we find the equation of the line
£ = PQ. The slope must be

0-6 6 2

T h5—(-4) 9 3

and the line is £ : y = —2(z — 5). Now we find the third point of
intersection of £ and E by solving

{y:—am—a

y? =3 — 252,

m

Plugging the first equation into the second one, we obtain an equation
4 , 185 100
3 2
_ S — |
9f T 9T 9 T
which factors as (z — 5)(z + 4)(9z +5) = 0. The first two factors
are expected, since we already knew that P = (5,0) and Q = (—4,6)

x
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are in £ N E. The third point of intersection must have x = —g,
y = —2(z—5) = 52 and, indeed, R = (—2,%2) is a point in

£nN E(Q). Thus, P+ Q is the reflection of R across the z-axis, i.e.,
_(_5 _ 100
P+Q=(-5—%7)

Using Proposition 1.1.3, we may try to use the point P + Q =
(—3.—12) to find a (new) right triangle with rational sides and area
equal to 5, but this point corresponds to the triangle (%, %, %), the
same triangle that corresponds to @ = (—4,6). In order to find a new
triangle, let us find @ + Q = 2Q.

The line £ in this case is the tangent line to E at ). The slope

of £ can be found using implicit differentiation on y? = 23 — 252

dy dy_3x2—25

Hence, the slope of £is m = 23 and £:y = 2 (2 +4) + 6. In order
to find R we need to solve

{y:%(z—l-él)—l—f’)

y? =3 — 252,
Simplifying yields 2® — 32322 — 1393, 1681 — (0 which factors as

(z + 4)*(1442 — 1681) = 0.

Once again, two factors were expected: x = —4 needs to be a double
root because £ is tangent to E at Q = (—4,6). The third factor tells us
that the z coordinate of R is z = 181 and y = 23 (z+4) +6 = 61272229.
Thus, Q + Q = 2Q = (1881, _62279)  This point corresponds to the

144 >~ 1728
right triangle

(a.b.¢) = 1519 4920 3344161
P\ 492 015197 747348 )
||

Example 2.4.2. Let E: y?> = 23+ 1 and put P = (2,3). Let us find
P, 2P, 3P, etc.

e In order to find 2P, first we need to find the tangent line to
E at P, which is y — 3 = 2(z — 2) or y = 22 — 1. The third
point of intersection is R = (0,—1), so 2P = (0, 1).
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5P

Figure 3. The rational points on y2 = 23 4 1, except the
point at oco.

e To find 3P, we add P and 2P. The third point of inter-
section of F with the line that goes through P and 2P is
R’ = (—1,0); hence, 3P = (—1,0).

e The point 4P can be found by adding 3P and P. The third
point of intersection of E and the line through P and 3P is
R"=2P =(0,1), and so 4P = P+ 3P = (0,-1).

e We find 5P by adding 4P and P. Notice that the line that
goes through 4P = (0,—1) and P = (2,3) is tangent at
(2,3), so the third point of intersection is P. Thus, 5P =
AP+ P = (2,-3).

e Finally, 6P = P + 5P but 5P = (2,—3) = —P. Hence,
6P = P + (—P) = O, the point at infinity.

This means that P is a point of finite order, and its order equals
6. See Figure 3 (the Sage code for this graph can be found in the
Appendix A.1.3). [ ]
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The addition law can be defined more generally on any smooth
projective cubic curve E : f(X,Y, Z) = 0, with a given rational point
O. Let P,@Q € E(Q) and let £ be the line that goes through P and
Q. Let R be the third point of intersection of £ and E. Then R is
also a rational point in E(Q). Let £ be the line through R and O.
We define P + @ to be the third point of intersection of £ and FE.
Notice that any vertical line x = a in the affine plane passes through
[0,1,0], because the same line in projective coordinates is given by
x = az and [0,1,0] belongs to such line. Thus, if F is given by a
model y? = 23 + Az + B, and O is chosen to be the point [0,1,0],
then £ is always a vertical line, so P + Q is always the reflection of
R with respect to the z axis.

The next step in the study of the structure of E(Q) was conjec-
tured by Henri Poincaré in 1908, proved by Louis Mordell in 1922
and generalized by André Weil in his thesis in 1928:

Theorem 2.4.3 (Mordell-Weil). E(Q) is a finitely generated abelian
group. In other words, there are points P, ..., P, such that any other
point Q in E(Q) can be expressed as a linear combination

Q=a1Pi+asPo+---+a,P,

for some a; € Z.

The group E(Q) is usually called the Mordell-Weil group of E,
in honor of the two mathematicians who proved the theorem.

Example 2.4.4. Cousider the elliptic curve E/Q given by the Weier-
strass equation

v +y=a>—Tr+6.
The set of rational points E(Q) for this elliptic curve is infinite. For
instance, the following points are on the curve:

(1,0), (2,0), (0,-3), (—3,—1), (8,-22), (—2,—4), (3,-4),
(373)7 (*17*4)7 (17*1)7 (072)7 (2?*1)7 (*273)7 (71’3)7

1 13 25 91 26 28 717
478 )7\ 9" 21)’ 9’27)7\9'27)" """

At a first glance, it may seem very difficult to describe all the points
on F(Q), including those listed above, in a succinct manner. However,
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Figure 4. Louis Mordell (1888-1972) and André Weil (1906-1998).

the Mordell-Weil theorem tells us that there must be a finite set of
points that generate the whole group. Indeed, it can be proved that
the three points

P = (1»0)7 Q= (270)7 and R = (0,—3)

are generators of E(Q). This means that any other point on E(Q)
can be expressed as a Z-linear combination of P, Q and R. In other
words,

EQ={a-P+b-Q+c-R:a,bcecZ}.
For instance,
(—=3,-1)=P+Q, (8,-22)=P+R, (—2,-4)=P —Q,
(-1,-4)=Q — R and (3,3) = P— R.

The proof of the theorem has three fundamental ingredients: the
so-called weak Mordell-Weil theorem E(Q)/mE(Q) is finite for any
m > 2; see below); the concept of height functions on abelian groups
and the descent theorem, which establishes that an abelian group A
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with a height function h, such that A/mA is finite (for some m > 2),
is finitely generated.

Theorem 2.4.5 (weak Mordell-Weil). E(Q)/mE(Q) is a finite group
for all m > 2.

We will discuss the proof of a special case of the weak Mordell-
Weil theorem in Section 2.9 (see Corollary 2.9.7).

It follows from the Mordell-Weil theorem and the general struc-
ture theory of finitely generated abelian groups that

(2'7) E(Q) g E(Q)tOFSiOH @ ZRE .

In other words, F(Q) is isomorphic to the direct sum of two abelian
groups (notice however that this decomposition is not canonical).
The first summand is a finite group formed by all torsion elements,
i.e., those points on E of finite order:

E(Q)torsion = {P € E(Q) : there is n € N such that nP = O}.

The second summand of Eq. (2.7), sometimes called the free part, is
7%= ie., Rp copies of Z for some integer R > 0. It is generated
by Rg points of E(Q) of infinite order (i.e., P € E(Q) such that
nP # O for all non-zero n € Z). The number R is called the rank
of the elliptic curve E/Q. Notice, however, that the set

F ={P € E(Q) : P is of infinite order} U {O}

is not a subgroup of E(Q) if the torsion subgroup is non-trivial. For
instance, if T"is a torsion point and P is of infinite order, then P and
P + T belong to F but T = (P +T) — P does not belong to F. This
fact makes the isomorphism of Eq. (2.7) not canonical because the
subgroup of E(Q) isomorphic to Z®# cannot be chosen, in general,
in a unique way.

Example 2.4.6. The following are some examples of elliptic curves
and their Mordell-Weil groups:

(1) The curve E;/Q : y* = 2° + 6 has no rational points, other
than the point at infinity @. Therefore, there are no torsion
points (other than O) and no points of infinite order. In
particular, the rank is 0, and F;(Q) = {O}.
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(2) The curve F»/Q : y* = 23 + 1 has only 6 rational points.
As we saw in Example 2.4.2, the point P = (2, 3) has exact
order 6. Therefore Fy(Q) = Z/6Z is an isomorphism of
groups. Since there are no points of infinite order, the rank
of E5/Q is 0, and

E2(Q) = {0, P, 2P, 3P, 4P, 5P} = {0, (2,+3), (0, +1), (—1,0)}.

(3) The curve E3/Q : y?> = x® — 2 does not have any rational
torsion points other than O (as we shall see in the next
section). However, the point P = (3,5) is a rational point.
Thus, P must be a point of infinite order and E5(Q) contains
infinitely many distinct rational points. In fact, the rank of
Ej5 is equal to 1 and P is a generator of all of F53(Q), i.e.,

Es(Q)={nP:ne€Z} and FE3(Q)=7Z.

(4) The elliptic curve E4/Q : y? = 3 + 710522 + 1327104«
features both torsion and infinite order points. In fact,
E4(Q) = Z/AZ @ 7Z3. The torsion subgroup is generated
by the point 1" = (1152,111744) of order 4. The free part is
generated by three points of infinite order:

P = (—6912,6912), P, = (—5832,188568), Ps = (—5400,206280).
Hence
E, Q) ={aT +bP,+cP,+dP;:a=0,1,20r 3and b,¢,d € Z}.

As we mentioned above, the isomorphism E4(Q) = Z/4Z &
Z3 is not canonical. For instance, E4(Q) = (T)®(Py, P, Ps)
but also E4(Q) = (T) & (P{, P2, Ps) with Pl =P +T. &

The rank of F/Q is, in a sense, a measurement of the arithmetic
complexity of the elliptic curve. It is not known if there is an upper
bound for the possible values of Rp (the largest rank known is 28,
discovered by Noam Elkies; see Andrej Dujella’s website [Duj09] for
up-to-date records and examples of curves with “high” ranks). It has
been conjectured (with some controversy) that ranks can be arbitrar-
ily large; i.e., for all n € N there exists an elliptic curve E over Q
with Rp > n. We state this as a conjecture for future reference:
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Conjecture 2.4.7 (Conjecture of the rank). Let N > 0 be a natural
number. Then there exists an elliptic curve E defined over Q with
rank Rg > N.

One of the key pieces of evidence in favor of such a conjecture
was offered by Shafarevich and Tate, who proved that there exist
elliptic curves defined over function fields IF,,(T") and with arbitrarily
large ranks (F,(7T') is a field that shares many similar properties with
Q; see [ShT67]). In any case, the problem of finding elliptic curves
of high rank is particularly interesting because of its arithmetic and
computational complexity.

2.5. The torsion subgroup

In this section we concentrate on the torsion points of an elliptic
curve:

E(Q)torsion = {P € E(Q) : there is n € N such that nP = O}.

Example 2.5.1. The curve E,, : y* = 2® —n?z = x(x —n)(x+n) has
three obvious rational points, namely P = (0,0),Q = (—n,0),T =
(n,0), and it is easy to check (see Exercise 2.12.6) that each one of
these points is torsion of order 2, ie., 2P = 2Q = 27T = O, and
P+Q=T. In fact E,(Q)torsion = {0, P,Q, T} 2 Z/2Z ®Z/2Z. W

Note that the Mordell-Weil theorem implies that E(Q)iorsion 18
always finite. This fact prompts a natural question: what abelian
groups can appear in this context? The answer was conjectured by
Ogg and proven by Mazur:

Theorem 2.5.2 (Ogg’s conjecture; Mazur, [Maz77|, [Maz78|). Let
E/Q be an elliptic curve. Then E(Q)torsion S isomorphic to one of
the following groups:

(2.8) Z/NZ with 1<N<10 or N=12, or

Z)2Z & L)2MZ  with 1< M < 4.
Example 2.5.3. For instance, the torsion subgroup of the elliptic
curve with Weierstrass equation y? 4 43zy — 210y = 2® — 21022 is

isomorphic to Z/127Z and it is generated by the point (0,210). The
elliptic curve y? + 172y — 120y = z® — 6022 has a torsion subgroup
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Curve Torsion (Generators
y =3 -2 trivial @
y? =23 +8 Z)2Z (—2,0)
y? =23+ 4 Z/3Z (0,2)
y? =2+ 4 Z/AZ (2,4)
y?—y=a® - 22 Z/5Z (0,1)
yP=a23+1 Z/6Z (2,3)
y? = 2% — 432 + 166 777 3,8)
y? 4 Toy = 2° 4 162 7/8Z (—2,10)
v+ ay+y =122 - 142+ 29 Z/9Z (3,1)
Y2+ ay = 2 — 452 + 81 Z/10Z (0,9)
y? + 432y — 210y = 2° — 21022 7./127 (0,210)
y?=a -4z L2LSL)2Z (Egg;)
y? =a2®+ 227 — 3z LIALSTL)2Z (Egg;)
y? + bay — 6y = 23 — 322 Z/6Z & T./2Z (<(—2?;1§>)
y? 4+ 172y — 120y = 2® — 602 Z/8Z&Z/2Z (P50

Figure 5. Examples of each of the possible torsion subgroups
over Q.

isomorphic to Z/2Z &7 /87, generated by the rational points (30, —90)
and (—40, 400). See Figure 5 for a complete list of examples with each
possible torsion subgroup. ]

Furthermore, it is known that, if G is any of the groups in Eq.
2.8, there are infinitely many elliptic curves whose torsion subgroup is
isomorphic to G. See, for example, [Kub76], Table 3, p. 217. For the
convenience of the reader, the table in Kubert’s article is reproduced
in Appendix E.

Example 2.5.4. Let E; :y? + (1 — t)zy — ty = 23 —tx? with t € Q
and A; = t°(#2 — 11t — 1) # 0. Then, the torsion subgroup of E;(Q)
contains a subgroup isomorphic to Z/5Z, and (0,0) is a point of exact
order 5. Conversely, if F : y?> = 2® + Az + B is an elliptic curve with
torsion subgroup equal to Z/5Z, then there is an invertible change of
variables that takes E to an equation of the form FE; for some t € Q.
See also Examples E.1.1 and E.1.2. [ ]
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A useful and simple consequence of Mazur’s theorem is that if
the order of a rational point P € E(Q) is larger than 12, then P must
be a point of infinite order and, therefore, E(Q) contains an infinite
number of distinct rational points. Except for this criterion, Mazur’s
theorem is not very helpful in effectively computing the torsion sub-
group of a given elliptic curve. However, the following result, proven
independently by E. Lutz and T. Nagell, provides a simple algorithm
to determine E(Q)torsion:

Theorem 2.5.5 (Nagell-Lutz, [Nag35|, [Lut37]). Let E/Q be an
elliptic curve with Weierstrass equation

2=+ Az + B, ABcl.
Then, every torsion point P # O of E satisfies:

(1) The coordinates of P are integers, i.e., x(P),y(P) € Z.

(2) If P is a point of order n > 3, then 4A® + 27B? is divisible
by y(P)?.

(3) If P is of order 2, then y(P) = 0 and x(P)3+Az(P)+B = 0.

For a proof, see [Sil86], Ch. VIII, Corollary 7.2, or [Mil06], Ch.
II, Theorem 5.1.

Example 2.5.6. Let E/Q :y? = 23 — 2, so that A =0 and B = —2.
The polynomial 2 — 2 does not have any rational roots, so F(Q)
does not contain any points of order 2. Also, 443 + 27B2 = 27 - 4.
Thus, if (z(P),y(P)) are the coordinates of a torsion point in E(Q),
then y(P) is an integer and y(P)? divides 27 - 4. This implies that
y(P) = £1, +2, 43, or 6. In turn, this implies that x(P)* = 3, 6,
11 or 38, respectively. However, 2(P) is an integer, and none of 3, 6,
11 or 38 are a perfect cube. Thus, E(Q)torsion is trivial (i.e., the only
torsion point is O).

Example 2.5.7. Let p > 2 be a prime number and let us define a
curve E,: y? = 23 + p2. Since 23 + p? = 0 does not have any rational
roots, E,(Q) does not contain points of order 2. Let P be a torsion
point on E,(Q). The list of all squares dividing 443 4 2782 = 27p*
is short, and by the Nagell-Lutz theorem the possible values for y(P)
are:

y=+1, +p, +p%, £3p, +3p?, and =+ 3.
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Clearly, (0, =p) € E,(Q) and one can show that those two points and
O are the only torsion points; see Exercise 2.12.8. Thus, the torsion
subgroup of E,(Q) is isomorphic to Z/3Z for any prime p > 2. [ ]

2.6. Elliptic curves over finite fields

Let p > 2 be a prime and let I, be the finite field with p elements,
ie.,

F,=2Z/pZ ={amodp:a=0,1,2,...,p—1}.
[F, is a field and we may consider elliptic curves defined over [F,. As
for elliptic curves over Q, there are two conditions that need to be
satisfied: the curve needs to be given by a cubic equation, and the
curve needs to be smooth.

Example 2.6.1. For instance, E : y2 = 2% + 1 mod 5 is an ellip-
tic curve defined over F5. It is clearly given by a cubic equation
(2y% = 23+ 23 mod 5 in the projective plane P?(FF5)) and it is smooth,

because for ' = zy? — 2 — 2% mod 5, the partial derivatives are:
oF 5 OF oF 9 5
— =3z, —=2yz, — =y —3 d 5.
o x 9 vz, S =Y z” mo

Thus, if the partial derivatives are congruent to 0 modulo 5, then
z =0 mod 5 and yz = 0 mod 5. The latter congruence implies that
yor z =0modb5, and 0F/0z = 0 implies that y = z = 0 mod 5.
Since [0, 0,0] is not a point in the projective plane, we conclude that
there are no singular points on F/Fs.

However, C/Fs : y?> = 2 4+ 1 mod 3 is not an elliptic curve be-
cause it is not smooth. Indeed, the point P = (2 mod 3,0 mod 3) €
C(IF3) is a singular point:

OF . 9 oF . .
F
‘Z—Z(P) = 0°-3-1=0mod 3. =

Let E/Q be an elliptic curve given by a Weierstrass equation
y? = 23 + Az + B with integer coefficients A, B € Z, and let p > 2
be a prime number. If we reduce A and B modulo p, then we obtain
the equation of a curve E given by a cubic curve and defined over
the field F,,. Even though E is smooth as a curve over Q, the curve
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E may be singular over F,. In the previous example, we saw that
E/Q:y? = 23 + 1 is smooth over Q and F5 but it has a singularity
over 3. If the reduction curve E is smooth, then it is an elliptic
curve over IF,,.

Example 2.6.2. Sometimes the reduction of a model for an elliptic
curve E modulo a prime p is not smooth, but it is smooth for some
other models of E. For instance, consider the curve E : 3% = 23 +
15625. Then E = F mod 5 is not smooth over F5 because the point
(0,0) mod 5 is a singular point. However, using the invertible change
of variables (z,y) + (52X,5%Y), we obtain a new model over Q for
E given by E' : Y2 = X? 4 1, which is smooth when we reduce it
modulo 5. The problem here is that the model we chose for F is not
manimal. We describe what we mean by minimal next. ]

Definition 2.6.3. Let E be an elliptic curve given by y? = 23+ Az +
B, with A, B € Q.

(1) We define Ay, the discriminant of E, by
Ap = —16(4A% +27B?).

For a definition of the discriminant for more general Weier-
strass equations, see for example [Sil86], p. 46.

(2) Let S be the set of all elliptic curves E’ that are isomor-
phic to E over Q (see Definition 2.2.4) and such that the
discriminant of E’ is an integer. The minimal discriminant
of E is the integer Ags that attains the minimum of the set
{|Ag/|: E' € S}. In other words, the minimal discriminant
is the smallest integral discriminant (in absolute value) of
an elliptic curve that is isomorphic to E over Q. If E’ is the
model for £ with minimal discriminant, we say that £’ is a
minimal model for E.

Example 2.6.4. The curve E : y? = 2 + 55 has discriminant
Ap = —2*3%5'2 and the curve £’ : 2 = 2? 4 1 has discriminant
Ap = —2%33. Since F and E’ are isomorphic (see Definition 2.2.4

and Example 2.6.2), then Ap cannot be the minimal discriminant for
E and y? = 2% + 5% is not a minimal model. In fact, the minimal
discriminant is Ags = —432 and E’ is a minimal model. [ |
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Before we go on to describe the types of reduction modulo p that
one can encounter, we need a little bit of background on types of
singularities. Let E be a cubic curve over a field K with Weierstrass
equation f(z,y) = 0, where

f(@,y) =y* + ar1vy + azy — 2° — axx® — asz — ag,

and suppose that Ehasa singular point P = (z, o), i.e., 9f /0x(P) =
df/0y(P) = 0. Thus, we can write the Taylor expansion of f(z,y)
around (zo,yo) as follows:

[ y) = f(@o,v0)
= iz —20)* + Aoz — 20)(y — o) + Aa(y — y0)? — (& — m0)°
= ((y —y0) — alx —20)) - ((y — yo) = Blz — z0)) — (x — z0)°
for some \; € K and a, 8 € K (an algebraic closure of K).
Definition 2.6.5. The singular point P € E is a node if « # 3. In
this case there are two different tangent lines to E at P, namely
y—yo=o(z—20), y—yo=pB=— o)

If @ = 3, then we say that P is a cusp, and there is a unique tangent
line at P.

Figure 6. A node (left) with two tangent lines, and a cusp
(right) with only one tangent line.
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Definition 2.6.6. Let F/Q be an elliptic curve given by a minimal
model, let p > 2 be a prime and let E be the reduction curve oNf FE
modulo p. We say that E/Q has good reduction modulo p if F is

smooth and hence is an elliptic curve over F,. If E is singular at a
point P € E(F,), then we say that £/Q has bad reduction at p and
we distinguish two cases:

(1)
(2)

If F has a cusp at P, then we say that £ has additive (or
unstable) reduction.

If E has a node at P, then we say that E has multiplicative
(or semistable) reduction. If the slopes of the tangent lines
(o and 3 as above) are in F,, then the reduction is said to
be split multiplicative (and non-split otherwise).

Example 2.6.7. Let us see some examples of elliptic curves with
different types of reduction:

(1)
(2)

E;: y? = 2% + 352 4 5 has good reduction at p = 7, because
y? = 23 + 5 mod 7 is a non-singular curve over F.

However E7 has bad reduction at p = 5, and the reduction
is additive, since modulo 5 we can write the equation as
((y —0) —0-(x —0))? — 2 and the unique slope is 0.

The elliptic curve Ey: y? = 2% — 22 + 35 has bad multiplica-
tive reduction at 5 and 7. The reduction at 5 is split, while
the reduction at 7 is non-split. Indeed, modulo 5 we can
write the equation as

(5~ 0) = 2a—0)-((y~ 0) + 2a ~ 0)) -

the slopes being 2 and —2. However, for p = 7, the slopes
are not in F7 (because —1 is not a quadratic residue in Fy).
Indeed, when we reduce the equation modulo 7, we obtain

v+ 2% —23mod 7
and y? + x2 can only be factored in F;[i] but not in F.

Let E3 be an elliptic curve given by the model y? +y =
2% — 22 — 10z — 20. This is a minimal model for E3; and
its (minimal) discriminant is Ap, = —11°. The prime 11 is
the unique prime of bad reduction and the reduction is split
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multiplicative. Indeed, the point (5,5) mod 11 is a singular
point on Fs3(F1) and

flzyy) = y2 +y+ 2%+ 10z + 20 — 2°
= (y=5-5x—5) (y—5+5x—5))— (v —5)>
Hence, the slopes at (5,5) are 5 and —5, which are obviously
in Fy; and distinct.

Proposition 2.6.8. Let K be a field and let E/K be a cubic curve
given by y?> = f(z), where f(x) is a monic cubic polynomial in K|x].
Suppose that f(z) = (z — a)(z — B)(z — ) with o, 8,7 € K (an
algebraic closure of K ) and put

D =(a—pB)*a—7)%*B-7)>
Then E is non-singular if and only if D # 0.

The proof of the proposition is left as an exercise (see Exercise
2.12.9). Notice that the quantity D that appears in the previous
proposition is the discriminant of the polynomial f(x). The discrim-
inant of E/Q, A as in Definition 2.6.3, is a multiple of D; in fact,
Ap = 16D. This fact together with Proposition 2.6.8 yield the fol-
lowing corollary:

Corollary 2.6.9. Let E/Q be an elliptic curve with coefficients in
Z. Let p > 2 be a prime. If E has bad reduction at p, then p | Ap.
In fact, if E is given by a minimal model, then p | Ag if and only if
FE has bad reduction at p.

Example 2.6.10. The discriminant of the elliptic curve E;: y? =
23 + 35z + 5 of Example 2.6.7 is A, = —2754800 = —2%.5%.71-97
(and, in fact, this is the minimal discriminant of 7). Thus, E; has
good reduction at 7 but it has bad reduction at 2, 5, 71 and 97. The
reduction at 71 and 97 is multiplicative. [ ]

Let E be an elliptic curve defined over a finite field F, with ¢
elements, where ¢ = p” and p > 2 is prime. Notice that E(Iﬁ‘q) -
P%(F,), and the projective plane over I, only has a finite number
of points (how many?). Thus, the number N, := |E(]F(1)| i.e., the
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number of points on E over Iy, is finite. The following theorem
provides a bound for N,. This result was conjectured by Emil Artin
(in his thesis) and was proved by Helmut Hasse in the 1930’s:

Theorem 2.6.11 (Hasse; [Sil86], Ch. V, Theorem 1.1). Let E be
an elliptic curve defined over F,. Then

g+1-2/7< N, <q+1+2V7,
where N, = |E(F,)|.

Figure 7. Helmut Hasse (1898-1979).

Remark 2.6.12. Heuristically, we expect that N, is approximately
g+1, in agreement with Hasse’s bound. Indeed, let £/Q be an elliptic
curve given by 42 = 23 + Az + B, with A, B € Z, and let ¢ = p be a
prime for simplicity. There are p choices of x in [F,,. For each value
T, the polynomial f(x) = 23+ Az + B gives a value f(xq) € F,,. The
probability that a random element in F, is a perfect square in I, is
1/2 (notice, however, that f(x¢) is not random; this is just a heuristic
argument). If f(zo) is a square modulo p, i.e., if there is a yy € F),
such that f(z) = y2 mod p, then there are two points (z¢, +yp) in
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E(Iﬁ‘p). If f(xo) is not a square modulo p, then there are no points in

E(FF,) with a-coordinate equal to x¢. Hence:
1 1
N,=p- 5-24—5-0 +1=p+1

Notice that we have added 1 in order to account for the point at
infinity.

Remark 2.6.13. Suppose that F/Q is an elliptic curve that has bad
reduction at a prime p. How many points does the singular curve
E have over F,? The reader can find the answer to this question in
Exercise 5.7.1.

Example 2.6.14. Let E/Q be the elliptic curve y? = z® + 3. Its
minimal discriminant is Ap = —3888 = —2* .35 Thus, the only
primes of bad reduction are 2 and 3 and E /Fp is smooth for all p > 5.
For p = 5, there are precisely 6 points on E(IF‘5), namely

E(FF)) = {5 (17 2)’ (17 3)7 (2’ 1)7 (234)’ (370)}7

where all the coordinates should be regarded as congruences modulo
5. Thus, N5 = 6, which is in the range given by Hasse’s bound:

1.5278...=54+1—-2V5 < N5 <5+1+2V5=104721....

Similarly, one can verify that N; = 13. [ |

The connections between the numbers N, and the group E(Q)
are numerous and of great interest. The most surprising relationship
is captured by the Birch and Swinnerton-Dyer conjecture (Conjecture
5.2.1) that relates the growth of N, (as p varies) with the rank of the
elliptic curve E/Q. We shall discuss this conjecture in Section 5.2 in
more detail. In the next proposition we describe a different connection
between N, and E(Q). We shall use the following notation: if G is
an abelian group and m > 2, then the points of G of order dividing
m will be denoted by G[m].

Proposition 2.6.15 ([Sil86], Ch. VII, Prop. 3.1). Let E/Q be an
elliptic curve, p a prime number and m a natural number not divisible
by p. Suppose that E/Q has good reduction at p. Then the reduction
map modulo p, _

E(Q)m] — E(F,),
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is an injective homomorphism of abelian groups. In particular, the
number of elements of E(Q)[m] divides the number of elements of
E(Fy).

The previous proposition can be very useful when calculating the
torsion subgroup of an elliptic curve. Let’s see an application:

Example 2.6.16. Let £/Q: y? = 2° +3. In Example 2.6.14 we have
seen that N5 = 6 and N7 = 13, and E/Q has bad reduction only at
2 and 3.

If ¢ # 5,7 is a prime number, then E(Q)[g] is trivial. Indeed,
Proposition 2.6.15 implies that |E(Q)[q]| divides N5 = 6 and also
N7 =13. Thus, |F(Q)[q]| must divide ged(6,13) = 1.

In the case of ¢ = 5, we know that |E(Q)[5]| divides N, = 13.
Moreover, by Lagrange’s theorem from group theory, if E(Q)[p] is
non-trivial, then p divides |E(Q)[p]| (later on we will see that E(Q)[p]
is always a subgroup of Z/pZ x Z/pZ; see Exercise 3.7.5). Since 5
does not divide 13, it follows that E(Q)[5] must be trivial. Similarly,
one can show that E(Q)[7] is trivial, and we conclude that E(Q)sorsion
is trivial.

However, notice that P = (1,2) € E(Q) is a point on the curve.
Since we just proved that E does not have any points of finite order,
it follows that P must be a point of infinite order, and, hence, we have
shown that E has infinitely many rational points: +P, +£2P, +3P,.. ..
In fact, E(Q) = Z and (1,2) is a generator of its Mordell-Weil group.

|

In the previous example, the Nagell-Lutz theorem (Theorem 2.5.5)
would have yielded the same result, i.e., the torsion is trivial, in an
easier way. Indeed, for the curve F : y? = z3 + 3, the quantity
4A° +27B? equals 3°, so the possibilities for y(P)?, where P is a tor-
sion point of order > 3, are 1, 9 or 81 (it is easy to see that there are no
2-torsion points). Therefore, the possibilities for z:(P)? = y(P)? — 3
are —2, 6 or 78, respectively. Since x(P) is an integer, we reach a con-
tradiction. In the following example, the Nagell-Lutz theorem would
be a lengthier and much more tedious alternative, and Proposition
2.6.15 is much more effective.
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Example 2.6.17. Let E/Q : y? = 2% + 4249388. In this case
4A% +27B% =2%.3%.11%2.13% . 172 . 19% . 232,

Therefore, 443 + 2782 is divisible by 192 distinct positive squares,
which makes it very tedious to use the Nagell-Lutz theorem. The
(minimal) discriminant of E/Q is Ap = —16(4A% +27B2) and there-
fore E has good reduction at 5 and 7. Moreover, B = 4249388 =
3 mod 35 and therefore, by our calculations in Example 2.6.16, N5 = 6
and N; = 13. Thus, Proposition 2.6.15 and the same argument we
used in Ex. 2.6.16 show that the torsion of F(Q) is trivial.
Incidentally, the curve E/Q : y? = x> + 4249388 has a rational
point P = (%7 %). Since the torsion of E(Q) is trivial, P
must be of infinite order. Another way to see this: since P has
rational coordinates that are not integral, the Nagell-Lutz theorem
implies that the order of P is infinite. In fact, E(Q) is isomorphic to
Z and it is generated by P. [ ]

2.7. The rank and the free part of F(Q)

In the previous sections we have described simple algorithms that de-
termine the torsion subgroup of F(Q). Recall that the Mordell-Weil
theorem (Thm. 2.4.3) says that there is a (non-canonical) isomor-
phism
E(Q) = E(Q)torsion ® ZRE-

Our next goal is to try to find Rp generators of the free part of the
Mordell-Weil group. Unfortunately, no algorithm is known that will
always yield such free points. We don’t even have a way to determine
Rp, the rank of the curve, although sometimes we can obtain upper
bounds for the rank of a given curve E/Q (see, for instance, Theorem
2.7.4 below).

Naively, one could hope that if the coeflicients of the (minimal)
Weierstrass equation for F/Q are small, then the coordinates of the
generators of E(Q) should also be small, and perhaps a brute force
computer search would yield these points. However, Bremner and
Cassels found the following surprising example: the curve 32 = 23 +
877z has rank equal to 1 and the z-coordinate of a generator P is

z(P) = (612776083187947368101/78841535860683900210)>.
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However, Serge Lang salvaged this idea and conjectured that for all
€ > 0 there is a constant C, such that there is a system of generators
{P;:i=1,...,Rg} of E(Q) with

h(P) < C.-|Ap|Y?*e,

where % is the canonical height function of E/Q, which we define next.
Lang’s conjecture says that the size of the coordinates of a generator
may grow exponentially with the (minimal) discriminant of a curve

E/Q.

Definition 2.7.1. We define the height of ™ € Q, with ged(m,n) =
1, by

h (%) = log(max{|m], n]}).

This can be used to define a height on a point P = (z, y) on an elliptic
curve £/Q, with z,y € Q by

Note: here 2VV. P means multiplication in the curve, using the addition
law defined in Section 2.4, i.e.,2- P =P + P, 22. P = 2P + 2P, etc.



46 2. Elliptic curves

Example 2.7.2. Let E : 4% = 22 + 877z, and let P be a generator

of E(Q). Here are some values of 3 - %ﬂ:
1
5 H(P) = 47.8645312628. ..
% . # —  47.7958126219. ..
1 H(2%2-P)
T < 47.9720107996 . . .
1 H(2®-P)
3 B = 47.9636902383 ...
1 H((2*-P) .
3 T = 47.9901607777 ...
1 H(2°-P
3 ( e ) = 47.9901600133...
1 H(2°-P) .
3 G = 47.9901569227 ...
1 H(@2"-P) .
3 G = 47.9901419861 ...
1 H(2%-P)
5 I 47.9901807594 . . ..
The limit is in fact equal to E(P) = 47.99018599309..., well below the
value |Ap|'/? = 207,773.12.... |

The canonical height enjoys the following properties and, in fact,
the canonical height is defined so that it is (essentially) the only height
that satisfies these properties:

Proposition 2.7.3 (Néron-Tate). Let E/Q be an elliptic curve and
let h be the canonical height on E.

(1) For all P,Q € E(Q), h(P+Q)+h(P—Q) = 2h(P)+2h(Q).
(Note: this is called the parallelogram law.)

(2) ForallP € E(Q) andm € Z, TL(mP) = m2~ﬁ(P). (Note: in
particular, the height of mP is much larger than the height
of P, for any m #0,1.)

(3) Let P € E(Q). Then E(P) >0, and E(P) =0 if and only if
P is a torsion point.
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For the proofs of these properties, see [Sil86], Ch. VIII, Thm.
9.3, or [Mil06], Ch. IV, Prop. 4.5 and Thm. 4.7.

As we mentioned at the beginning of this section, we can calculate
upper bounds on the rank of a given elliptic curve (see [Sil&86], p. 235,
exercises 8.1, 8.2). Here is an example:

Theorem 2.7.4 ([Loz08]|, Prop. 1.1). Let E/Q be an elliptic curve
given by a Weierstrass equation of the form

E:y? =2+ Az? + Bz, with A,B € 7.

Let R be the rank of E(Q). For an integer N > 1, let v(N) be the
number of distinct positive prime divisors of N. Then

Rp <v(A? —4B) +v(B) — 1.

More generally, let E/Q be any elliptic curve with a non-trivial point
of 2-torsion and let a (resp. m) be the number of primes of additive
(resp. multiplicative) bad reduction of E/Q. Then

R <m+42a-—1.

Example 2.7.5. Pierre de Fermat proved that n = 1 is not a con-
gruent number (see Example 1.1.2) by showing that % +y* = 22 has
no rational solutions. As an application of the previous theorem, let
us show that the curve

E1:y2::1:3—3::a:(:1:—1)(1:+1)

only has the trivial solutions (0,0), (£1,0), which are torsion points
of order 2. Indeed, the minimal discriminant of E; is Ap, = 64.
Therefore p = 2 is the unique prime of bad reduction. Moreover, the
reader can check that the reduction at p = 2 is multiplicative. Now
thanks to Theorem 2.7.4 we conclude that Rg, = 0 and E; only has
torsion points. Finally, using Proposition 2.6.15 or Theorem 2.5.5,
we can show that the only torsion points are the three trivial points
named above. ]

Example 2.7.6. Let E/Q be the elliptic curve y? = z(z + 1)(z +
2), which already appeared in Example 1.1.1. Since the Weierstrass
equation of E is

v =z(z+1)(z+2) = 2% + 322 + 2z,
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it follows from Theorem 2.7.4 that the rank Rg satisfies
Rp <v(A> —4B)4+v(B)—1=v(1)+v(2)-1=0+1-1=0,
and therefore the rank is 0. The reader can check that

E(Q)torsion = {Oa (0> 0)7 (_17 0)7 (_23 0)}

Since the rank is zero, the four torsion points on F/Q are the only
rational points on F. [ ]

Example 2.7.7. Let E : y2 = 22 + 230822 + 6658582. The primes 2
and 577 are the only prime divisors of (both) B and A? — 4B. Thus,

Rp <v(A> —4B)4+v(B)-1=2+2-1=3.

The points P, = (—1681,25543), P> = (—338,26), and P; = (577/16,
332929/64) are of infinite order and the subgroup of E(Q) generated
by Pi, P, and P; is isomorphic to Z3. Therefore, the rank of E is
equal to 3. [ ]

2.8. Linear independence of rational points

Let E/Q be the curve defined in Example 2.7.7. We claimed that
the subgroup generated by the points P; = (—1681,25543), P» =
(—338,26), and P35 = (577/16,332929/64) is isomorphic to Z*. But
how can we show that? In particular, why is P3 not a linear combi-
nation of P; and P»? In other words, are there integers ny and no
such that Ps = n1 Py + naPe? In fact, E/Q has a rational torsion
point T' = (0, 0) of order 2, so could some combination of Py, P, and
Pj equal T? This example motivates the need for a notion of linear
dependence and independence of points over Z.

Definition 2.8.1. Let F/Q be an elliptic curve. We say that the
rational points Pi,..., P, € E(Q) are linearly dependent over Z if
there are integers ny,...,n, € Z such that

P +noPy 4 40y Py =T,

where T is a torsion point. Otherwise, if no such relation exists, we
say that the points are linearly independent over Z.
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Example 2.8.2. Let E/Q : y? = 2® + 2% — 25z + 39 and let

61 469 335 6868
P1 = <Z7?) 5 P2 — (ﬁ’m) k] P3 - (21796)

The points Py, P, and P are rational points on E and linearly de-
pendent over Z because

—3P, — 2P, +6P;=0.
|

Example 2.8.3. Let E/Q : y? +y = 2% — 22 — 26790z + 1696662 and

put
625 15625 /)’
Py, — (101307506181,30548385002405573)
210337009 3050517641527

The points P, and P, are rational points on E, and they are linearly
dependent over Z because

—3P) + 2P, = (133, —685),

and (133, —685) is a torsion point of order 5. ]

Now that we have defined linear independence over Z, we need
a method to prove that a number of points are linearly independent.
The existence of the Néron-Tate pairing provides a way to prove in-
dependence.

Definition 2.8.4. The Néron-Tate pairing attached to an elliptic
curve is defined by

() BQ) x BE(Q) =R, (P,Q)=h(P+Q)—hP)—hQ),

where h is the canonical height on E. Let Py, Ps, ..., P, be r rational
points on E(Q). The elliptic height matriz associated to {P;};_; is

H=H{Pi}iy) = (P P))i<isr, 1<5<r
The determinant of H is called the elliptic regulator of the set of
points {P;}7_;. If {P;}/_; is a complete set of generators of the free
part of E(Q), then the determinant of H({P;};_,) is called the elliptic
requlator of E/Q.
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Theorem 2.8.5. Let E/Q be an elliptic curve. Then the Néron-Tate
pairing {-,-) associated to E is a non-degenerate symmetric bilinear

fOTm on E(Q)/E(Q)torsion; i.e.,

(1) Por all P.Q € E(Q), (P,Q) = (@, P).
(2) For all P,Q,R € E(Q) and all m,n € Z,

(P,mQ + nR) = m(P,Q) + n(P, R).

(3) Suppose P € E(Q) and (P,Q) =0 for all Q € E(Q). Then
P € E(Q)torsion- In particular, P is a torsion point if and
only if (P, P) = 0.

The properties of the Néron-Tate pairing follow from those of the
canonical height in Proposition 2.7.3 (see Exercise 2.12.12). Theorem
2.8.5 has the following important corollary:

Corollary 2.8.6. Let E/Q be an elliptic curve and let Py, Ps, ..., P, €
E(Q) be rational points. Let H be the elliptic height matriz associated
to {P;}i_,. Then:

(1) Suppose det(H) = 0 and u = (n1,...,n,) € Ker(H), with
n; € Z. Then the points {P;}7_, are linearly dependent and
> i1 mkPr =T, where T is a torsion point on E(Q).

(2) Ifdet(H) # 0, then the points {P;}I_, are linearly indepen-
dent and the rank of E(Q) is > r.

Here is an example of how the Néron-Tate pairing is used in
practice:

Example 2.8.7. Let E/Q be the elliptic curve 32 = z° + 230822 +
665858z. Put

(—1681,25543), Q = (—338,26), and
(332929 215405063
N 36 216 ’
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Are P, Q and R independent? In order to find out, we find the elliptic
height matrix associated to {P, @, R}, using PARI or Sage:

(P,P) (Q,P) (R,P)

H o= | (PQ) (@Q) (RQ)
(P,R) (Q R) (R R)
7.397... —3.601... 3.795...
= | -3601... 6.263... 2.661...
3.795...  2.661... 6.457...

The determinant of H seems to be wvery close to 0 (PARI returns
3.368 - 10727). Hence Cor. 2.8.6 suggests that P, @ and R are not
independent. If we find the (approximate) kernel of H with PARI, we
discover that the (column) vector (1,1,—1) is approximately in the
kernel, and therefore, P 4+ (Q — R may be a torsion point. Indeed, the
point P4+Q — R = (0,0) is a torsion point of order 2 on E(Q). Hence,
P, @ and R are linearly dependent over Z.

Instead, let P, = (—1681,25543), P, = (—338,26), a third point
P; = (577/16,332929/64) and let H' be the elliptic height matrix
associated to {P;}3_;. Then det(H') = 101.87727... is non-zero and,
therefore, {P;}3_, are linearly independent and the rank of E/Q is at
least 3. [ |

2.9. Descent and the weak Mordell-Weil
theorem

In the previous sections we have seen methods to calculate the torsion
subgroup of an elliptic curve E/Q, and also methods to check if a
collection of points are independent modulo torsion. However, we
have not discussed any method to find points of infinite order. In this
section, we briefly explain the method of descent, which facilitates the
search for generators of the free part of E(Q). Unfortunately, the
method of descent is not always successfull We will try to measure
the failure of the method in the following section. The method of
descent (as explained here) is mostly due to Cassels. For a more
detailed treatment, see [Was08] or [Sil86]. A more general descent
algorithm was laid out by Birch and Swinnerton-Dyer in [BSD63].
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The current implementation of the algorithm is more fully explained
in Cremona’s book [Cre97].

Let E/Q be a curve given by y? = 23 + Az + B, with A, B € Z.
The most general case of the method of descent is quite involved,
so we will concentrate on a particular case where the calculations
are much easier: we will assume that E(Q) has 4 distinct rational
points of 2-torsion (including O). As we saw before (Theorem 2.5.5,
or Exercise 2.12.6), a point P = (z,y) € E(Q) is of 2-torsion if and
only if y = 0 and 2° + Az + B =0 (or P = ©). Thus, if E(Q) has 4
distinct rational points of order 2, that means that 23 + Az + B has
three (integral) roots and it factors completely over Z:

22+ Az + B = (z —e1)(x —es)(x — e3)
with e; € Z. Since x3+ Az + B does not have an 2 term, we conclude
that e; +e5 +e3 =0.

Suppose, then, that E : y? = (z — e1)(x — e2)(x — e3), where the
roots satisfy e; € Z and e; + es + e3 = 0. We would like to find a
solution (z9,yo) € E with zg,y0 € Q, i.e.,

g = (zo — e1)(xo — €2) (0 — e3).

Thus, each term (xo — e;) must be almost a square, and we can make
this precise by writing

(0 — e1) = au?, (zo — e3) = b2, (xg — e3) = cw?, y2 = abe(uvw)?,

where a, b, c,u,v,w € Q, the numbers a,b,c € Q are square-free, and
abe is a square (in Q).

Example 2.9.1. Let
E:y? = 2% — 5562 4 3120 = (z — 6)(x — 20)(z + 26)

so that e = 6, es = 20 and e3 = —26. The point (zg,y0) =
(164184 66469980 5 rational and on . We can write

289 4913
164184 285 2
rg—€g=—m—-6=2-

289 7
and, similarly, zg — ex = (% 2 and g —e3 = 2 - (%)2. Thus,
following the notation of the preceeding paragraphs
285 398 293
a=2,b=1¢=2, u= = — =

BT T T
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Notice that abe is a square and y3 = (6618?380)2 = abc(uvw)?. [ |

Example 2.9.2. Let E : 42 = 23 — 556z + 3120 as before, with
e;1 = 6, eo = 20 and e3 = —26. Let P = (—8,84), @ = (24,60) and
S =P+Q = (-2, —523) The points P, Q and S are in E(Q). We
would like to calculate the aforementioned numbers a, b, ¢ for each of

the points P,Q and S. For instance

z(P)—e = —-8—6=-14=—14-12
t(P)—ey = —T7-4% and z(P)—e3=2-3°
Thus, ap = —14, bp = —7 and cp = 2. Similarly, we calculate
z(@Q)—6 = 2-3% 2(Q)—-20=2% 2(Q)+26=2-5
2
7
—6 = —7-(=
x(S) 7 (4) ,
2 2
9 13

Thus ag =2, bg =1, cg =2, and ag = -7, bg = -7, cg = 1.
Notice the following interesting fact:

ap-aQ:—28:—7-22, bp-bQ=—7, Cp-CQ:4.

Therefore, the square-free part of ap - ag equals as = apyg = —7.
And similarly, the square-free parts of bp-bg and cp-cg equal bg = —7
and c¢g = 1, respectively. Also, the reader can check that asp = bop =
cop = 1 and azg = bag = c2g = 1. |

The previous example points to the fact that there may be a ho-
momorphism between points on E(Q) and triples (a, b, c) of rational
numbers modulo squares, or square-free parts of rational numbers;
formally, we are talking about Q* /(Q*)% x Q* /(Q*)% x Q*/(Q*)2.
Here, the group Q*/(Q*)? is the multiplicative group of non-zero
rational numbers, with the extra relation that two non-zero rational
numbers are equivalent if their square-free parts are equal (or, equiv-
alently, if their quotient is a perfect square). For instance, 3 and 5—?
represent the same element of Q* /(Q*)? because 12 = 3. (%)2 The
following theorem constructs such a homomorphism. Here we have
adapted the proof that appears in [Was08], Theorem 8.14.
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Theorem 2.9.3. Let E/Q be an elliptic curve
Y =22+ Az + B = (z —e1)(z — e2)(z — e3)

with distinct ey, es,e3 € Z and ey +ex+ ez = 0. There is a homomor-
phism of groups

§: B(Q) —» Q*/(Q)* x Q/(Q*)* x Q*/(Q*)?
defined for P = (x9,yo) by

(1,1,1) if P=0;

(To — e1,z0 — €2, — €3) if yo # 0;
0(P) = ¢ ((e1 —e2)(e1 —e3),e1 —ea,e1 —e3)  if P = (e1,0);

(e2 —e1,(e2 —e1)(ea —e3),ea —e3) if P = (e2,0);

(es —e1,e3 —ea,(es —e1)(es —ea)) if P = (es,0).

If 5(P) = (61,02,03), then 01 -62-03 = 1 in Q* /(Q*)2. Moreover, the
kernel of ¢ is precisely 2E(Q); i.e., if 6(Q) = (1,1,1), then Q = 2P
for some P € E(Q).

Proof. Let § be the function defined in the statement of the theorem.
Let us show that ¢ is a homomorphism of (abelian) groups; i.e., we
want to show that §(P) - 6(Q) = 6(P + Q). Notice first of all that
0(P) = d6(xo,y0) = 6(xo,—yo) = 6(—DP), because the definition of
0 does not depend on the sign of the y coordinate of P (in fact, it
only depends on whether y(P) = 0). Thus, it suffices to prove that
0(P)-0(Q) =6(—(P+Q)) for all P,Q € E(Q).

Let P = (anyO): Q = ($1,y1) and R = _(P+ Q) = (l‘g,yg),
and let us assume, for simplicity, that y; # 0 for i = 1,2,3. By the
definition of the addition rule on an elliptic curve (see Figure 2), the
points P, Q and R are collinear. Let £ = PQ be the line that goes
through all three points, and suppose it has equation £ : y = ax + b.
Therefore, if we substitute y in the equation of E/Q, we obtain a
polynomial

p(x) = (ax +b)% — (v —e1)(x — ea)(w — e3).

The polynomial p(z) is cubic, its leading term is —1, and it has pre-
cisely three rational roots, namely zy, 1 and x2. Hence, it factors:

p(x) = (az+b)* = (z—e1)(z —ea)(x—e3) = —(x—x0) (& —21)(x —2).
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If we evaluate p(x) at = e;, we obtain
plei) = (ae; +0)* = —(e; — wo)(e; — w1)(e; — w2)
or, equivalently, (o — ¢;)(71 — ¢;)(72 — ¢;) = (ae; + b)?. Thus, the
product 6(P) - 6(Q) - §(R) equals
0(P)-0(Q)-6(R) = (wo—e1,m0— €2,70 — €3)
(x1 —e1,x1 — eg, 1 — €3)
(22 — 1,22 — €2,22 — €3)
( )1 —e1)(x2 —e1),
(zo — e2)(z1 — e2)(z2 — e2),
(zo —e3)(z1 — es)(x2 — €3))
= ((ae; +b)?, (aes + b)?, (ae3 + b)?)
(1,1,1) € (/@)%
Hence, §(P) - 0(Q) - §(R) = 1. If we multiply both sides by 6(R) and
notice that a? = 1 for any a € Q% /(Q*)2, we conclude that
§(P)-6(Q) =4(R) =6(=(P+Q)) =6(P+Q),
as desired. In order to completely prove that ¢ is a homomorphism,
we would need to check the cases when P, Q or R is one of the points

(e4,0) or O, but we leave those special cases for the reader to check
(Exercise 2.12.15).

If §(P) = (01, d2,03), then it follows directly from the definition
of § that 61 - 62 - 93 = 1 in Q*/(Q*)2. Indeed, this is clear for
P =0or P = (e,0), and if P = (xo,y0) with yo # 0, then (xg —
e1)(wo — e2)(wo — e3) = y&, which is a square, and is therefore trivial
in Q*/(Q7).

Next, let us show that the kernel of § is 2E(Q). Clearly, 2E(Q)

is in the kernel of §, because § is a homomorphism with image in
(Q@*/(Q*)?)3, as we just proved. Indeed, if P € E(Q), then

3(2P) = 6(P) - 8(P) = 6(P)* = (67,63, 63) = (1, 1,1),

because squares are trivial in Q* /(Q*)2.

Now let us show the reverse inclusion, i.e., that the kernel of ¢
is contained in 2E(Q). Let Q = (x1,y1) € E(Q) such that 6(Q) =
(1,1,1). We want to find P = (¢, yo) such that 2P = @Q. Notice that
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it is enough to show that x(2P) = z1, because 2P is a point on E(Q)

and if z(2P) = z(Q), then @Q = 2(£P). Hence, our goal will be to

construct (zo,yo) € F(Q) such that

a§ — 2Axf — 8Bag + A2
4y3 -

The formula for #(2P) above is given in Exercise 2.12.16.

z(2P) =

Zy.-

Once again, for simplicity, let us assume y(Q) = y1 # 0 and, as
stated above, we assume (@) = (1,1,1). Hence, 1 — ¢; is a square
in Q for i = 1,2,3. Let us write
(2.9) w1 —e; =2, for some t; € Q.

We define a new auxiliary polynomial p(z) by
@oelae) |, @oedo—e) |, @-e)a-e)
1 .

(e1—e2)(ex —e3)  “(ez—er)(e2—e3)  "(e3—e1)(es —e2)
The polynomial p(z) is an interpolating polynomial (or Lagrange
polynomial) which was defined so that p(e;) = ¢;. Notice that p(z) is

a quadratic polynomial, say p(x) = a + bx + cx?. Also define another
polynomial ¢(z) = x; — z — p(z)? and notice that

qle)) =x1 —e; —ple))> =x1 —e; — 12 =0
from the definition of ¢; in Eq. (2.9). Since ¢(e;) = 0, it follows that
(z — e;) divides g(z) for i = 1,2,3. Thus, (x —e1)(x — e2)(z — e3) =
x3 4+ Az + B divides g(z). In other words, ¢(x) = 0 mod =3+ Az + B.
Since ¢(z) = 1 — 2 — p(x)?, we can also write

) — 2 =p(z)? = (a+ bz + cx?)? mod (22 + Az + B).

We shall expand the square on the right-hand side, modulo f(z) =
23 + Az + B. Notice that 2> = —Ax — B, and z* = —Az?> — Bz
modulo f(z):

p(z)? = (a+ bz + cx?)?

= At 4 2bea® + (2ac + V2?4 2abx + a®
= *(—Ax? — Bx) + 2bc(—Ax — B)

+(2ac + b*)x? + 2abx + a*

(2ac + b* — Ac?)z?

+(2ab — Bc? — 24bc)x + (a® — 2bcB),

r1 —
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where all the congruences are modulo f(z) = 2® + Az + B. The
congruences in the previous equation say that a polynomial of degree
1, call it g(z) = z1 — z, is congruent to a polynomial of degree <
2, call the last line h(z), modulo a polynomial of degree 3, namely
f(x). Then h(z) — g(x) is a polynomial of degree < 2, divisible by a
polynomial of degree 3. This implies that h(z) — g(x) must be zero
and h(z) = g(x), ie.,

r) — 2 = (2ac + b* — Ac?)z? + (2ab — Bc? — 2Abc)x + (a® — 2beB).

If we match coefficients, we obtain the following equalities:

(2.10) 2ac +b* — A2 = 0,
(2.11) 2ab — Bc® —2Abc = 1,
(2.12) a’? —2bcB = u.

If ¢ = 0, then b = 0 by Eq. (2.10); therefore, p(z) = a + bx + cx? = a
is a constant function, and so t; = to = t3. By Eq. (2.9), it follows
that e; = ey = e3, which is a contradiction with our assumptions.
Hence, ¢ must be non-zero. We multiply Eq. (2.11) by % and Eq.
(2.10) by & to obtain

C

2ab 24b 1
2.13 e
(2.13) = - =
3
(2.14) 2ab b0 Ab )

We subtract Eq. (2.13) from Eq. (2.14) to get:

(2) () =-(2)"

b1

Hence, the point P = (79,%0) = (¢, ) is a rational point on E(Q).

It remains to show that z(2P) = x(Q). From Eq. (2.14) we deduce
that

A

2

g & & _ _ A-10

- 2 - 1 - ’
—S 2.2 2yo

S
‘:|0~
o w
b
I
—~
oI
~—

M
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and, therefore, substituting a in Eq. (2.12) yields

2
(A_m%> — 2bcB

2(Q) = 21 = a® — 2bcB

290

_ (A2 — QAx% + xé) — (2ch)(4y(2))
42

_ (A% —2A22 + 23) — (2ch)(c%)
42

(A% —2A4xF + 23) — 8Bxy

a y?

49422 — 8B: A2
4yg

as desired. In order to complete the proof of the fact that the kernel of
6 is 2E(Q), we would need to consider the case when y(Q) = y1 =0,
but we leave this special case to the reader (Exercise 2.12.18). [ |

Thus, the previous proposition shows that there is a homomor-
phism § : E(Q) — (Q*/(Q*)?)3 with kernel equal to 2E(Q). In fact,
the theorem shows that there is a homomorphism from E(Q) into

I = {(61,82,83) € (Q*/(Q*)*)?: 61- 0265 =1 € Q*/(Q*)*}.
Hence, § induces an injection
E(Q)/2E(Q) = T  (Q*/(Q¥)*)°.

The groups Q*/(Q*)? and I' are infinite, so such an injection does
not tell us much about the size of E(Q)/2E(Q). However, the image
of £(Q)/2E(Q) is much smaller than T

Example 2.9.4. Let E : y? = x> — 556z + 3120 as in Example 2.9.2.
It turns out that E(Q) = Z/27 & 7./27 © Z2. The generators of the
torsion part are T3 = (6,0) and 75 = (20,0), and the generators of
the free part are P = (—8,84) and @ = (24,60). The image of the
map § in this case is, therefore, generated by the images of Ty, T, P

and Q.

o) = (=7,-14,2), 6(T>) = (14,161, 46),
5(P) = (-14,-7,2), 4(Q)= (27 172)'
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Thus, the image of ¢ is formed by the 16 elements that one obtains
by multiplying out §(711), 6(T3), 6(P) and 6(Q), in all possible ways.
Thus, §(F(Q)/2E(Q)) is the group:

{(1,1,1), (—7,-14,2), (14,161,46), (—2,—46,23),

(—14,-7,2), (2,2,1), (—1,-23,23), (7,322,406),

(2,1,2), (—14,-14,1), (7,161,23), (—1,—46,46),

(=7,-7,1), (1,2,2), (—2,—23,46), (14,322,23)}.
(Exercise: Check that the elements listed above form a group under
multiplication.) We see that the only primes that appear in the fac-
torization of the coordinates of elements in the image of § are: 2,7

and 23. Therefore, the coordinates of 4 are not just in Q* /(Q*)? but
in a much smaller subgroup of 16 elements:

IV = {£1, 42, +£7, £23, +14, +46, +161, +322} C Q* /(Q*)>.
And the image of E(Q)/2E(Q) embeds into

FA = {((51,(52,53) S R R 51 . 52 . (53 =1€ QX/(QX)z}

c I"'xI'xTI

Since T” has 16 elements and E(Q)/2E(Q) embeds into (I')3, we
conclude that E(Q)/2E(Q) has at most (16)3 = 2!2 elements. In fact,
I'a has only 162 elements, so E(Q)/2E(Q) has at most 2% elements.
Notice also the following interesting “coincidence”: the prime divisors
that appear in I' A coincide with the prime divisors of the discriminant
of B, which is Ag = 6795034624 = 2!8.72.232, In the next proposition
we explain that, in fact, this is always the case. ]
Proposition 2.9.5. Let E : y?> = (r—e1)(z—e2)(x—e3), with e; € Z.
Let P = (zo,y0) € E(Q) and write
(zo — 1) = au?, (xg —e2) = bv?, (xg —e3) = cw?, yg = abc(uvw)z,
where a,b,c,u,v,w € Q, the numbers a,b,c € Z are square-free, and
abe is a square (in Z). Then, if p divides a-b- ¢, then p also divides
the quantity A = (e; — ea)(ea — e3)(e1 — e3).

Note: the discriminant of E equals Agp = 16(e; — e3)%(ex —
e3)?(e; —e3)?. So a prime p divides A if and only if p divides Ap. If
p > 2, then this is clear (see Exercise 2.12.19 for p = 2).
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Proof. Suppose a prime p divides abc. Then p divides a, b or c. Let us
assume that p | a (the same argument works if p divides b or ¢). Let p*
be the exact power of p that appears in the factorization of the rational
2. Notice that k& may be positive or negative,
depending on whether p divides the numerator or denominator of
au?. Notice, however, that k must be odd, because p | a, and a is

square-free.

number g — e = au

Suppose first that k& < 0, i.e., p/¥l is the exact power of p that
divides the denominator of xy — e;. Since e; € Z, it follows that
p!*l must divide the denominator of zo too, and therefore pl*! is the
exact power that divides the denominators of xg — es and xzg — e3 as
well. Hence, p?l*l is the exact power of p dividing the denominator
of y3 = [[(xo — ¢;), but this is impossible because yZ is a square and
3|k| is odd. Thus, k must be positive.

If K > 0 and p divides ¢y — e1, then the denominator of zy is
not divisible by p, so it makes sense to consider xy mod p, and zy =
e; mod p. Similarly, the denominators of xg — es and xy — e3 are not
divisible by p and

bl=z9—es=e; —es, and cw?=z9—e3=e; —e3modp.

Since y3 = abc(uvw)? and p divides a, then p must also divide one
of b or ¢. Let’s suppose it also divides b. Then 0 = bv? = 29 — ey =
e; —esmod p and A = (e; — ez)(ea — e3)(e; — e3) = 0 mod p, as
claimed. ]

The definition of the map § and the previous proposition yield
the following immediate corollary:

Corollary 2.9.6. With notation as in the previous Theorem and
Proposition, define a subgroup I of Q% /(Q*)? by

I"={n€Z:0+#n is square-free and if p | n, then p | A}/(Z*)%.
Then, & induces an injection of E(Q)/2E(Q) into
Pa = {(61,02,03) e I x T/ x T :6,-85-03 =1 € Q*/(Q*)?}
C I"xI"xI'
We are ready to prove the weak Mordell-Weil theorem (Thm.
2.4.5), at least in our restricted case:
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Corollary 2.9.7 (Weak Mordell-Weil theorem). Let E : y*> = (z —
e1)(xz—ez)(x—es) be an elliptic curve, withe; € Z. Then E(Q)/2E(Q)
1s finite.

Proof. By Cor. 2.9.6, E(Q)/2E(Q) injects into I'a C I'V x IV x I".
Since I' is finite, £(Q)/2E(Q) is finite as well. [ |

2.10. Homogeneous spaces

In this section we want to make the weak Mordell-Weil theorem ex-
plicit, i.e., we want:
e explicit bounds on the size of E(Q)/2E(Q), and
e a method to find generators of E(Q)/2E(Q) (see Exercise
2.12.25, though).

Before we discuss bounds, we need to understand the structure
of the quotient F(Q)/2E(Q). Remember that, from the Mordell-Weil
theorem (Thm. 2.4.3), B(Q) 2 T @ Z%# where T = E(Q)orsion 1S &
finite abelian group. Therefore,

E(Q)/2E(Q) 2 T/2T & (Z/2Z)"".
In our restricted case, we have assumed all along that F(Q) contains
4 points of 2-torsion, namely O and (e;,0), for ¢ = 1,2,3. And, by
Exercise 2.12.6, E(Q) cannot have more points of order 2. Thus,
T/2T 2 727 & Z/2Z (see Exercise 2.12.20).

Hence, the size of E(Q)/2E(Q) is exactly 2f#%2 under our as-
sumptions. Recall that we defined v(N) to be the number of distinct
prime divisors of an integer N. We prove our first bound:

Proposition 2.10.1. Let E : 4> = (z — e1)(z — e2)(x — e3) be an
elliptic curve, with e; € Z. Then the rank of E(Q) is Rp < 2v(Ag).

Proof. If the quantity Ap has v = v(Ap) distinct (positive) prime
divisors, then we claim that the set

I"={n €Z:0#n is square-free and if p | n, then p | A}/(Z*)?
has precisely 2¥(2#2)+1 elements. Indeed, if Ay = pit - psr, then

I = {(~1)plt - pl i t;=0o0r Lfor i =0,...,v}.
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Thus, TV has as many elements as {(to,...,t,) : t; = 0 or 1}, which
clearly has 2¥*! elements. Moreover, the set I'a, as defined in Corol-
lary 2.9.6, has as many elements as IV x I, i.e., 22V12 elements. Since
E(Q)/2E(Q) injects into I'a, we conclude that it also has at most
22v+2 elements. Since the size of E(Q)/2E(Q) is 2% %2 we conclude
that Rp +2 <2v + 2 and R < 2v, as claimed. [ |

Example 2.10.2. Let
E:y? =2% — 11562 = x(x — 34)(z + 34).
The discriminant of E/Q is Ap = 98867482624 = 212 . 17°. Hence,

v(Ag) = 2 and the rank of E is at most 4. (The rank is in fact 2; see
Example 2.10.4 below.) [ |

The bound Rg < 2v(Ag) is, in general, not very sharp (The-
orem 2.7.4 is an improvement). However, the method we followed
to come up with the bound yields a strategy to find generators for
E(Q)/2E(Q) as follows. Recall that E(Q)/2FE(Q) embeds into T'a
via the map §, so we want to identify which elements of ' may
belong to the image of §. Suppose (d1,02,03) € I'a belongs to the
image of ¢ and it is not the image of a torsion point. Then there
exists P = (zo,%0) € F(Q) such that:

y(2) = (20 — €1)(z0 — €2)(z0 — €3),

xo — €1 = 0u?,

Ty — ez = Jov2,

To — e3 = dgw?
for some rational numbers u, v, w. We may substitute the last equa-
tion in the previous two, and obtain

€3 —e1 = 51u2 — 5311}2,

€3 — €y — (52’1)2 — 53’[02.
Recall that the elements (41, 2, 03) that are in the image of § satisfy
81 - 89 - 83 = 1 modulo squares. Thus, d5 = d; - d2 - A? and if we do a
change of variables (u,v,w) — (X,Y, %), we obtain a system
€3 — €1 = 51X2 — (5152Z2,

C(61,09) :
(1 2) {63—62:52Y2—(51(52Z2,
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or, equivalently, one can subtract both equations to get

€1 — €y = 52Y2 — 51X2,

C(61,02) :
(1 2) {63—62:52Y2—(51(5222.

The space C(d1, d2) is the intersection of two conics, and it may have
rational points or not. If (d71,d2,4d3) is in the image of §, however,
then the space C(01,d2) must have a rational point; i.e., there are
X,Y,Z € Q that satisfy the equations of C(01,d2). Moreover, if
Xo, Yo, Zo € Q are the coordinates of a point in C'(d1, d2), then

(2.15) P = (61 + (leg, 5152XOYOZ0)

is a rational point on E(Q) such that 6(P) = (41, d2,03). The spaces
C(01,02) are called homogeneous spaces and are extremely helpful
when we try to calculate the Mordell-Weil group of an elliptic curve.
We record our findings in the form of a proposition, for later use:

Proposition 2.10.3. Let E/Q be an elliptic curve with Weierstrass
equation y? = (x—e1)(z—ez)(z—e3), withe; € Z and ey +ez+ez = 0.
Let 6 : E(Q)/2E(Q) < 'a be the injection given by Corollary 2.9.7,
and let §(F) := 0(E(Q)/2E(Q)) be the image of § in Ta. Then:

(1) If (61,02,03) € 6(E), then the space C(d1,02) has a point
(Xo. Yo, Zo) with rational coordinates, Xo, Yo, Zo € Q.

(2) Conversely, if C(61,02) has a rational point (Xo, Yo, Zo),
then E(Q) has a rational point

P = (61 + 51X§, 5152X0YQZQ).

(3) Since 6 is a homomorphism and 6(F) is the image of 0, it
follows that 6(F) is a subgroup of Ta. In particular:

o [f (01,02,03) and (8%, 05,08%) are elements of the image,
then their product (01 - 87, 204, ds-0%) is also in the
mage;

° If (51,52,53) € 5(E) but (5&,5’2,5{3) € I'a is not in the
image, then their product (61 -0, do- 8%, d3-0%) is not
in the image 6(E);

o If C(61,02) and C(81,8%) have rational points, then
C(d1 - 97, d2-8%) also has a rational point;
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e IfC(41,02) has a rational point but C(87,045) does not
have a rational point, then C (4 -6}, 0o -d5) does not
have a rational point.

Example 2.10.4. Let E : y? = 2® — 11562 = x(x — 34)(x + 34). The
only divisors of Ag are 2 and 17. Thus, IV = {£1,£2,£17, +£34}. Let
us choose e; = 0, e = —34 and e3 = 34. Therefore, the homogeneous
spaces for this curve are all of the form

5 Y2 — 5, X2 =34,

C(01,02) :
(81,02) {52Y2—5162Z2=68

with 1,8, € TV. We analyze these spaces, case by case. There are 64
pairs (01, d2) to take care of:

(1) ((d1,02,063) = (1,1,1)). The point at infinity (i.e., the origin)
is sent to (1,1,1) via 4, i.e., 6(O) = (1,1,1).

(2) (61 < 0 and 2 < 0). The equation 62Y? — §;6522 = 68
cannot have solutions (in Q or R) because the left-hand side
is always negative for any X, 7 € Q.

(3) (01 > 0 and &5 < 0). The equation Y2 — §; X2 = 34
cannot have solutions (in Q or R), because the left-hand
side is always negative.

(4) (64 = —1, 62 = 34). The space C(—1,34) has a rational
point (X,Y,Z) = (0,1,1), which maps to 71 = (0,0) on
E(Q) via Eq. (2.15).

(5) (61 = —34, d3 = 2). The space C(—34,2) has the rational
point (X,Y,Z) = (1,0,1), which maps to T = (—34,0) on
E(Q) via Eq. (2.15).

(6) (01 =34, 5o =17). If §(T1) = 6((0,0)) equals (—1, 34, —34),
and 6(Tz) = (—34,2,—17), then
S(Th +To) = 6(T1)-0(Ts) = (—1,34, —34)- (—34,2, —17) = (34,17, 2).

Thus, the space C(34,17) must have a point that maps
back to Ty + To = (34,0). Indeed, C(34,17) has a point
(X,Y,Z) = (1,2,0) that maps to (34,0) via Eq. (2.15).
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(7)

(01 = =1, 92 = 2). The space C(—1,2) has a rational point
(X,Y,Z) = (4,3,5), which maps to P = (—16,—120) on
E(Q) via Eq. (2.15). P is a point of infinite order.

(8) ((61,02) = (1,17), (34,1), or (—34,34)). These are the pairs
that correspond to (—1,2) - ~, with v = (—1,34), (—34,2)
r (34,17). Therefore, the corresponding spaces C(01, d2)
must have rational points that map to P+ 1}, P+ 15 and

P + T, + T>, respectively.

(9) (61 = —2, 63 = 2). The space C(—2,2) has a rational point
(X,Y,Z) = (1,4,3), which maps to @ = (-2, —48) on E(Q)
via Eq. (2.15). @ is a point of infinite order.

(10) ((d1,02) = (2,17), (17,1), or (—17,34)). These are the pairs
that correspond to (—2,2) - v, with v = (—1,34), (—34,2)
r (34,17). Therefore, the corresponding spaces C(d1,d2)
must have rational points that map to Q + 717, Q@ + 75 and
Q + Ty + T, respectively.

(11) ((61,02) = (2,1), and (—2,34), (—17,2), or (17,17)). Since
(—=1,2) and (—2,2) correspond to P and @, respectively,
then (—1,2)-(—=2,2) = (2,1) corresponds to P + @Q. The
other pairs correspond to (—2,2) - «, with v = (-1, 34),
(—34,2) or (34,17). Therefore, the corresponding spaces
C(01, d2) must have rational points that map to P+ Q + 11,
P+ Q+15 and P+ @+ 17 + Tb, respectively.

(12) (01 = 1, 62 = 2). The space C(1,2) does not have ratio-
nal points (see Exercise 2.12.21). In fact, it does not have
solutions in Qs, the field of 2-adic numbers.

(13) ((51762) = (272)7 (1772)7 (3472)7 (_171)7 (_2’1)7 (_1771)»
(=34,1), (=1,17), (=2,17), (—17,17), (—34,17), (1,34),
(2,34), (17,34), (34,34)). The corresponding spaces C(d1, d2)
do not have rational points. For instance, suppose C(2,2)
had a point. Then (2,2,1) would be in the image of 0.
Since (2,1,2) is in the image of § (we already saw above
that C(2,1) has a point), then (2,1,2) - (2,2,1) = (1,2,2)
would also be in the image of §, but we just saw (in the pre-
vious item) that (1,2,2) is not in the image of §. Therefore,
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we have reached a contradiction and C(2,2) cannot have a
rational point. One can rule out all the other (01, J2) in the
list similarly.

We have analyzed all 64 possible pairs (J1, d2) and have found that
the image of E(Q)/2E(Q) via ¢ has order 2*. Therefore, 272 = 24
and Rp = 2. The rank of the curve is exactly 2 and 17,75, P and @
(as found above) are generators of F(Q)/2E(Q). (In fact, they are
generators of E(Q) as well.) [ |

Example 2.10.5. Let E : y? = 2% — 67242 = x(x — 82)(x + 82). Let
e; = 0, eg = —82 and e3 = 82. The only divisors of Ag are 2 and
41, hence T = {41, +2, +41, +82}. Let us analyze the homogeneous
spaces
2 2 _
C(81,82) : {52Y2 0X N 82,
(52Y — (51(52Z‘ =164

as we did in the previous example. Once again, there are 64 pairs to
check:

(1) ((61,02,d3) = (1,1,1)). The point at infinity (i.e., the origin)
is sent to (1,1,1) via 4, i.e., 6(O) = (1,1,1).

(2) (61 < 0 and 62 < 0). The equation §,Y? — ;5,72 = 164
cannot have rational solutions because the left-hand side is
always negative for any X, Z € Q.

(3) (61 > 0 and da < 0). The equation d2Y? —3§; X? = 82 cannot
have rational solutions, because the left-hand side is always
negative.

(4) ((61,02) = (—1,82), (—82,2), (82,41)). The corresponding
spaces have (trivial) rational points that map, respectively,
to 11 = (0,0), T = (—82,0) and 15 =11 + 1> = (82,0) via
Eq. (2.15).

(5) ((61,02) = (1,2)). The space C(1,2) does not have rational
points (same reason as for Exercise 2.12.21). In fact, it does
not have any solutions over Qs.

(6) ((81,02) = (—1,41), (—82,1), (82,82)). The correspond-
ing spaces cannot have rational points, because these ele-
ments of T'a are the product of (1,2,2), with no points,
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times (—1, 82, —82), (—82,2, —41), (82,41, 2), which do have
points by a previous item in this list.

How about all the other possible pairs (d1,02)? Consider (—1,2, —2)
and its homogeneous space:

2?2 4+ X2 =82,
C(-1,2):
2Y2 +272% = 164.
Let us show that there are solutions to C(—1,2) over R, Qg and Qy1:

e (Over R). The point (0,v/41,v/41) is a point on C(—1,2)
defined over R.

o (Over Q41). Let Yy =1 and put f(X) = X2 — 80, g(Z) =
7% —81. By Hensel’s Lemma (see Appendix D.1 and Corol-
lary D.1.2), it suffices to show that there are ay, Sy € Fa1
such that

flap) = g(Bp) =0 mod 41 and f'(a), g'(Bo) # 0 mod 41.

The reader can check that the congruences o = 11 mod 41
and By = 9 mod 41 work. Thus, there are o, 5 € Q4 such
that f(a) = 0 = g(B). Hence, (Xo,Y0,Zo) = (a,1,0) is a
point on C(—1,2) defined over Qq, as desired.

o (Over Qy). Let Xog = 0 and put f(Y) = Y2—41. Let ap = 1.
Then f(ag) = —40, f'(ap) = 82 and

3 = 1p(—40) > 15(82%) = 1,(2? - 41%) = 2.

Thus, by Hensel’s Lemma (Theorem D.1.1; see also Ex-
ample D.1.4), there is @ € Q, such that f(a) = 0, or
a? = 41. Hence, the point (Xo, Yy, Zo) = (0, , ) is a point
on C(—1,2) defined over Q2, as desired.

One can also show that, in fact, C'(—1,2) has a point over Q, for
all p > 2. Therefore, we cannot deduce any contradictions working
locally about whether C(—1,2) has a point over Q. A computer search
does not yield any Q-points on C(—1,2). Therefore, our method
breaks at this point, and we cannot determine whether there is a
point on E(Q) that comes from C(—1,2).

It turns out that C'(—1,2) does not have rational points (but this
is difficult to show). This type of space, a space that has solutions
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everywhere locally (Qp, R) but not globally (Q) is the main obstacle
for the descent method to fully work. [ ]

2.11. Selmer and Sha

In Example 2.10.5, we found a type of homogeneous space that made
our approach to finding generators of E(Q)/2E(Q) break down. In
this section, we study everywhere locally solvable spaces in detail.
Let £ : y?2 = (v —e1)(z — e2)(x — e3) be an elliptic curve with
e; € Z and e; + ez + e3 = 0. Let IV be defined as in Corollary 2.9.7,
ie.:
I ={n €Z:0#n is square-free and if p | n, then p | A}/(Z*)?

where A = (e; — e2)(ea — e3)(e1 — e3). We define H as the following
set of homogenecous spaces:

H = {0(51,52) : (51,(52 S F/}

Some homogeneous spaces in ‘H have rational points that correspond
to rational points on E(Q); see Prop. 2.10.3. Other homogenecous
spaces do not have points (e.g. C(1,2) in Example 2.10.4, or C(—1,2)
in Example 2.10.5). For each elliptic curve, we define two different
sets of homogeneous spaces, the Selmer group and the Shafarevich-
Tate group, as follows. The Selmer group is

Selo(E/Q) := {C(1, 62) with points over R and Q,, for all primes p}.
In other words, the Selmer group is the set of all homogeneous spaces

that are solvable everywhere locally, i.e., over R and over all fields of
p-adic numbers. The group operation on Sely(E/Q) is defined by

C(d1,02) - C(71,72) = C(d171, 0272)-

Notice that, due to Prop. 2.10.3, E(Q)/2E(Q) injects into H
via § and the homogeneous spaces in the image of 4, i.e. 0(F) C
H, have rational points. Since Q C Q, for all primes p > 2, the
spaces in the image of § belong to Sely(E/Q). Hence, Selz(E/Q)
has a subgroup formed by those homogeneous spaces in Sels(E/Q)
that have rational points as well (i.e., over Q), and this subgroup is
isomorphic to E(Q)/2E(Q):

E(Q)/2E(Q) = {C(61,02) with points defined over Q}.
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Finally, the Shafarevich-Tate group is the quotient of the Selmer group
by its subgroup F(Q)/2F(Q). Thus, each element of the Shafarevich-
Tate group is represented by C(1,1) or by a homogeneous space that
is solvable everywhere locally but does not have a rational point:

I, (E/Q) = {C(1,1)}
U {C(61,92) € Selz(E/Q) without points over Q}.
These three groups, Selmer, IIT (or “Sha”) and E/2FE, fit in a short
exact sequence
0 — E(Q)/2E(Q) — Selz(E/Q) — I2(E/Q) — 0.

In other words, the map ¢ : E(Q)/2E(Q) — Selx(E/Q) is injective,
the map ¢ : Selo(F/Q) — II5(E/Q) is surjective, and the kernel of
¢ is the image of 1.

Remark 2.11.1. Here for simplicity we have defined what number
theorists would usually refer to as the 2-part of the Selmer group
(Selo(E/Q) above) and the 2-torsion of IIT (the group Ills as de-

fined above). For the definition of the full Selmer and IIT groups, see
[Sil86], Ch. X, §4.

Example 2.11.2. Let E : y? = 2% — 1156z, as in Example 2.10.4.
The full group of homogeneous spaces H has 64 elements:
H = {C(01,82) : 6; = +1, +2,+17, +34}.

The spaces in ‘H with §3 < 0 do not have points over R, so they
do not belong to Sely(F/Q). Moreover, we showed that the spaces
(01,62) = (2,2), (17.2), (34,2), (—=1,1), (=2,1), (—17,1), (=34, 1),
(=1,17), (=2,17), (—17,17), (—34,17), (1,34), (2,34), (17,34), and
(34,34) do not have points over Q3. Therefore, they do not belong
to Selo(E/Q) either. All other spaces have rational points; therefore,
they are everywhere locally solvable, so they all belong to Sels(E/Q).
Hence,

Sela(E/Q) = {C(d1,02) : (01,02) =

1,1),(—1,34),(—34,2),(34,17),
1,17),(34,1),(—34,34), (-2, 2),
17,1),(-17,34),(2,1), (-2, 34),
-17,2),(17,17),(-1,2),(2,17)

o~ o~ o~ o~

}.
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Notice that, indeed, the elements of Selo(E/Q) listed above form
a subgroup of TV x IV C (Q*/(Q*)?)2. Since all the elements of
Sela(E/Q) have rational points, we conclude that Sela(E/Q) equals
E(Q)/2E(Q) and

Iy (E/Q) = Selo(E/Q)/(E(Q)/2E(Q)) = {C(1, 1)},

i.e., [II5 is the trivial subgroup in this case. ]

Example 2.11.3. Let E : y? = 2° — 6724x, as in Example 2.10.5.
The full group of homogeneous spaces H has 64 elements:

H = {0(51,52) . 51' = :|:1,:|:2, :|:4]., :|:82}

The spaces in ‘H with §2 < 0 do not have points over R, so they
do not belong to Selo(E/Q). Moreover, the spaces (d1,d2) = (2,2),
(41,2), (82,2), (—1,1), (—2,1), (—41,1), (—82,1), (—1,41), (—2,41),
(—41,41), (—82,41), (1,82), (2,82), (41,82), and (82,82) do not have
points over Q3. Therefore, they do not belong to Sela(E/Q) either. It
turns out that the rest of the spaces (such as C'(—1, 2)) are everywhere
locally solvable (we showed this for C(—1,2)). Therefore they all
belong to Sely(E/Q). Hence,

Sel2(E/Q) = {C(61,62) : (61,02) =
(1,1),(—1,82),(—82,2), (82,41),
(1,41),(82,1), (—82,82), (~2,2),
(41,1), (—41,82), (2, 1), (~2 82)
(—41,2),(41,41),(-1,2), (2,41)}.
The spaces (1,1), (—1,82), (—82,2) and (82,41) have rational points
that correspond to (torsion) points on E(Q). However, none of the

other spaces have rational solutions! Thus, the rest are representative
of non-trivial elements of Sha, and we conclude that

EQ)/2E(Q) ={C(1,1),C(-1,82),C(-82,2),C(82,41)}
and I—HQ(E/Q) = {0(51752) : (517 52) = (1a 1)7 (_17 2)7 (_272)7 (27 1)}
Notice that the elements of IIIs listed above are representatives
of all the classes in the quotient of Sely(£/Q) by E(Q)/2E(Q). For
instance, (—1,2) - (1,41) = (—1,82) € E(Q)/2E(Q). Thus, (—1,2) -
(1,41) is trivial in IIIs. [ |
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2.12. Exercises

Exercise 2.12.1. Let f(z) = apz™ + a12" L +... + an, with a; € Z.
Prove that if x = g € Q, with ged(p, q) = 1, is a solution of f(z) =0,
then a,, is divisible by p and a is divisible by g.

Exercise 2.12.2. Let C be the conic defined by z? — 2y = 1.

(1)

Find all the rational points on C. (Hint: the point O = (1,0)
belongs to C. Let L(t) be the line that goes through O and
has slope t. Since C is a quadratic and L(t) N C contains
at least one rational point, there must be a second point of
intersection @. Find the coordinates of @) in terms of ¢.)

Let a = 1+ v/2. Calculate a2 = a + bv/2 and o = ¢+ dv2
and verify that (a,b) and (c,d) are integral points on C :
x? — 2y = 1. (Note: in fact, if a®” = e + fv/2, then
(e, f) € C and the coefficients of a***1 are a solution of
2 —2y? = —1.)

(This problem is only for those who already know about
continued fractions.) Find the continued fraction of V2 and
find the first 6 convergents. Use the convergents to find
three distinct (positive) integral solutions of 2 — 2y? = 1,
other than (1,0). (Note: the reader should remind herself
or himself how to find the continued fraction and conver-

gents by hand, then check his or her answer using Sage; see
Appendix A.4.)

Exercise 2.12.3. Let C/Q be an affine curve.

(1)
(2.16)

(2)
(2.17)

Suppose that C/Q is given by an equation of the form
C: oy’ +azx®+bay+cey’ +de+ey+ f=0.
Find an invertible change of variables that takes the equa-

tion of C onto one of the form xy?+gx?+hay+jr+ky+l = 0.
(Hint: consider a change of variables X =z + A, Y = y).

Suppose that C’/Q is given by an equation of the form
C":ay? +ax® + by + cx +dy +e=0.

Find an invertible change of variables that takes the equa-
tion of C’ onto one of the form y? + axy + By = 2> + ya? +
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0x +mn. (Hint: multiply (2.17) by = and consider the change
of variables X = x and Y = xy. Make sure that, at the end,
the coefficients of 2 and 2® equal 1.)

(3) Suppose that C”/Q is a curve given by an equation of the
form

(2.18) C" :y? +ary + by = 23 + ca® + dx + e.

Find an invertible change of variables that takes the equa-
tion of C” onto one of the form y? = x® + Ar + B. (Hint:
do it in two steps. First eliminate the xy and y terms. Then
eliminate the 2 term.)

(4) Let E/Q : y?>+43zy —210y = 2 —21022. Find an invertible
change of variables that takes the equation of E to one of
the form y? = 23 + Az + B.

Exercise 2.12.4. Let C' and E be curves defined, respectively, by
C:V?2=U"+1and E:y? = 2> — 4x. Let ¢ be the map defined by

WU,V = (Q(VU;L 1)7 4(VU;r 1)) '
(1) Show that if U # 0 and (U,V) € C(Q), then ¥(U,V) €

E(Q).
(2) Find an inverse function for v; i.e., find ¢ : E — C such
that o(v(U,V)) = (U, V).
Next, we work in projective coordinates. Let C' : W2V?2 = U* + W+
and E : 2y = 23 + 23,
(3) Write down the definition of ¥ in projective coordinates; i.e.,
what is ¢([U, V, W])?
(4) Show that ([0,1,1]) =[0,1,0] = O.
(5) Show that ¥([0,—1,1]) =[0,0,1]. (Hint: Show that
Exercise 2.12.5. Use Sage to solve the following problems:

(1) Find 3Q, where E : y?> = 2% — 25z and Q = (—4,6). Use
3@ to find a new right triangle with rational sides and area
equal to 5. (Hint: Examples 1.1.2 and 2.4.1.)



2.12. Exercises 73

(2) Let y?> = 2(2 + 5)(x + 10) and P = (—9,6). Find nP for
n =1,...,12. Compare the z-coordinates of nP with the
list given at the end of Example 1.1.1, and write down the
next three numbers that belong in the list.

Exercise 2.12.6. Let E/Q be an elliptic curve given by a Weierstrass
equation of the form y? = f(z), where f(z) € Z[z] is a monic cubic
polynomial with distinct roots (over C).

(1) Show that P = (z,y) € E is a torsion point of exact order
2 if and only if y = 0 and f(z) = 0.

(2) Let E(Q)[2] be the subgroup of E(Q) formed by those ra-
tional points P € E(Q) such that 2P = O. Show that the
size of E(Q)[2] may be 1, 2 or 4.

(3) Give examples of three elliptic curves defined over Q where
the size of E(Q)[2] is 1, 2 and 4, respectively.

Exercise 2.12.7. Let E, : y?>+(1—t)ay—ty = 2°—t2® with t € Q and
A, =15(t2 — 11t — 1) # 0. As we saw in Example 2.5.4 (or Appendix
E), every curve E; has a subgroup isomorphic to Z/5Z. Use Sage to
find elliptic curves with torsion Z/5Z and rank 0, 1 and 2. Also, try
to find an elliptic curve E; with rank r, as high as possible. (Note:
the highest rank known — as of 6,/1/2009 — for an elliptic curve with
Z/5Z torsion is 6, discovered by Dujella and Lecacheux in 2001; see
[Dujo9].)

Exercise 2.12.8. Let p > 2 be a prime and E,, : y? = 2 + p?. Show
that there is no torsion point P € E,(Q) with y(P) equal to

y=+1, +p%, £3p, +3p?, or +3.

Prove that @ = (0,p) is a torsion point of exact order 3. Conclude
that {O,Q,2Q} are the only torsion points on E,(Q). (Note: for
p = 3, the point (—2,1) € FE53(Q). Show that it is not a torsion
point.)

Exercise 2.12.9. Prove Proposition 2.6.8, as follows:

(1) First show that if f(x) is a polynomial, f'(z) its derivative,
and f(0) = f'(§) = 0, then f(x) has a double root at 4.
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(2) Show that if y?> = f(z) is singular, where f(z) € K|z] is a
monic cubic polynomial, then the singularity must occur at
(4,0), where 0 is a root of f(z).

(3) Show that (4,0) is singular if and only if ¢ is a double root
of f(x). Therefore D = 0 if and ounly if ' is singular.

Exercise 2.12.10. Let £/Q : y> = 2® + 3. Find all the points of

E(F7) and verify that N7 satisfies Hasse’s bound.

Exercise 2.12.11. Let F/Q : y* = 2 + Az + B and let p > 3 be
a prime of bad reduction for £/Q. Show that E(F,) has a unique
singular point.

Exercise 2.12.12. Prove parts (1) and (3) of Theorem 2.8.5. (Hint:
use Definition 2.8.4 and Proposition 2.7.3.)

Exercise 2.12.13. Prove Corollary 2.8.6.

Exercise 2.12.14. Let E : y? = 23 — 10081z. Use Sage (or PARI)
to find a minimal set of generators for the subgroup that is spanned
by all these points on E:

10081 90729

—100. ¢ -
(0,0), (100,90), < 100 ’ 1000

) . (—17,408)

6889 ' HTL787 16 ' 64 478

161296 19960380 6790208 40498852616
1681 7 68921 ’ 168921 ° 69426531

(Hint: use Theorem 2.7.4 to determine the rank of £/Q.)

(907137 559000596) <1681 20295) (@ 21063)

Exercise 2.12.15. Let E and § be defined as in Theorem 2.9.3, and
suppose P = (g, o) is a point on E with yo # 0. Show:

e 0(P)-6(0)=0(P).

* 4((e1,0)) - 0((e2,0)) = 6((e1,0) + (e2,0)).

® 6(P)-6((e1,0)) = 0(P + (e1,0)).

Exercise 2.12.16. Let E : y? = 23+ Az+ B be an elliptic curve with
A, B € Q, and suppose P = (x,yo) is a point on F, with yo # 0.
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(1) Prove that the z-coordinate of 2P is given by

zg — 2Ax¢ — 8Bz + A2

x(2P) = 2

(2) Find a formula for y(2P) in terms of z¢ and yo.

Exercise 2.12.17. The curve E/Q : y? = 2% — 157%2 has a rational
point @ with x-coordinate x = x(Q) given by

- (224403517704336969924557513090674863160948472041 2
-\ 17824664537857719176051070357934327140032961660

Show that there exists a point P € F(Q) such that 2P = Q. Find
the coordinates of P. (Hint: use PARI or Sage and Exercise 2.12.16.)

Exercise 2.12.18. Let F : y? = (v —e1) (v —e2) (v —e3) with ¢; € Q,
distinct, and such that e; + es + e3 = 0. Additionally, suppose that

2 are squares. This exercise shows

el —es =n?and e —e3 = m
that, under these assumptions, there is a point P = (x¢, yo) such that

2P = (e1,0), i.e., P is a point of exact order 4.

(1) Show that e; = ”ngmz, eg = ngznz, e3 = "2_—32"‘2

(2) Find A and B, in terms of n and m, such that 23+ Az + B =
(z—e1)(x—e2)(x—eg). (Hint: Sage or PARI can be of great
help here.)

(3) Let p(x) = 21 — 2422 —8Bx + A2 — 4(23 + Az + B)ey. Show
that p(xo) = 0 if and only if ©(2P) = e;, and therefore
2P = (ey,0). (Hint: use Exercise 2.12.16.)

(4) Express all the coefficients of p(x) in terms of n and m.
(Hint: use Sage or PARI.)

(5) Factor p(x) for (n,m) = (3,6), (3,12), (9,12),....

(6) Guess that p(z) = (r—a)?(z—b)? for some a and b. Express
all the coefficients of p(z) in terms of @ and b.

(7) Finally, compare the coefficients of p(x) in terms of a, b and
n,m and find the roots of p(x) in terms of n,m. (Hint:
compare first the coefficient of 23 and then the coefficient of
x2))

(8) Write P = (xq,yo) in terms of n and m.
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Exercise 2.12.19. Let e, e, e3 be three distinct integers. Show that
A = (e; —ea)(ea — e3)(e1 — e3) is always even.

Exercise 2.12.20. In this exercise we study the structure of the
quotient G/2G, where G is a finite abelian group.

(1) Let p > 2 be a prime and let G = Z/p°Z, with e > 1. Prove
that G/2G is trivial if and ounly if p > 2.
(2) Prove that, it G = Z/2°Z and e > 1, then G/2G = Z/2Z.
(3) Finally, let G be an arbitrary finite abelian group. We define
G[2°°] to be the 2-primary component of G, i.e.,
G2®]={g€ G:2" g =0 for some n > 1}.
In other words, G[2°°] is the subgroup of G formed by those
elements of G whose order is a power of 2. Prove that
G2®| 2 Z) 2L L)25 L &> - DL)2° T
for some » > 0 and e; > 1 (here r = 0 means G[2°] is
trivial). Also show that G/2G = (Z/2Z)".
Exercise 2.12.21. Show that the space
22 x2 =34,
|\ Y?2-2z2=34
does not have any rational solutions with XY, Z € Q. (Hint: modify

the system so there are no powers of 2 in any of the denominators,
then work modulo 8.)

Exercise 2.12.22. For the following elliptic curves, use the method
of 2-descent (as in Proposition 2.10.3 and Example 2.10.4) to find the
rank of £/Q and generators of F(Q)/2E(Q). Do not use Sage:

(1) E:y? = 2% — 14931z + 220590.

(2) B:y? =23 22— 6.

(3) E:y?=ux—37636z.

(4) B :y?* = 2% — 96222 + 148417z. (Hint: use Theorem 2.7.4

first to find a bound on the rank.)

Exercise 2.12.23. Find the rank and generators for the rational
points on the elliptic curve y? = x(x + 5)(x + 10).
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Exercise 2.12.24. (Elliptic curves with non-trivial rank.) The goal
here is a systematic way to find curves of rank at least » > 0 without
using tables of elliptic curves:

(1) (Easy) Find 3 non-isomorphic elliptic curves over Q with
rank > 2. You must prove that the rank is at least 2. (To
show linear independence, you may use PARI or Sage to
calculate the height matrix).

(2) (Fair) Find 3 non-isomorphic elliptic curves over Q with rank
> 3.

(3) (Medium difficulty) Find 3 non-isomorphic elliptic curves
over Q with rank > 6. If so, then you can probably find 3
curves of rank > 8 as well.

(4) (Significantly harder) Find 3 non-isomorphic elliptic curves
over Q of rank > 10.

(5) (You would be famous!) Find an elliptic curve over Q of
rank > 29.

Exercise 2.12.25. Let F be an elliptic curve and suppose that the
images of the points Py, P, ..., P, € E(Q) in E(Q)/2E(Q) generate
the group E(Q)/2E(Q). Let G be the subgroup of E(Q) generated
by P, Ps,...,P,.

(1) Prove that the index of G in E(Q) is finite, i.e., the quotient
group E(Q)/G is finite.

(2) Show that, depending on the choice of generators {P;} of
the quotient F(Q)/2E(Q), the size of E(Q)/G may be ar-
bitrarily large.

Exercise 2.12.26. Fermat’s last theorem shows that z° + y? = 23

has no integer solutions with zyz # 0. Find the first d > 1 such
that 2 + y3 = dz® has infinitely many non-trivial solutions, find a
generator for the solutions and write down a few examples. (Hint:
Example 2.2.3.)






