Preface

This book grew out of the lecture notes for a course on “Elliptic
Curves, Modular Forms and L-functions” that the author taught at
an undergraduate summer school as part of the 2009 Park City Mathe-
matics Institute. These notes are an introductory survey of the theory
of elliptic curves, modular forms and their L-functions, with an em-
phasis on examples rather than proofs. The main goal is to provide
the reader with a big picture of the surprising connections among
these three types of mathematical objects, which are seemingly so
distinct. In that vein, one of the themes of the book is to explain
the statement of the modularity theorem (Theorem 5.4.6), previously
known as the Taniyama-Shimura-Weil conjecture (Conjecture 5.4.5).
In order to underscore the importance of the modularity theorem, we
also discuss in some detail one of its most renowned consequences:
Fermat’s last theorem (Example 1.1.5 and Section 5.5).

It would be impossible to give the proofs of the main theorems
on elliptic curves and modular forms in one single course, and the
proofs would be outside the scope of the undergraduate curriculum.
However, the definitions, the statements of the main theorems and
their corollaries can be easily understood by students with some stan-
dard undergraduate background (calculus, linear algebra, elementary
number theory and a first course in abstract algebra). Proofs that are
accessible to a student are left to the reader and proposed as exercises
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at the end of each chapter. The reader should be warned, though,
that there are multiple references to mathematical objects and results
that we will not have enough space to discuss in full, and the student
will have to take these items on faith (we will provide references to
other texts, however, for those students who wish to deepen their
understanding). Some other objects and theorems are mentioned in
previous chapters but only explained fully in later chapters. To avoid
any confusion, we always try to clarify in the text which objects or
results the student should take on faith, which ones we expect the stu-
dent to be familiar with, and which will be explained in later chapters
(by providing references to later sections of the book).

The book begins with some motivating problems, such as the
congruent number problem, Fermat’s last theorem, and the represen-
tations of integers as sums of squares. Chapter 2 is a survey of the
algebraic theory of elliptic curves. In Section 2.9, we give a proof
of the weak Mordell-Weil theorem for elliptic curves with rational 2-
torsion and explain the method of 2-descent. The goal of Chapter
3 is to motivate the connection between elliptic curves and modular
forms. To that end, we discuss complex lattices, tori, modular curves
and how these objects relate to elliptic curves over the complex num-
bers. Chapter 4 introduces the spaces of modular forms for SL(2,Z)
and other congruence subgroups (e.g., I'g(N)). In Chapter 5 we define
the L-functions attached to elliptic curves and modular forms. We
briefly discuss the Birch and Swinnerton-Dyer conjecture and other
related conjectures. Finally, in Section 5.4, we justify the statement
of the original conjecture of Taniyama-Shimura-Weil (which we usu-
ally refer to as the modularity theorem, since it was proved in 1999);
i.e., we explain the surprising connection between elliptic curves and
certain modular forms, and justify which modular forms correspond
to elliptic curves.

In order to make this book as self-contained as possible, I have
also included five appendices with concise introductions to topics that
some students may not have encountered in their classes yet. Appen-
dix A is a quick reference guide to two popular software packages:
PARI and Sage. Throughout the book, we strongly recommend that
the reader tries to find examples and do calculations using one of these
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two packages. Appendix B is a brief summary of complex analysis.
Due to space limitations we only include definitions, a few exam-
ples, and a list of the main theorems in complex analysis; for a full
treatment see [Ahl79], for instance. In Appendix C we introduce
the projective line and the projective plane. The p-adic integers and
the p-adic numbers are treated in Appendix D (for a complete refer-
ence, see [Gou97]). Finally, in Appendix E we list infinite families
of elliptic curves over Q, one family for each of the possible torsion
subgroups over Q.

I would like to emphasize once again that this book is, by no
means, a thorough treatment of elliptic curves and modular forms.
The theory is far too vast to be covered in one single volume, and the
proofs are far too technical for an undergraduate student. Therefore,
the humble goals of this text are to provide a big picture of the vast and
fast-growing theory, and to be an “advertisement” for undergraduates
of these very active and exciting areas of number theory. The author’s
only hope is that, after reading this text, students will feel compelled
to study elliptic curves and modular forms in depth, and in all their
full glory.

There are many excellent references that I would recommend to
the students, and that I have frequently consulted in the preparation
of this book:

(1) There are not that many books on these subjects at the
undergraduate level. However, Silverman and Tate’s book
[SiT92| is an excellent introduction to elliptic curves for
undergraduates. Washington’s book [Was08] is also acces-
sible for undergraduates and emphasizes the cryptography
applications of elliptic curves. Stein’s book [Ste08] also has
an interesting chapter on elliptic curves.

(2) There are several graduate-level texts on elliptic curves. Sil-
verman’s book [Sil86] is the standard reference, but Milne’s
[Mil06] is also an excellent introduction to the theory of el-
liptic curves (and also includes a chapter on modular forms).
Before reading Silverman or Milne, the reader would benefit



Xiv

Preface

from studying some algebraic geometry and algebraic num-
ber theory. (Milne’s book does not require as much algebraic
geometry as Silverman’s.)

The theory of modular forms and L-functions is definitely
a graduate topic, and the reader will need a strong back-
ground in algebra to understand all the fine details. Dia-
mond and Shurman’s book [DS05] contains a neat, modern
and thorough account of the theory of modular forms (in-
cluding much information about the modularity theorem).
Koblitz’s book [Kob93] is also a very nice introduction to
the theory of elliptic curves and modular forms (and includes
a lot of information about the congruent number problem).
Chapter 5 in Milne’s book [Mil06] contains a good, concise
overview of the subject. Serre’s little book [Ser77] is always
worth reading and also contains an introduction to modular
forms. Miyake’s book [Miy06] is a very useful reference.
Finally, if the reader is interested in computations, we rec-
ommend Cremona’s [Cre97] or Stein’s [Ste07] book. If the
reader wants to play with fundamental domains of modular
curves, try Helena Verrill’s applet [Ver05].

I would like to thank the organizers of the undergraduate summer

school at PCMI, Aaron Bertram and Andrew Bernoff, for giving me
the opportunity to lecture in such an exciting program. Also, I would
like to thank Ander Steele and Aaron Wood for numerous corrections
and comments of an early draft. Last, but not least, I would like to
express my gratitude to Keith Conrad, Fernando Gouvéa, David Pol-
lack and William Stein, whose abundant comments and suggestions
have improved this manuscript much more than it would be safe to
admit.

Alvaro Lozano-Robledo



Chapter 1

Introduction

Notation:
N =1{1,2,3,...} is the set of natural numbers.
Z=A{..,-3,-2,-1,0,1,2,3,...} is the ring of integers.
Q= {2 :m,n cZ,n # 0} is the field of rational numbers.
R is the field of real numbers.
C={a+bi:abecR, i =—1} is the field of complex numbers.

In this chapter, we introduce elliptic curves, modular forms and L-
functions through examples that motivate the definitions.

1.1. Elliptic curves

For the time being, we define an elliptic curve to be any equation of
the form

v =a34+az® +br+c

with a,b. ¢ € Z and such that the polynomial 23 + az? + bz + ¢ does
not have repeated roots. See Section 2.2 for a precise definition.

Example 1.1.1. Are there three consecutive integers whose product
is a perfect square?

There are some trivial examples that involve the number zero, for
example, 0,1 and 2, whose product equals 0-1-2 = 0 = 02, a square.
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2 1. Introduction

Are there any non-trivial examples? If we try to assign variables to
our problem, we see that we are trying to find solutions to

(1.1) v =z(x+1)(r +2)

with z,y € Z and y # 0. Equation (1.1) defines an elliptic curve. It
turns out that there are no integral solutions other than the trivial
ones (see Exercise 1.4.1). Are there rational solutions, i.e., are there
solutions with z,y € Q7 This is a more delicate question, but the
answer is still no (we will prove it in Example 2.7.6). Here is a similar
question, with a very different answer:

o Are there three integers that differ by 5, i.e., x, x +5 and
x + 10, and whose product is a perfect square?

In this case, we are trying to find solutions to y? = x(x+5)(z+10)
with x,y € Z. As in the previous example, there are trivial solutions
(those which involve 0) but in this case, there are non-trivial solutions
as well:

(=9) - (=9+45) - (-9+10) = (-9)- (—4)-1=36 = 6
40 - (40 +5) - (40 + 10) = 40 - 45-50 = 90000 = 300°.

Moreover, there are also rational solutions, which are far from obvious:
2
5 5 5 75
Z).( 2 A iy | e
(2)-G+)- (o) - (B)
B0\ (50N (50 100 ?
9 9 ° 9 27

and, in fact, there are infinitely many rational solutions! Here are

some of the z-coordinates that work:

o —0. 40 5 —50 961 7200 12005 16810 27910089 _
7479 71447 9617 1681 7 24017 5094049 T

In Sections 2.9 and 2.10 we will explain a method to find rational

points on elliptic curves and, in Exercise 2.12.23, the reader will cal-
culate all the rational points of y? = z(x + 5)(z + 10). [

Example 1.1.2 (The Congruent Number Problem). We say that
n > 1 is a congruent number if there exists a right triangle whose
sides are rational numbers and whose area equals n. What natural
numbers are congruent?
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For instance, the number 6 is congruent, because the right triangle
with sides of length (a,b,¢) = (3,4,5) has area equal to %! = 6.
Similarly, the number 30 is the area of the right triangle with sides
(5,12,13); thus, 30 is a congruent number.

41/6
3/2

Area=5

20/3

Figure 1. A right triangle of area 5 and rational sides.

The number 5 is congruent but there is no right triangle with
integer sides and area equal to 5. However, our definition allowed
rational sides, and the triangle with sides (2,22, 4) has area exactly
5. We do not allow, however, triangles with irrational sides even if
the area is an integer. For example, the right triangle (1,2,1/5) has
area 1, but that does not imply that 1 is a congruent number (in fact,

1 is not a congruent number, as we shall see below).

The congruent number problem is one of the oldest open problems
in number theory. For more than a millennium, mathematicians have
attempted to provide a characterization of all congruent numbers.
The oldest written record of the problem dates back to the early
Middle Ages, when it appeared in an Arab manuscript written before
972 (a later 10th century manuscript written by Mohammed Ben
Alcohain would go as far as to claim that the principal object of the
theory of rational right triangles is to find congruent numbers). It is
known that Leonardo Pisano, a.k.a. Fibonacci, was challenged around
1220 by Johannes of Palermo to find a rational right triangle of area
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n = 5, and Fibonacci found the triangle (%7 2—3?, %). We will explain a

method to find this triangle below. In 1225, Fibonacci wrote a more
general treatment about the congruent number problem, in which he
stated (without proof) that if n is a perfect square, then n cannot be a
congruent number. The proof of such a claim had to wait until Pierre
de Fermat (1601-1665) settled that the number 1, and every square,
are not congruent numbers (interestingly, his proof can be applied to
prove the case n = 4 of Fermat’s last theorem; see Example 1.1.5).

The connection between the congruent number problem and el-

liptic curves is as follows:

Proposition 1.1.3. The number n > 0 is congruent if and only if the
curve y* = x® —n’x has a point (z,y) with x,y € Q andy # 0. More
precisely, there is a one-to-one correspondence C,, +— E,, between
the following two sets:

. . . b
C, = {(a,b,c):a2+b2:cz,%:n}

E, = {(z,y):y*=2*—nz, y#0}.

Mutually inverse correspondences f : Cp, — E, and g : E,, — C,, are
given by

Flab) = (22 20 ) = (S 2 20,

c—a'c—a y Y Y

The reader can provide a proof (see Exercise 1.4.3). For example,
the curve E : y? = 2% — 252 has a point (—4, 6) that corresponds to
the triangle (3,22, 4). But E has other points, such as (125}, 2222

that corresponds to the triangle

1519 4920 3344161
492 715197 747348

which also has area equal to 5. See Figure 2.

Today, there are partial results toward the solution of the congru-
ent number problem, and strong results that rely heavily on famous
(and widely accepted) conjectures, but we do not have a full answer
yet. For instance, in 1975 (see [Ste75]), Stephens showed that the
Birch and Swinnerton-Dyer conjecture (which we will discuss in Sec-
tion 5.2) implies that any positive integer n = 5, 6 or 7 mod 8 is a
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a0k ( 1681 62279 )

144 ° 1728

30

20

- -2.5 2.5 7.5 10 12.5

Figure 2. Two rational points on the curve y2? = 23 — 25x.

congruent number. For example, n = 157 =5 mod 8 must be a con-
gruent number and, indeed, Don Zagier has exhibited a right triangle
(a,b,c) whose area equals 157. The hypotenuse of the simplest such
triangle is:
~2244035177043369699245575130906674863160948472041
~8912332268928859588025535178967163570016480830
In Example 5.2.7 we will see an application of the conjecture of Birch
and Swinnerton-Dyer to find a rational point P on y? = 2> — 1572z,
which corresponds to a right triangle of area 157 via the correspon-
dence in Proposition 1.1.3.

The best known result on the congruent number problem is due
to J. Tunnell:

Theorem 1.1.4 (Tunnell, 1983, [Tun&3|). If n is an odd square-
free positive integer and n is the area of a right triangle with rational
sides, then the following numbers are equal:

#{(z,y,2) € Z> : n = 22° + y? + 3227}
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and, if n is even,

#{(z,y,2) €Z*: g = 42 +y? + 3227}

L n
2 (#{(at,y,z) €zZ®: 3= 4a® + o2 +8z2}) .

Moreover, if the Birch and Swinnerton-Dyer conjecture is true, then,
conversely, these equalities imply that n is a congruent number.

For example, for n = 2 we have § =1 = 4x% 4+ y? + 3222 if and

ounly if x = z = 0 and y = %1, so the left-hand side of the appropriate
equation in Tunnell’s theorem is equal to 2. However, the right-hand
side is equal to 1 and the equality does not hold. Hence, 2 is not a
congruent number.

For a complete historical overview of the congruent number prob-
lem, see [Dic05], Ch. XVI. The book [Kob93| contains a thorough
modern treatment of the problem. The reader may also find useful an
expository paper [Con08] on the congruent number problem, written
by Keith Conrad. Another neat exposition, more computational in
nature (using Sage), appears in [Ste08], Section 6.5.3. |

Figure 3. Pierre de Fermat (1601-1665).

Example 1.1.5 (Fermat’s last theorem). Let n > 3. Are there any
solutions to ™ + y™ = 2™ in integers x, y, z with xyz # 07 The
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answer is no. In 1637, Pierre de Fermat wrote in the margin of a
book (Diophantus’ Arithmetica; see Figure 9 in Section 5.5) that he
had found a marvelous proof, but the margin was too small to contain
it. Since then, many mathematicians tried in vain to demonstrate (or
disprove!) this claim. A proof was finally found in 1995 by Andrew
Wiles ([Wil95]). We shall discuss the proof in some more detail
in Section 5.5. For now, we will outline the basic structure of the
argument.

First, it is easy to show that, to prove the theorem, it suffices to
show the cases n = 4 and n = p > 3, a prime. It is not difficult to
show that z* +y* = 2% has no non-trivial solutions in Z (this was first
shown by Fermat). Now, suppose that p > 3 and a,b, ¢ are integers
with abc # 0 and aP + bP = ¢P. Gerhard Frey conjectured that if such
a triple of integers exists, then the elliptic curve

E:y? =z(x —aP)(z + bP)

would have some unexpected properties that would contradict a well-
known conjecture that Taniyama, Shimura and Weil had formulated
in the 1950’s. Their conjecture spelled out a strong connection be-
tween elliptic curves and modular forms, which we will describe in
Section 5.4. Ken Ribet proved that, indeed, such a curve would con-
tradict the Taniyama-Shimura-Weil (TSW) conjecture. Finally, An-
drew Wiles was able to prove the TSW conjecture in a special case
that would cover the hypothetical curve E. Therefore, E' cannot exist
and the triple (a,b,c) cannot exist, either.

The Taniyama-Shimura-Weil conjecture (Conjecture 5.4.5), i.e.,
the modularity theorem 5.4.6, was fully proved by Christophe Breuil,
Brian Conrad, Fred Diamond, and Richard Taylor in their article
[BCDTO1]. ]

1.2. Modular forms

Let € be the complex plane and let H be the upper half of the complex
plane, i.e., HH = {a+bi: a,b € R,b > 0}. A modular form is a function
f+ H — C that has several relations among its values (which we will
specify in Definitions 4.1.3 and 4.2.1). In particular, the values of the
function f satisfy several types of periodicity relations. For example,
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the modular forms for SL(2,Z) satisfy, among other properties, the
following;:

o f(z) = f(z+1) for all z € H, and

o f(=L) =2Ff(z) for all z € H. The number £ is an integer
called the weight of the modular form.

We will describe modular forms in detail in Chapter 4. Let us see
some examples that motivate our interest in these functions.

Example 1.2.1 (Representations of integers as sums of squares). Is
the number n > 0 a sum of two (integer) squares? In other words,
are there a,b € Z such that n = a® + b>? And if so, in how many
different ways can you represent n as a sum of two squares?

For instance, the number n = 3 cannot be represented as a sum
of two squares but the number n = 5 has 8 distinct representations:

5= (£1)2 + (£2)? = (£2)% + (£1)%

Notice that here we consider (—1)% + 2%, 12422 and 22 + 1 as distinct
representations of 5. A general formula for the number of represen-
tations of an integer n as a sum of 2 squares, due to Lagrange, Gauss
and Jacobi, is given by

(1.2) Sy(n) =2 (1 + (:-3)) > <_71> ,

d|n

where (%) is the Jacobi symbol and > dJn 1S @ sum over all positive

divisors of n (including 1 and n). Here we just need the easiest values
(Z2) = (=1)("=1/2 of the Jacobi symbol. Let us see that the formula

works:

SH(3) = 2 <1 + (%)) ; (%) — o1+ (—1))(1 4+ (~1)) =0,
d|3

Sy(5) = 2 (1 + (%)) Z| (%) =2(14+1)(1+1) =8,
d|5

and S3(9) = 4. Indeed, the number nine has 4 different representa-
tions: 9 = (£3)2 + 02 = 02 4 (£3)%2. Let us explore other similar
questions.
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Let n > 0 and k > 2. Is the number n > 0 a sum of k (integer)
squares? In other words, are there ai,...,ar € 7Z such that n =
ai+---+ai? And if so, in how many different ways can you represent
n as a sum of k squares? Lagrange showed that every natural number
can be represented as a sum of k > 4 squares, but how many different
representations are there?

Let Si(n) be the number of representations of n as a sum of k
squares. Determining exact formulas for S (n) is a classical problem
in number theory. There are exact formulas known in a number of
cases (c.g. Eq. 1.2). The formulas for £ = 4,6 and 8 are due to
Jacobi and Siegel. We write n = 2¥¢g, with v > 0 and odd g > 0:

Sin) = 8 Y d.
d|n, 4d
S (n) = __1 22”+4 _ 4 Z __1 d2
6 p _ ’
dlg

3 . .
Ss(n) = 164 2dn? ~ifnisodd,
Zd|n d* -2 Zd|g d® if n is even.

For example, S4(4) = 8(1 + 2) = 24 and, indeed

4

(F1)? 4+ (£1)? + (£1)2 + (£1)? = (£2)? +0+0+0

= 0+ (£2)?+0+0=0+0+ (£2) +0=0+0+0+ (+£2)°.
So there are 16 +2 + 2 + 2 + 2 = 24 possible representations of the
number 4 as a sum of 4 squares. Notice that S4(2) = S4(4). In how

many ways can 4 be represented as a sum of 6 squares? We write
4=22.1,s0 v =2and g =1, and thus,

Sg(4) = <<_T1) 922+ _ 4) (<_Tl> - 12> = (2% -4)-1=252.

The formulas for Si(n) given above are derived using the theory of
modular forms, as follows. We define a formal power series ©(q) by

o0

olg)= > ¢

j=—00
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and, for k£ > 2, consider the power series expansion of the kth power
of ©:

k
© @) = | X ¢
j=—00
- ( 3 q>< 3 qai)zz%qn.
a1=—00 ap=—00 n>0

What is the nth coefficient, ¢,, of ©5? If the readers stare at the
previous equation for a while, they will find that ¢, is given by

en = #{(a1,...,ar) €ZF :a? + - +ai =n}.

Therefore, ¢, = Sg(n) and (O(q))* =, < Sk(n)g™. In other words,
OF is a generating function for Si(n). ]gut, how do we find closed
formulas for Sk(n)? This is where the theory of modular forms be-
comes particularly useful, for it provides an alternative description of
the coefficients of ©F.

It turns out that, for even k > 2, the function ©% is a modular
form of weight % (more precisely, it is a modular form for the group
I'1(4)), and the space of all modular forms of weight £, denoted by
My (T'1(4)), is finite dimensional (we will carefully define all these
terms later). For instance, let k = 4. Then My(T'1(4)), the space of
modular forms of weight ‘—21 = 2 for 'y (4), is a 2-dimensional C-vector
space and a basis is given by modular forms with g-expansions:

flq) = 1+24¢* +24¢" +96¢° + 24¢® + 144¢"° + 964" + - -
9(qg) = q+4¢>+6¢° +8¢" +13¢° +12¢" + 14¢™ + - .

Therefore, ©%(q) = M\f(q) + pg(q) for some constants A\, € C. We
may compare g-expansions to find the values of A and pu:

O q) =3 Su(m)q® = 1+ 8q+24¢° +324° + 24q" + -
n>0
A(q) +pg(q) = A+ pq+240¢ +4pg® + - .

Therefore, it is clear that A = 1 and = 8, so ©* = f 4 8¢. Since
the expansions of f and g are easy to calculate (for example, using
Sage; see Appendix A.2), we can easily calculate the coefficients of
the g-expansion of © and, therefore, values of S4(n).
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The exact formulas given above for Si(n), however, follow from
some deeper facts. Here is a sketch of the ideas involved (the reader
may skip these details for now and return here after reading Chapter
4): given ©% = Y ¢,q" and F(q) = 2-(24n d)g", one can find an
eigenvector G(q) = Y b,¢™ for a collection of linear maps 7T;, (the so-
called Hecke operators, T, : M2(I'1(4)) = M>(T"1(4))) among spaces
of modular forms, i.e., T,,(G) = A\,,G for n > 1, and the eigenvalues
An = bp /by = Zd|n d. Moreover, the eigenvector G can be written
explicitly as a combination of @ and F. Finally, one can show that
the coefficients ¢, must be given by the formula ¢, = 8%, 4,d
(see [Kob93], III, §5, for more details). [ ]

1.3. L-functions

An L-function is a function L(s), usually given as an infinite series of
the form

o0
o) =S o =30 a2y

with some coeflicients a,, € C. Typically, the function L(s) con-
verges for all complex numbers s in some half-plane (i.e., those s
with real part larger than some constant), and in many cases L(s)
has an analytic or meromorphic continuation to the whole complex
plane. Mathematicians are interested in L-functions because they
are objects from analysis that, sometimes, capture very interesting
algebraic information.

Example 1.3.1 (The Riemann zeta function). The Riemann zeta
function, usually denoted by ((s), is perhaps the most famous L-
function:

The reader may already know some values of ¢. For example ((2) =
> % is convergent by the p-series test, and its value is 72/6 (this
value can be computed using Fourier analysis and Parseval’s equality).

The connection between ¢(s) and number theory comes from the fact
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that ((s) has an Euler product:

=1 1
((s) = Zlgz 11 .

—s
p prime p

_ (1_12_8).(1_13_8).(1_15_3)...

This Euler product is not difficult to establish (Exercise 1.4.8) and
has the very interesting consequence that any information on the
distribution of the zeros of ((s) can be translated into information
about the distribution of prime numbers among the natural numbers.

|

Example 1.3.2 (Dirichlet L-function). Let a, N € N be relatively
prime integers. Are there infinitely many primes p of the form a+kN
(i.e., p = a mod N) for k > 079 The answer is yes and this fact,
known as Dirichlet’s theorem on primes in arithmetic progressions,
was first proved by Dirichlet using a particular kind of L-function
that we know today as a Dirichlet L-function.

‘\\ ‘- A

Figure 4. Johann Peter Gustav Lejeune Dirichlet (1805-
1859) and Georg Friedrich Bernhard Riemann (1826-1866).
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Let N > 0. A Dirichlet character (modulo N) is a function
X : (Z/NZ)* — C* that is a homomorphism of groups, i.e., x(nm) =
x(n)x(m) for all n,m € (Z/NZ)*. Notice that x(n) € C and
x(n)?™) =1 for all ged(n, N) = 1. Therefore, x(n) must be a root of
unity. We extend x to Z as follows. Let a € Z. If ged(a, N) = 1, then
x(a) = x(a mod N). Otherwise, if ged(a, N) # 1, then x(a) = 0.

A Dirichlet L-function is a function of the form

— x(n)
ns ’

L(57 X) =

n=1
where y is a given Dirichlet character. For example, one can take yq
to be the trivial Dirichlet character, i.e., xo(n) = 1 for alln > 1. Then
L(s, x0) is the Riemann zeta function {(s). Dirichlet L-functions also
have Euler products:

- x(n) 1
He _n; ne 1;[ 1= x(p)p—*

The idea of the proof of Dirichlet’s theorem generalizes the fol-
lowing proof, due to Euler, of the infinitude of the primes. Consider
Cls) =074 nl = Hp 1_—;,5 and suppose there are only finitely many
primes. Then the product over all primes is finite, and therefore its
value at s = 1 would be finite (a rational number, in fact). However,
¢(1) = Y, 1/n is the harmonic series, which diverges! Therefore,
there must be infinitely many prime numbers.

Dirichlet adapted this argument by looking instead at a different

function: .
Von(s)= > =
p=a mod N p
He showed that (a) for every non-trivial Dirichlet character xy modulo
N, we have L(1,x) # 0 or oo, and (b) this implies that ¥, y(1)
diverges to co. Part (b) follows from the equality
log(¢(s) + Y x(a)”"log(L(s,x))

x mod N
x#1

ST D SR EYE)

p=a mod N
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where g(s) is a function with g(1) finite, and ¢ is the Euler ¢-function.
Therefore, there cannot be a finite number of primes of the form
p=amod N. [ |

Example 1.3.3 (Representations of integers as sums of squares). Is
the number n > 0 a sum of three integer squares? In Subsection 1.2,
we saw formulas for the number of representations of an integer as a
sum of k = 2, 4, 6 and 8 integer squares, but we avoided the same
question for odd k. The known formulas for S3(n), S5(n) and S7(n)
involve values of Dirichlet L-functions.

Let us first define the Dirichlet character that we shall use here.
The reader should be familiar with the Legendre symbol (%), which
is equal to 0 if p|n, equal to 1 if n is a square mod p, and equal to
—1 if n is not a square mod p. Let m > 0 be a natural number

with prime factorization m = [], p; (the primes are not necessarily
distinct). First we define

0 if n is even,
(2) —{1  ifn=41mods,
—1  if n =43 mod 8.

Now we are ready to define the Kronecker symbol of n over m > 0 by
ny n
() =11 (2).

For any n > 0, the symbol (_—") induces a Dirichlet character y,,
defined by x,(a) = (_T")7 and we can define the associated L-function
by
. Xn(a)

as

L (57 Xn) =
a=1
We are ready to write down the formula for Ss(n), due to Gauss,
Dirichlet and Shimura (there are also formulas for S5(n), due to Eisen-
stein, Smith, Minkowski and Shimura, and a formula for S7(n), also
due to Shimura). For simplicity, let us assume that n is odd and
square free (for the utmost generality, please check [Shi02]):

Ss(n) 0 if n="7mod 8,
n)=-<.
’ @L(L Xn) otherwise.
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The reader is encouraged to investigate this problem further by at-
tempting Exercises 1.4.6 and 1.4.7. [ |

1.4. Exercises

Exercise 1.4.1. Use the divisibility properties of integers to show
that the only solutions to y?> = z(z + 1)(z + 2) with z,y € Z are
(0,0), (=1,0) and (—2,0). (Hint: If @ and b are relatively prime and
ab is a square, then a is a square and b is a square.)

Exercise 1.4.2. Find all the Pythagorean triples (a, b, ¢), i.e., a,b,c €
Z and a? + b% = 2, such that b2 4 ¢? = d? for some d € Z. In other
words, find all the integers a,b,c,d such that (a,b,¢) and (b,c,d)
are both Pythagorean triples. (Hint: You may assume that 3> =
z(z + 1)(z + 2) has no rational points other than (0,0), (—1,0) and

(=2,0).)
Exercise 1.4.3. Prove Proposition 1.1.3; i.e., show that f((a,b,c)) is

a point in F,, that g((z,y)) is a triangle in C), and that f(g((z,v))) =
(z,y) and g(f((a,b,¢))) = (a,b,c).

Exercise 1.4.4. Calculate S4(n), for n = 1,3,5,6, by hand, using
Jacobi’s formula and also by finding all possible ways of writing n as
a sum of 4 squares.

Exercise 1.4.5. The goal of this problem is to find the g-expansion
of ©%(q):
(1) Find by hand the values of Sg(n), for n = 0,1,2; i.e., find
all possible ways to write n = 0,1,2 as a sum of 6 squares.
(2) Using Sage, calculate the dimension of M, (T'1(4)) (see Ap-
pendix A.2) and a basis of modular forms for & = 6.
(3) Write ©F as a linear combination of the basis elements found
in part 2.
(4) Use part 3 to write the g-expansion of ©% up to O(¢?").
(5) Use the expansion of ©° to verify that Sg(4) = 252. Also,

calculate Sg(19) using Jacobi’s formula and verify that it
coincides with the coefficient of ©% in front of the ¢ term.
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Exercise 1.4.6. Show that any integer n = 7 mod 8 cannot be rep-
resented as a sum of three integer squares.

Exercise 1.4.7. Find the number of representations of n = 3 as a
sum of 3 squares. Then compare your result with the value of the
formula given in Example 1.3.3; i.e., use a computer to approximate

o (=3
S3(3) = &ful,xg) _ ﬁfz (=)

a
a=1
by adding the first 10,000 terms of L(1, x3). Do the same for n =5
and n = 11. Does the formula seem to work for n = 27 (Note: the
command kronecker (-n,m) calculates the Kronecker symbol (_7") m
Sage.)

Exercise 1.4.8. Prove that the Riemann zeta function ((s) = Y7 | =&

has an Euler product; i.e., prove the following formal equality of series

>o- I
n:1ns_ ]__p—s'

p prime

(Hint: There are two possible approaches:

Hint (a). Expand the right-hand side using the Fundamental Theorem
: . : - 1 ok
of Arithmetic and the algebraic equality e = Yoo xt
[This approach helps build an intuition about what is going
on, but may be hard to write into a rigorous proof]

Hint (b). Calculate (1 —1/2%)¢(s) and (1 —1/3%)(1 —1/2°){(s), etc.)



