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1. Introduction

A modular form is a holomorphic function on the upper half-plane

h = {x+ iy : x ∈ R, y > 0} = {τ ∈ C : Im τ > 0}

that transforms in a certain way under a discrete matrix group and has a nice behavior at
infinity. To explain this more precisely (see Definition 1.2 below) we introduce a few 2× 2
real matrix groups.

Definition 1.1. Set

GL2(R) = {A ∈ M2(R) : detA 6= 0} ,
GL+

2 (R) = {A ∈ M2(R) : detA > 0} ,
SL2(R) = {A ∈ M2(R) : detA = 1} .

These are all groups under matrix multiplication, with identity I2 = ( 1 0
0 1 ). The notations

GL and SL stand for “general linear” and “special linear,” where the word “special” is
shorthand for “determinant 1.” Clearly GL2(R) ⊃ GL+

2 (R) ⊃ SL2(R).
We will be interested in discrete subgroups of GL2(R), especially the integer-matrix

analogue of SL2(R), which is1

SL2(Z) =

{(
a b
c d

)
∈ M2(Z) : ad− bc = 1

}
.

If you pick three integers in a 2 × 2 matrix and solve for the fourth to have ad − bc = 1,
usually it won’t be an integer so you don’t get a matrix in SL2(Z). To create a matrix in
SL2(Z) “randomly,” pick any pair of relatively prime integers for the first column and solve
for the second column using Euclid’s algorithm. For example, to find a matrix ( 18 x

25 y ) in
SL2(Z) is the same as solving 18y − 25x = 1 in integers x and y.

Definition 1.2. Let k ∈ Z. A modular form of weight k for SL2(Z) is a function f : h→ C
such that

(1) f is holomorphic on h,

(2) f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for all

(
a b
c d

)
∈ SL2(Z) and all τ ∈ h,

(3) the values f(τ) are bounded as Im τ →∞.

Often “Im τ → ∞” is written as τ → i∞ and we think of i∞ as a point infinitely high
up in h, analogous to ∞ and −∞ lying infinitely far to the right or left of R.

1The group GL2(Z) is not the 2× 2 integer matrices with nonzero determinant, since that is not a group:
the inverse of such a matrix need not have integer entries. Instead, GL2(Z) = {A ∈ M2(Z) : detA = ±1}.

1
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Remark 1.3. The three defining properties of a modular form are independent of each
other: there are functions h→ C satisfying any two of the three properties but not satisfying
the third (for some choice of k).

The zero function on h is a modular form of every weight. We will eventually see that the
only modular form of negative weight, odd weight, or weight 2 for SL2(Z) is the function 0,
the only modular forms of weight 0 for SL2(Z) are constant functions, and for every even
k ≥ 4 we’ll use a construction called Eisenstein series in Section 4 to give a nonzero example
of a modular form of weight k for SL2(Z).

The second property in the definition of a modular form is called the modularity condition.
Let’s make it explicit in three examples.

Example 1.4. For the matrix ( 1 1
0 1 ) ∈ SL2(Z), the modularity condition means f(τ + 1) =

f(τ) for all τ ∈ h. The weight k plays no role here.

Example 1.5. For the matrix ( 0 −1
1 0 ) ∈ SL2(Z), the modularity condition means f(−1/τ) =

τkf(τ) for all τ ∈ h. Here we see k appears prominently.

Example 1.6. For the matrix (−1 0
0 −1 ) ∈ SL2(Z), the modularity condition means f(τ) =

(−1)kf(τ) for all τ ∈ h, so if k is odd then f is identically zero: the only modular form of
any odd weight for SL2(Z) is the zero function.2

It is no surprise that modular forms might have (and do have!) applications in complex
analysis, since by definition they are certain holomorphic functions. They are also connected
to many other areas of math, such as combinatorics, number theory, geometry (both hyper-
bolic geometry and algebraic geometry), representation theory, and mathematical physics.
Here are some reasons for these other connections.

(1) Modular forms can be expanded into power series in the complex variable q = e2πiτ

(this is called a q-expansion), and many q-series in combinatorics turn out to be
modular forms or closely related to modular forms.

(2) The theta-function of a positive-definite quadratic form in number theory is a mod-
ular form and the L-function of an elliptic curve over Q (a generalization of the
Riemann zeta-function) is also the L-function of a modular form. The link between
elliptic curves and modular forms is how Wiles proved Fermat’s Last Theorem: a
counterexample to Fermat’s Last Theorem leads to a contradiction of what we know
about modular forms.

(3) The upper half-plane h is a model for hyperbolic geometry, and constructions on h
that are relevant to modular forms (e.g., fundamental domains and the Petersson
inner product) have an appealing interpretation using the language of hyperbolic
geometry.

(4) Modular forms provide embeddings of certain algebraic varieties into projective
space.

(5) A modular form can be turned into a representation of an adelic matrix group.
(6) Generating functions in string theory and conformal field theory can be described

in terms of modular forms.

2Modular forms can be defined for finite-index subgroups of SL2(Z), and when the subgroup does not
contain −I2 there might be nonzero modular forms of odd weight for that subgroup.
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2. Why the modularity condition?

Why would anyone think the equation

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

in the definition of a modular form is interesting? It arose from 19th century developments
in complex analysis and geometry, which we will discuss in this section.

While the group GL2(R) acts on R2 by linear transformations (any 2×2 matrix A sends
each vector v in R2 to the vector Av in R2, and I2v = v and A(Bv) = (AB)v for all A
and B in GL2(R)), the group GL+

2 (R) acts on h by linear fractional transformations: for
τ ∈ h, define

(2.1)

(
a b
c d

)
τ :=

aτ + b

cτ + d
.

The reason (2.1) lies in h follows from the imaginary part formula

(2.2) Im

(
aτ + b

cτ + d

)
=

(ad− bc) Im τ

|cτ + d|2
,

for τ ∈ C − {−d/c} and real a, b, c, d. By this formula, which the reader can check as an
exercise, if τ ∈ h and ad− bc > 0 then (aτ + b)/(cτ + d) ∈ h. To show (2.1) defines a (left)
group action of GL+

2 (R) on h, check that I2τ = τ and A(Bτ) = (AB)τ for all A and B in
GL+

2 (R).
For ( a bc d ) ∈ GL+

2 (R) and x ∈ R×, the matrix ( xa xbxc xd ) is in GL+
2 (R) (its determinant is

x2(ad− bc)) and it acts on h in the same way as ( a bc d ) does since (xaτ + xb)/(xcτ + xd) =

(aτ + b)/(cτ + d). This is different from GL2(R) acting as linear transformations on R2,

where different matrices have different effects somewhere (in fact on either
(
1
0

)
or
(
0
1

)
). Using

x = 1/
√
ad− bc shows every matrix in GL+

2 (R) acts on h in the same way as a matrix in
SL2(R).

One of the reasons for interest in linear fractional transformations of h by matrices in

SL2(R) is the classification of compact surfaces. Aside from the Riemann sphere Ĉ =
C ∪ {∞} and a torus C/L for any lattice L in C, every other compact orientable surface
can be realized as a quotient space Γ\h = {Γτ : τ ∈ h} where h is acted on from the left by
some discrete subgroup Γ of SL2(R) using linear fractional transformations. This should
be thought of as a two-dimensional analogue of the construction of a circle as a quotient
space R/Z, where Z acts on R as discrete additive translations (x 7→ x+ n for n ∈ Z).3

The similarity between a quotient of C by a lattice and a quotient of h by a discrete
subgroup of SL2(R) becomes more striking when we use the language of geometry: a lattice
in C acts on C as a discrete group of additive translations that each preserve Euclidean
distances on C, while linear fractional transformations of h coming from matrices in SL2(R)
each preserve non-Euclidean distances on h when we view h as the hyperbolic plane (see
Appendix A). From the viewpoint of Euclidean and non-Euclidean geometry, compact ori-

entable surfaces other than Ĉ have similar descriptions: they arise as a model geometric

3 While R has a group structure, with Z a subgroup of R, h does not have a group structure and discrete
subgroups of SL2(R) are generally noncommutative, so we write Γ\h rather than h/Γ to emphasize the
leftness of the group action. In contrast, there is no real difference between R/Z and Z\R since the group
structure on R is commutative. The backslash \ in Z\R is important since writing Z/R would be terrible.



4 KEITH CONRAD

space (C or h) modulo the action of an appropriate4 discrete group of distance-preserving
transformations of that space.

An important way to study a space is to study nice functions (continuous, smooth,
analytic) on the space. For a discrete group Γ in SL2(R), creating nice nonconstant complex-
valued functions on Γ\h is the same thing as creating nice functions f : h → C that are
Γ-invariant: f(γτ) = f(τ) for all γ ∈ Γ and τ ∈ h. Two non-invariant functions lead to an
invariant function if they fail to be invariant by the same fudge factor: if

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) and g

(
aτ + b

cτ + d

)
= (cτ + d)kg(τ)

for all ( a bc d ) ∈ Γ and τ ∈ h, and the same “weight” k, then the ratio f(τ)/g(τ) is Γ-invariant:

f((aτ + b)/(cτ + d))

g((aτ + b)/(cτ + d))
=

(cτ + d)kf(τ)

(cτ + d)kg(τ)
=
f(τ)

g(τ)
.

But why should we use fudge factors of the form (cτ + d)k?
Suppose for a function f : h → C that f(γτ) and f(τ) are always related by a factor

determined by γ ∈ Γ and τ ∈ h:

(2.3) f(γτ) = j(γ, τ)f(τ)

for some function j : Γ × h → C. That (2.1) defines a (left) group action of SL2(R) on h
means in part that (γ1γ2)τ = γ1(γ2τ), so f((γ1γ2)τ) = f(γ1(γ2τ)). This turns (2.3) into

(2.4) j(γ1γ2, τ)f(τ) = j(γ1, γ2τ)f(γ2τ).

Since f(γ2τ) = j(γ2, τ)f(τ), (2.4) holds if

(2.5) j(γ1γ2, τ) = j(γ1, γ2τ)j(γ2, τ),

which looks like the chain rule (f1 ◦ f2)′(x) = f ′1(f2(x))f ′2(x). This suggests a natural
example of (2.5) using differentiation: when γ = ( a bc d ) set

j(γ, τ) :=

(
aτ + b

cτ + d

)′
=
a(cτ + d)− c(aτ + b)

(cτ + d)2
=

ad− bc
(cτ + d)2

,

and for γ ∈ SL2(R) this says j(γ, τ) = 1/(cτ + d)2. When j(γ, τ) fits (2.5) so does j(γ, τ)m

for each m ∈ Z, which motivates the consideration of the modularity condition with factors
1/(cτ + d)k, at least for even k.

Exercises.

1. Prove (2.2).
2. Prove (2.1) defines a (left) group action of GL+

2 (R) on h.
3. Prove two matrices in GL+

2 (R) act in the same way everywhere on h if and only if
they are scalar multiplies of each other.

4For some discrete subgroups Γ of SL2(R), Γ\SL2(R) is not compact.
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3. Simplifying the modularity condition for SL2(Z)

The only modular forms we have seen are boring: the zero function in any weight and
constant functions in weight 0. Before giving interesting example of modular forms will use
group theory to simplify the modularity condition in the definition of a modular form. It
is an infinite set of equations, one for each matrix in SL2(Z), but the following lemma will
let us check the modularity condition on a set of generators for SL2(Z) to know it holds for
all matrices in the group.

Lemma 3.1. If a function f : h → C satisfies the modularity condition with weight k for
two matrices γ1 and γ2 in SL2(Z) then it satisfies the modularity condition with weight k
for γ1γ2 and for the inverse γ−11 .

Proof. Let γ1 = ( a1 b1c1 d1
) and γ2 = ( a2 b2c2 d2

). The modularity condition with weight k for these

matrices says f(γ1τ) = (c1τ+d1)
kf(τ) and f(γ2τ) = (c2τ+d2)

kf(τ) for all τ ∈ h. It follows
that for all τ ,

f((γ1γ2)τ) = f(γ1(γ2τ))

= (c1γ2τ + d1)
kf(γ2τ)

= (c1γ2τ + d1)
k(c2τ + d)kf(τ).

Since γ2τ = (a2τ + b2)/(c2τ + d2), a calculation shows

(c1γ2τ + d1)
k(c2τ + d)k = ((c1a2 + d1c2)τ + (c1b2 + d1d2))

k,

so

(3.1) f((γ1γ2)τ) = ((c1a2 + d1c2)τ + (c1b2 + d1d2))
kf(τ),

and the bottom matrix entries of

γ1γ2 =

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
∗ ∗

c1a2 + d1c2 c1b2 + d1d2

)
are exactly the “c” and “d” that appear when we write f((γ1γ2)τ) as (cτ +d)kf(τ) in (3.1).
Thus f satisfies the modularity condition with weight k for γ1γ2.

We now want to prove that if f(γ1τ) = (c1τ + d1)
kf(τ) for all τ ∈ h then the same

condition holds with γ1 replaced by γ−11 , which is ( d1 −b1
−c1 a1

) because γ1 has determinant 1.

Replacing τ with γ−11 τ in the modularity condition for the matrix γ1, we get

f(τ) = (c1(γ
−1
1 τ) + d1)

kf(γ−11 τ)

for all τ . Dividing both sides by (c1(γ
−1
1 τ) + d1)

k,

f(γ−11 τ) =
1

(c1γ
−1
1 τ + d1)k

f(τ)

for all τ . Since c1γ
−1
1 τ + d1 = (a1d1 − b1c1)/(−c1τ + a1) = 1/(−c1τ + a1),

f(γ−11 τ) = (−c1τ + a1)
kf(τ)

for all τ , which is the modularity condition for γ−11 . �

Theorem 3.2. If the set {γ1, . . . , γm} generates SL2(Z) and a function f : h→ C satisfies
the modularity condition with weight k for each γi then f satisfies the modularity condition
with weight k for all of SL2(Z).
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Proof. By Lemma 3.1, the set of all γ ∈ SL2(Z) for which f satisfies the modularity condition
with weight k is a subgroup of SL2(Z) (clearly the modularity condition holds when γ = I2).
Therefore if this subset contains a set of generators of SL2(Z) it is all of SL2(Z). �

Two particular elements in SL2(Z) are

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

The matrix S has order 4 (check S2 = −I2), while the matrix T has infinite order (check
Tn = ( 1 n

0 1 )). As linear fractional transformations of h,

(3.2) Sτ = −1

τ
, T τ = τ + 1,

so as a transformation of h the order of S is 2 rather than 4, while T has infinite order on
h.

Theorem 3.3. The group SL2(Z) is generated by S and T .

Proof. Let G = 〈S, T 〉 be the subgroup of SL2(Z) generated by S and T . We will give two
proofs that G = SL2(Z), one algebraic and the other geometric.

For the algebraic proof, we start by writing down the effect of S and Tn on any matrix
by multiplication from the left:

(3.3) S

(
a b
c d

)
=

(
−c −d
a b

)
, Tn

(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
.

Now pick any γ = ( a bc d ) in SL2(Z). Suppose c 6= 0. If |a| ≥ |c|, divide a by c: a = cq + r
with 0 ≤ r < |c|. By (3.3), T−qγ has upper left entry a − qc = r, which is smaller in
absolute value than the lower left entry c in T−qγ. Applying S switches these entries (with
a sign change), and we can apply the division algorithm in Z again if the lower left entry is
nonzero in order to find another power of T to multiply by on the left so the lower left entry
has smaller absolute value than before. Eventually multiplication of γ on the left by enough
copies of S and powers of T gives a matrix in SL2(Z) with lower left entry 0. Such a matrix,
since it is integral with determinant 1, has the form (±1 m

0 ±1 ) for some m ∈ Z and common

signs on the diagonal. This matrix is either Tm or −T−m, so there is some g ∈ G such that
gγ = ±Tn for some n ∈ Z. Since Tn ∈ G and S2 = −I2, we have γ = ±g−1Tn ∈ G, so we
are done.

In this algebraic proof, G acted on the set SL2(Z) by left multiplication. For the geometric
proof, we make G act on h by linear fractional transformations. This action does not
distinguish between matrices that differ by a sign (γ and −γ act on h in the same way), but
this will not be a problem for the purpose of using this action to prove G = SL2(Z) since
−I2 = S2 ∈ G.

The key geometric idea is that when SL2(Z) acts on a point in h, the orbit appears to
accumulate towards the x-axis. This is illustrated by the picture below, which shows points
in the SL2(Z)-orbit of 2i (including S(2i) = −1/(2i) = i/2). It appears that the imaginary
parts of points in the orbit never exceed 2.
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0 1−1 2−2

2i

i/2

With the picture in mind, pick γ ∈ SL2(Z) and set τ := γ(2i).
For any g = ( a bc d ) in G, so ad− bc = 1, (2.2) tells us

Im(gτ) =
Im τ

|cτ + d|2
.

Write τ as x+ yi. Then in the denominator

|cτ + d|2 = (cx+ d)2 + (cy)2,

since y 6= 0 there are only finitely many integers c and d with |cτ + d| less than a given
bound. Here τ is not changing but c and d are. Therefore Im(gτ) has a maximum possible

value as g runs over G (with τ fixed), so there is some g0 ∈ G such that Im(gτ) ≤ Im(g0τ)

for all g ∈ G.
Since Sg0 ∈ G, the maximality property defining g0 implies Im((Sg0)τ) ≤ Im(g0τ), so

(2.2) with ( a bc d ) = S gives us

Im(S(g0τ)) =
Im(g0τ)

|g0τ |2
≤ Im(g0τ).

Therefore |g0τ |2 ≥ 1, so |g0τ | ≥ 1. Since Im(Tng0τ) = Im(g0τ) and Tng0 ∈ G, replacing
g0τ with Tng0τ and running through the argument again shows |Tng0τ | ≥ 1 for all n ∈ Z.

Applying T (or T−1) to g0τ adjusts its real part by 1 (or −1) without affecting the
imaginary part. Every real number is in an interval [n − 1/2, n + 1/2] (centered at some
integer n), and if n − 1/2 ≤ Re(g0τ) ≤ n + 1/2 then −1/2 ≤ Re(T−ng0τ) ≤ 1/2. Since
T−ng0 ∈ G, the G-orbit of τ = γ(2i) has an element in the set

(3.4) F = {τ ∈ h : |Re(τ)| ≤ 1/2, |τ | ≥ 1}.

See the picture below. Note Im τ ≥
√

3/2 > 1/2 for all τ ∈ F .

0 1−1

F

We started by picking the number 2i in F and any γ in SL2(Z), and we showed there is
some g ∈ G such that the point g(γ(2i)) = (gγ)(2i) is also in F . By (2.2),

gγ =

(
a b
c d

)
∈ SL2(Z) =⇒ Im((gγ)(2i)) =

2

4c2 + d2
≥
√

3

2
,
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so c = 0 (otherwise the imaginary part is at most 2/(4c2) ≤ 1/2 <
√

3/2). Then ad = 1, so
a = d = ±1 and (

a b
0 d

)
(2i) =

2ai+ b

d
= 2i± b.

For this to have real part between ±1/2 forces b = 0, so gγ = ±I2. Thus γ = ±g−1. Since
−I2 = S2 ∈ G, we conclude γ ∈ G. �

The region F above is called a fundamental domain for the action of SL2(Z) on h. It
is analogous to [0, 1] as a fundamental domain for the translation action of Z on R: each
point in the space (h or R) has a point of its orbit (by SL2(Z) or Z) in the fundamental
domain (F or [0, 1]) and points in the fundamental domain that lie in the same orbit are
on the boundary.

Below is a decomposition of h into translates γ(F) as γ runs over SL2(Z), with γ = I2
corresponding to F . Different translates overlap only along boundary curves, and as we get
closer to the x-axis h is filled by infinitely many more of these translates. The fundamental
domain and its translates are called “ideal triangles” since they are each bounded by three
sides and have two endpoints in h but one “endpoint” not in h: the third endpoint is either
a rational number on the x-axis or (for the regions Tn(F) with n ∈ Z) is i∞. The page
https://roywilliams.github.io/play/js/sl2z/ animates SL2(Z)-orbits on this figure.

0 1 2−1−2

I2 T T 2T−1T−2

S TS T 2ST−1ST−2S

ST−1ST TSTSTS TST−1 T 2STT−1STT−1STS

The description of F in (3.4) uses Euclidean geometry (the absolute value measures
Euclidean distances in h) and is somewhat awkward. If we treat h as the hyperbolic plane,
for which the action of SL2(Z) and more generally SL2(R) is by isometries for the hyperbolic

https://roywilliams.github.io/play/js/sl2z/
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metric dH (see Appendix A), then there is a prettier description of F :

F = {τ ∈ h : dH(τ, 2i) ≤ dH(τ, γ(2i)) for all γ ∈ SL2(Z)}.
That is, F is the points of h whose distance (as measured by the hyperbolic metric) to 2i
is minimal compared to the distance to all points in the SL2(Z)-orbit of 2i. The boundary
of F is the points equidistant (for the hyperbolic metric) between 2i and one of its nearest
SL2(Z) translates T (2i) = 2i+1, T−1(2i) = 2i−1, or S(2i) = i/2.5 Part of what makes this
geometric description of F , called a Dirichlet polygon, attractive is that it also works for
discrete groups actings by isometries on Euclidean spaces. For example, when Z acts on R
by integer translations, for any a ∈ R the numbers whose distance to a+Z = {a+n : n ∈ Z}
is minimal at a is [a− 1/2, a+ 1/2] and this is a fundamental domain for Z acting on R.

Example 3.4. We will carry out the algebraic proof of Theorem 3.3 to express A = ( 17 29
7 12 )

in terms of S and T .
Since 17 = 7 · 2 + 3, we want to subtract 7 · 2 from 17:

T−2A =

(
3 5
7 12

)
.

Now we want to switch the roles of 3 and 7. Multiply by S:

ST−2A =

(
−7 −12
3 5

)
.

Dividing −7 by 3, we have −7 = 3 · (−3) + 2, so we want to add 3 ·3 to −7. Multiply by T 3:

T 3ST−2A =

(
2 3
3 5

)
.

Once again, multiply by S to switch the entries of the first column (up to sign):

ST 3ST−2A =

(
−3 −5
2 3

)
.

Since −3 = 2(−2) + 1, we compute

T 2ST 3ST−2A =

(
1 1
2 3

)
.

Mutliply by S:

ST 2ST 3ST−2A =

(
−2 −3
1 1

)
.

Since −2 = 1(−2) + 0, multiply by T 2:

T 2ST 2ST 3ST−2A =

(
0 −1
1 1

)
.

Multiply by S:

ST 2ST 2ST 3ST−2A =

(
−1 −1
0 −1

)
= −T = S2T.

Solving for A,

(3.5)

(
17 29
7 12

)
= A = T 2S−1T−3S−1T−2S−1T−2S−1(S2T ) = T 2ST−3ST−2ST−2ST

5We can replace 2i by yi for any y > 1 and the same description of F works.
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since S−1 = −S.

Remark 3.5. Multiplication by the matrices S and T is closely related to continued frac-
tions for rational numbers, with the caveat that the continued fraction algorithm should
use nearest integers from above rather than from below. To illustrate, the matrix ( 17 29

7 12 ) is
in SL2(Z), and to obtain an expression for it in terms of S and T , we look at the ratio of
the numbers in the first column, 17/7:

17

7
= 3− 4

7
= 3− 1

7/4
= 3− 1

2− 1/4
.

Using the entries 3, 2, and 4 as exponents for T ,

T 3ST 2ST 4S =

(
17 −5
7 −2

)
,

whose first column is what we are after. To get the correct second column, we solve ( 17 29
7 12 ) =

( 17 −5
7 −2 )M for M , which is ( 1 2

0 1 ) = T 2, so(
17 29
7 12

)
=

(
17 −5
7 −2

)
T 2 = T 3ST 2ST 4ST 2.

This is a different expression for ( 17 29
7 12 ) than the one we found in (3.5). The representation

of an element of SL2(Z) as a product of powers of S and T is not unique.

Here, finally, is the simplified description of the modularity condition in the definition of
a modular form for SL2(Z).

Corollary 3.6. For k ∈ Z, a function f : h→ C is a modular form of weight k for SL2(Z)
if and only if

(1) f is holomorphic on h,

(2) f(τ + 1) = f(τ) and f

(
−1

τ

)
= τkf(τ) for all τ ∈ h,

(3) the values f(τ) are bounded as Im τ →∞.

Proof. Use Theorems 3.2 and 3.3 together with (3.2). �

Exercises.

1. Find a matrix in SL2(Z) with first column
(
39
14

)
.

2. Express the matrix ( 8 7
9 8 ), which is in SL2(Z), as a product of powers of the matrices

S and T .
3. If f : h → C is a function satisfying the modularity condition for weight 4, show
f(ω) = 0 where ω = −1/2 + i

√
3/2 is a nontrivial cube root of unity in C, and if

instead f satisfies the modularity condition for weight 6 then prove f(i) = 0.
4. For k ∈ Z, a matrix ( a bc d ) in GL+

2 (R), and a function f : h→ C, define the function

f |k( a bc d ) : h→ C by the formula(
f |k
(
a b
c d

))
(τ) =

1

(cτ + d)k
f

(
aτ + b

cτ + d

)
.

(a) Prove this formula defines a (right) group action of GL+
2 (R) on functions:

f |kI2 = f and (f |kA)|kB = f |k(AB) for all A and B in GL+
2 (R).
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(b) If we want to view this action on functions as defined by the group of linear
fractional transformations, not by matrices, why should we change the defini-
tion of the action by multiplying the formula by (ad − bc)k/2? (See Exercise
2.3.)

5. For each N ≥ 1, the principal congruence subgroup of level N is

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
,

where the matrix congruence is componentwise. This is the kernel of the reduction
homomorphism SL2(Z) → SL2(Z/NZ), so Γ(N) is a normal subgroup of SL2(Z)
with finite index.

Prove Γ(2) is generated by the matrices −I2, ( 1 0
2 1 ), and ( 1 2

0 1 ). (Hint: Instead
of the usual division algorithm in the first proof of Theorem 3.3, use a modified
division algorithm: a = bq + r where |r| ≤ |b/2| and possibly r < 0.)

4. Eisenstein Series and q-expansions

The most basic example of a nonconstant modular form for SL2(Z) is an Eisenstein series.

Definition 4.1. For even k ≥ 4, the weight k Eisenstein series is

Gk(τ) :=
∑

(m,n)∈Z2

(m,n) 6=(0,0)

1

(mτ + n)k
.

Our goal is to prove Gk is a modular form of weight k for SL2(Z). The definition of
Gk(τ) makes sense for odd k ≥ 3, but in that case the series vanishes since the terms at
(m,n) and (−m,−n) cancel, so it is boring. (We already saw the only modular form of odd
weight for SL2(Z) is 0.)

First we prove absolute convergence.

Lemma 4.2. For each τ ∈ h there is a δ = δτ ∈ (0, 1) such that

|mτ + n| ≥ δ|mi+ n|

for all m,n ∈ Z.

Proof. If m = 0 then the desired inequality holds for all n provided we use δ ∈ (0, 1).
If m 6= 0, then |mτ + n| ≥ δ|mi + n| is equivalent to |τ + n/m| ≥ δ|i + n/m|, which in

turn is equivalent to ∣∣∣∣τ + n/m

i+ n/m

∣∣∣∣ ≥ δ.
Rather than working with rational n/m, let’s treat this as a task in real variables: set
fτ : R→ R by fτ (x) = |(τ−x)/(i−x)|, so fτ (x) > 0 for all x. This is a continuous function
and fτ (x) → 1 as x → ±∞. Therefore there is a large positive number R (depending on
τ) such that fτ (x) ≥ 1/2 for |x| > R. For x ∈ [−R,R], positivity of fτ (x) implies by
compactness of [−R,R] that there is some c > 0 such that fτ (x) ≥ cδ for all x ∈ [−R,R].
Therefore fτ (x) ≥ δ for all x ∈ R when δ = min(1/2, c). �

Theorem 4.3. The Eisenstein series Gk(τ) is absolutely convergent: for each τ ∈ h, the
series

∑
(m,n) 6=(0,0) 1/|mτ + n|k converges.
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Proof. Let δ = δτ be chosen as in Lemma 4.2. Then

1

|mτ + n|k
≤ 1

δk|mi+ n|k
=

1

δk
√
m2 + n2

k
.

The exponent k/2 is greater than 1, so absolute convergence of Gk(τ) follows from absolute

convergence of
∑

(m,n)6=(0,0) 1/
√
m2 + n2

k
for k > 2, which is proved in Section B as a special

case of convergence of a lattice sum in any number of dimensions. �

Theorem 4.4. For even k ≥ 4, the Eisenstein series Gk is a modular form of weight k for
SL2(Z).

Proof. By Theorem 4.3, Gk(τ) makes sense for each τ and the order of summation can be
rearranged by absolute convergence. To prove Gk is holomorphic, we want to derive this
from each term 1/(mτ+n)k in the series being holomorphic in τ . We will use a fundamental
result of complex analysis about limits of holomorphic functions being holomorphic: if a
sequence of holomorphic functions {fn} on a common domain Ω ⊂ C converges uniformly
on compact subsets of Ω then the pointwise limit f(z) = limn→∞ fn(z) is holomorphic on
Ω.6

To apply this result to Gk, we will use a strengthening of Lemma 4.2: on each half-strip of
the form Sa,b = {x+iy ∈ h : |x| ≤ a, y ≥ b} where a > 0 and b > 0, a value of δ can be chosen
in Lemma 4.2 that works for all τ in Sa,b. The proof that such δ exists is left to the reader as
an exercise (Exercise 4.1). Using this δ in the proof of Theorem 4.3 shows Gk(τ) converges
uniformly on each Sa,b by the Weierstrass M -test: the series

∑
(m,n) 6=(0,0) 1/|mτ + n|k for

τ ∈ Sa,b is bounded above termwise by
∑

(m,n) 6=(0,0) 1/δk
√
m2 + n2

k
, which is independent

of τ . Every compact subset of h is contained in some Sa,b, so Gk converges uniformly on
compact subsets of h and thus is holomorphic.

To prove Gk satisfies the modularity condition with weight k, Corollary 3.6 tells us we

have to check just two cases: Gk(τ + 1) =
?
= Gk(τ) and Gk(−1/τ)

?
= τkGk(τ). For the first

condition,

Gk(τ + 1) =
∑

(m,n)6=(0,0)

1

(m(τ + 1) + n)k
=

∑
(m,n) 6=(0,0)

1

(mτ + (m+ n))k
.

As (m,n) runs over Z2 − {(0, 0)}, so does (m,m + n), so absolute convergence of the
Eisenstein series lets us rearrange the terms:

Gk(τ + 1) =
∑

(m,n)6=(0,0)

1

(mτ + (m+ n))k
=

∑
(m,n)6=(0,0)

1

(mτ + n)k
= Gk(τ).

For the second condition,

Gk(−1/τ) =
∑

(m,n)6=(0,0)

1

(−m/τ + n)k
= τk

∑
(m,n)6=(0,0)

1

(nτ −m)k
.

This last series is Gk(τ) by rearranging terms, so Gk(−1/τ) = τkGk(τ).
The final property we have to check is behavior of Gk(τ) as τ → i∞. We can assume

Im τ ≥ 1, and since Gk(τ + 1) = Gk(τ) we may also assume |Re(τ)| ≤ 1/2 as τ → ∞
6The analogue of this in real analysis is false: the Stone–Weierstrass theorem implies |x| is a uniform limit

of polynomials on (−1, 1), and polynomials are real-analytic but |x| is not real-analytic on (−1, 1) because
there’s a problem at 0.
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This is the half-strip S1,1 described earlier in the proof, so there is some δ > 0 such that
|mτ + n| ≥ δ|mi+ n| for all τ ∈ S1,1 and m,n ∈ Z.

Rearrange the terms of Gk(τ):

(4.1) Gk(τ) =
∑
n6=0

1

nk
+
∑
m 6=0

∑
n∈Z

1

(mτ + n)k
= 2

∑
n≥1

1

nk
+ 2

∑
m≥1

∑
n∈Z

1

(mτ + n)k
,

where we write the sum over nonzero n and outer sum over nonzero m as twice a sum over
positive n and positive m using evenness of k. We will show the double series, where every
term has τ in it, tends to 0 as τ →∞, so Gk(τ)→ 2

∑
n≥1 1/nk as τ → i∞.

For any N ≥ 1,∑
m≥1

∑
n∈Z

1

|mτ + n|k
=

∑
m+|n|≤N

1

|mτ + n|k
+

∑
m+|n|>N

1

|mτ + n|k

≤
∑

m+|n|≤N

1

|mτ + n|k
+

1

δk

∑
m+|n|>N

1

|mi+ n|k
.

Since
∑

m≥1,n∈Z 1/|m+ ni|k converges, for any ε > 0 the tail
∑

m+|n|>N 1/|mi+ n|k is less

than ε if N is sufficiently large and this doesn’t involve τ . For such a choice of N , the finite
series

∑
m+|n|≤N 1/|mτ + n|k is less than ε if Im τ is sufficiently large. Thus the double

series in (4.1) is less than 2ε if Im τ is sufficiently large. �

We saw in Example 1.4 that every modular form satisfies f(τ + 1) = f(τ). The function
e2πiτ also satisfies this periodicity relation, and the standard way to write down modular
forms is through a power series in e2πiτ .

Theorem 4.5. If f : H → C is holomorphic, f(τ + 1) = f(τ) for all τ , and f is bounded
as τ →∞ then there are an ∈ C for n ≥ 0 such that

f(τ) =
∑
n≥0

ane
2πinτ

for all τ ∈ h. In particular, f(τ) has a limit as τ → i∞.

Proof. For τ ∈ h set q(τ) = e2πiτ . Writing τ = x + iy, we have q(τ) = e−2πye2πix, so
|q(τ)| = e−2πy ∈ (0, 1). Thus q(τ) lies in the punctured unit disc D′ = {q ∈ C : 0 < |q| < 1},
and conversely each point in D′ can be written as e2πiτ for a discrete set of values τ ∈ h.
The mapping h→ D′ given by q(τ) is surjective and locally invertible: if we write q0 ∈ D′
as e2πiτ0 then any q sufficiently close to q0 can be written as e2πiτ for a unique τ near τ0.
This mapping is pictured below. Note τ → i∞ in h corresponds to q → 0 in D′.

q = e2πiτ

Convert the function f : h → C into a function f̃ : D′ → C by defining f̃(q) = f(τ) for

any τ ∈ h that makes e2πiτ = q. This is well-defined because if e2πiτ
′

= q then τ ′ = τ + n
for some n ∈ Z, so f(τ ′) = f(τ +n) = f(τ) due to the relation f(τ +1) = f(τ) for all τ ∈ h.

Since f is holomorphic, we can prove f̃ is holomorphic by computing the derivative of f̃ :
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for each q0 ∈ D′, write q0 = e2πiτ0 . Then any q near q0 is e2πiτ for a unique τ near τ0, and
q → q0 is equivalent to τ → τ0. Thus

f̃(q)− f̃(q0)

q − q0
=
f(τ)− f(τ0)

q − q0
=
f(τ)− f(τ0)

τ − τ0
τ − τ0

e2πiτ − e2πiτ0
.

As τ → τ0, the right side tends to f ′(τ0)/(2πie
2πiτ0) = f ′(τ0)/(2πiq0). (This formula

for f ′(q0) is intuitive by the chain rule: df̃/dq = (df/dτ)(dτ/dq) = f ′(τ)(dτ/d(e2πiτ )) =
f ′(τ)/(2πiq).)

The boundedness of f(τ) as τ → i∞ implies boundedness of f̃(q) as q → 0. An im-
portant theorem in complex analysis, Riemann’s removable singularities theorem, says a
holomorphic function on a punctured neighborhood {z : 0 < |z − a| < r} of a point a that
is bounded on a small neighborhood of a (i) has a limit as z → a and (ii) the extended
function set equal to the limit at z = a is holomorphic at a. Therefore the boundedness of

f̃(q) as q → 0 implies f̃ is holomorphic at 0. Thus f̃ has a power series expansion at 0, say∑
n≥0 anq

n. Since f̃ is holomorphic on the whole open unit disc D = {q ∈ C : |q| < 1},
another basic theorem from complex analysis guarantees that

∑
n≥0 anq

n converges on all
of D: a holomorphic function on an open disc has its series at the center converge on the
whole disc. Therefore

f(τ) = f̃(e2πiτ ) =
∑
n≥0

ane
2πinτ

for all τ ∈ h. �

Definition 4.6. The q-expansion of a modular form f(τ) is the series
∑

n≥0 anq
n for which

f(τ) =
∑

n≥0 ane
2πinτ . The coefficients an in the q-expansion are called the Fourier coeffi-

cients of f .

A q-expansion is not merely a formal object: the equation f(τ) =
∑

n≥0 ane
2πinτ is

analytic on both sides, with the right side convergent for every τ ∈ h. When writing
a modular form f(τ) as its q-expansion, it is a common abuse of notation to write the
function as f(q), using the same letter f with the new variable q = e2πiτ .

The constant term a0 in the q-expansion is f(i∞) when f is a function of τ and f(0)
when f is a function of q. While the q-expansion of f encodes the relation f(τ + 1) = f(τ),
the other relation f(−1/τ) = τkf(τ) is not visible in a q-expansion. If we are given a new
power series converging on the open unit disc, there is usually no simple way to show if
it is the q-expansion of a modular form without further information. The definition of a
modular form is awkward to formulate directly in terms of q-expansions.

For the rest of this section we will work out the q-expansion of the Eisenstein series Gk.
We already saw in the proof of Theorem 4.4 that the constant term of the q-expansion is
2
∑

n≥1 1/nk. For every complex number s with Re(s) > 1, the Riemann zeta-function at

s is ζ(s) :=
∑

n≥1 1/ns. This series is absolutely and uniformly convergent on compact

subsets of {s : Re(s) > 1}, so ζ(s) is holomorphic on {s : Re(s) > 1}. The constant term of
Gk(τ) is 2ζ(k), and long before Riemann worked with ζ(s) Euler showed ζ(k) is a rational
multiple of πk when k is a positive even integer, e.g., ζ(2) = π2/6 and ζ(4) = π4/90.

Theorem 4.7. For even k ≥ 4, the q-expansion of Gk(τ) is 2ζ(k)+
2(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)qn,

where σk−1(n) =
∑

d|n d
k−1.
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Proof. We recall (4.1):

Gk(τ) = 2
∑
n≥1

1

nk
+ 2

∑
m≥1

(∑
n∈Z

1

(mτ + n)k

)
= 2ζ(k) + 2

∑
m≥1

(∑
n∈Z

1

(mτ + n)k

)
.

The inner sum has the form

(4.2)
∑
n∈Z

1

(w + n)k

where w = mτ ∈ h. This series, by its very shape, is a periodic function of w: its values
at w and w + 1 are equal, so we might think it could be written in terms of e2πiw. We will
prove

(4.3)
∑
n∈Z

1

(w + n)k
=

(2πi)k

(k − 1)!

∑
n≥1

nk−1e2πinw.

for all w ∈ h and plugging this into the formula for Gk(τ) using w = mτ as m varies will
produce the q-expansion of Gk(τ).

To analyze a series like (4.2) we will use a beautiful result in Fourier analysis that ex-
presses the sum of one function over Z as the sum of another function over Z: the Poisson
summation formula. This summation formula says that if f : R → C is a suitably nice
function then ∑

n∈Z
f(n) =

∑
n∈Z

f̂(n),

where f̂ : R→ C is the Fourier transform of f :

f̂(y) =

∫ ∞
−∞

f(x)e2πixy dx.

What does “suitably nice” mean?
First we need the function to have a Fourier transform. If f : R → C is absolutely

integrable on R, meaning
∫∞
−∞ |f(x)| dx < ∞, then the Fourier transform of f is defined

since |e2πixy| = 1. For the function 1/(w + x)k with w ∈ h, writing w = a+ bi, we have

1

|w + x|k
=

1

|(a+ x) + bi|k
=

1

((a+ x)2 + b2)k/2
,

so 1/(w + x)k is absolutely integrable for k ≥ 2. Thus the Fourier transform of 1/(w + x)k

makes sense for all y ∈ R.
The Poisson summation formula is valid for any function f : R→ C for which f and its

Fourier transform f̂ are both continuous and absolutely integrable on R. Clearly 1/(w+x)k

is continuous, and we showed it is absolutely integrable. It remains to compute its Fourier
transform and check it is continuous and absolutely integrable.

Letting ϕw(x) = 1/(w + x)k,

(4.4) ϕ̂w(y) =

∫
R

e2πixy

(w + x)k
dx = lim

R→∞

∫ R

−R

e2πixy

(w + x)k
dx.

We will calculate this integral using the residue theorem from complex analysis. Complexify
the integrand to h(z) = e2πizy/(w+ z)k for z ∈ C. This has a kth order pole at −w, which
is a point in the lower half-plane since w ∈ h.
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The numerator e2πizy in h(z) has absolute value e−2π Im(z)y, so if y ≥ 0 we want to
integrate h(z) along [−R,R] and then counterclockwise along the semicircle in the upper
half plane with R and −R as endpoints (figure below on the left), since in the upper half-

plane |e−2π Im(z)y| ≤ 1. If y < 0, we want to integrate h(z) along [−R,R] and then clockwise
along the semicircle in the lower half-plane connecting R to −R (figure below on the right),

since |e−2π Im(z)y| ≤ 1 on this semicircle. Let CR in each case be the indicated contour of
integration.

−w

CR

R−R

Contour for y ≥ 0

−w

CR

R−R

Contour for y < 0

By the residue theorem, for y ≥ 0 ∫
CR

h(z) dz = 0

for all R > 0, and it is left to the reader to check the integral of h(z) along the semicircular
part of CR tends to 0 as R→∞, so ∫ R

−R
h(x) dx→ 0

as R→∞. This says ϕ̂w(y) = 0 if y ≥ 0. For y < 0, using the second contour as CR,∫
CR

h(z) dz = −2πiResz=−w h(z)

by the residue theorem if R is large enough that the pole of h(z) is inside CR. There
is a minus sign in front of the residue because we are integrating clockwise instead of
counterclockwise in order to be integrating in the natural direction along the real axis.
Check the integral along the semicircle in CR tends to 0 as R→∞, so∫ R

−R
h(x) dx→ −2πiResz=−w h(z) = −2πiResz=−w

e2πizy

(w + z)k
= −2πie−2πiwy Resz=0

e2πizy

zk
.

For any a ∈ C, Resz=0(e
az/zk) = ak−1/(k−1)!, so ϕ̂w(y) = −2πie−2πiwy Resz=0 e

2πizy/zk =
−2πie−2πiwy(2πiy)k−1/(k − 1)!.

Our calculation of (4.4) can be summarized as

(4.5) ϕ̂w(y) =

{
0, if y ≥ 0,
−(2πi)k
(k−1)! y

k−1e−2πiwy, if y < 0.

As a function of y, (4.5) is continuous7 and, up to a constant, the integral of |ϕ̂w(y)| over

R is bounded above by
∫ 0
−∞ |y|

k−1e2π(Imw)y dy, which is finite.

7There is a general theorem in Fourier analysis that a function that is absolutely integrable has a Fourier
transform that is continuous, so the continuity of ϕ̂w was predictable.
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It is therefore legal to apply Poisson summation to the function ϕw:∑
n∈Z

1

(w + n)k
=
∑
n∈Z

ϕ̂w(n) =
∑
n≤−1

ϕ̂w(n) = − (2πi)k

(k − 1)!

∑
n≤−1

nk−1e−2πiwn.

Replacing n with −n for n ≥ 1,∑
n∈Z

1

(w + n)k
= − (2πi)k

(k − 1)!

∑
n≥1

(−n)k−1e2πiwn =
(−2πi)k

(k − 1)!

∑
n≥1

nk−1e2πiwn.

which is (4.3) except we have (−2πi)k instead of (2πi)k. The factor (−2πi)k, for k ≥ 2 even
or odd, is the right one. In our application k is even, so the sign doesn’t matter.

Returning now to the equation at the start of the proof,

Gk(τ) = 2ζ(k) + 2
∑
m≥1

(∑
n∈Z

1

(mτ + n)k

)

= 2ζ(k) + 2
∑
m≥1

(2πi)k

(k − 1)!

∑
n≥1

nk−1e2πiτ(mn)

= 2ζ(k) +
2(2πi)k

(k − 1)!

∑
m≥1

∑
n≥1

nk−1qmn.

Writing mn as N , summing over positive integers m and n is the same as summing over
positive integers m and N with the constraint that m | N , so

Gk(τ) = 2ζ(k) +
2(2πi)k

(k − 1)!

∑
N≥1

∑
n|N

nk−1

 qN = 2ζ(k) +
2(2πi)k

(k − 1)!

∑
N≥1

σk−1(N)qN .

�

Remark 4.8. In most treatments of modular forms, the q-expansion of Gk(τ) is derived
not using Poisson summation, but using a more elementary method involving the partial
fraction decomposition of π cot(πz). We use the technique of Poisson summation since it’s
good to get familiar with it. We’ll use Poisson summation later to construct a special
modular form of weight 12.

Euler’s formula for ζ(k) when k ≥ 2 is even is

(4.6) ζ(k) =
(2π)k(−1)k/2+1

k!

Bk
2

= − (2πi)k

(k − 1)!

Bk
2k
,

where Bk is the kth Bernoulli number: it is a rational number appearing in the power series

x

ex − 1
=
∑
k≥0

Bk
k!
xk = 1− 1

2
x+

1

12
x2 − 1

720
x4 + · · ·

The table below lists the first few Bernoulli numbers. The early data suggest Bk = 0 for
odd k > 1, which is true. The early data also suggest |Bk| is small, but actually |Bk| → ∞
as k →∞.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bk 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66 0 − 691

2730 0 7
6
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By Theorem 4.7 and (4.6),

Gk(τ) = 2ζ(k)− 4kζ(k)

Bk

∑
n≥1

σk−1(n)qn.

For arithmetic applications it is convenient to scale Gk(τ) so that its constant term is 1.

Definition 4.9. For even k ≥ 4, define the normalized Eisenstein series of weight k to be

(4.7) Ek(τ) = Ek(q) :=
Gk(τ)

2ζ(k)
= 1− 2k

Bk

∑
n≥1

σk−1(n)qn.

Using the table of values of Bernoulli numbers, some special cases of (4.7) are

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + . . .

E6(τ) = 1− 504q − 16632q2 − 122976q3 − . . .
E8(τ) = 1 + 480q + 61920q2 + 1050240q3 + . . .

E10(τ) = 1− 264q − 135432q2 − 5196576q3 − . . .

E12(τ) = 1 +
65520

691
q +

134250480

691
q2 +

11606736960

691
q3 + . . .

E14(τ) = 1− 24q − 196632q2 − 38263776q3 − . . .

Since 2k/Bk ∈ Z for k = 4, 6, 8, 10, and 14, all Fourier coefficients of Ek(τ) are integers
for these k.

The product of modular forms of weight k and ` is easily seen to be a modular form of
weight k+`, and we can find the q-expansion of the product by multiplying the q-expansions
of the two modular forms. For example,

E4(τ)2 = 1 + 480q + 61920q2 + 1050240q3 + . . . has weight 8,

E4(τ)E6(τ) = 1− 264q − 135432q2 − 5196576q3 + . . . has weight 10,

E4(τ)3 = 1 + 720q + 179280q2 + 16954560q3 + . . . has weight 12,

E6(τ)2 = 1− 1008q + 220752q2 + 16519104q3 + . . . has weight 12.

From the initial parts of q-expansions, it looks like E8 = E2
4 and E10 = E4E6. In weight

12, the modular forms E12, E
3
4 , and E2

6 are all different and are not scalar multiples of each
other since their constant terms all equal 1.

The explanation for identities like E8 = E2
4 and E10 = E4E6 will come from the fact that

the modular forms of a fixed weight are a complex vector space that is finite-dimensional,
whose proof is the main goal of Section 5.

While the original definition of Gk(τ) for even k ≥ 4 makes no sense when k = 2, the
q-expansion of Gk(τ) in Theorem 4.7 does make sense at k = 2!

Definition 4.10. For τ ∈ h, define

G2(τ) = 2ζ(2) +
2(2πi)2

(2− 1)!

∑
n≥1

σ1(n)qn =
π2

3
− 8π2

∑
n≥1

σ1(n)qn

and E2(τ) =
G2(τ)

2ζ(2)
= 1− 24

∑
n≥1

σ1(n)qn, where q = e2πiτ .
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The series G2(τ) converges for all q in the open unit disc on account of the weak bound
σ1(n) =

∑
d|n d ≤

∑n
k=1 k ∼ n2/2. It is holomorphic in q (as all convergent power series

are in a disc of convergence) and thus is also holomorphic in τ by composition. Trivially
G2(τ + 1) = G2(τ) and G2(τ) → π2/3 as τ → i∞. Could G2(−1/τ) = τ2G2(τ) for all τ ,
making G2(τ) a modular form of weight 2 for SL2(Z)? No.

Theorem 4.11. For all τ ∈ h, G2(−1/τ) = τ2G2(τ) − 2πiτ . Equivalently, E2(−1/τ) =
τ2G2(τ)− (6i/π)τ .

Proof. This is a project. �

We will see in Section 5 that the only modular form of weight 2 for SL2(Z) is 0.

Exercises.

1. In the proof of Lemma 4.2, for each half-strip Sa,b = {x + iy : |x| ≤ a, y ≥ b} in h,
where a > 0 and b > 0, show there is a δ > 0 such that |mτ + n| ≥ δ|mi+ n| for all
τ ∈ Sa,b and all m,n ∈ Z. That is, δ in Lemma 4.2 can be chosen uniformly in Sa,b.

2. For even k ≥ 4, show

Gk(τ) = ζ(k)
∑

(m,n)=1

1

(mτ + n)k
,

so Ek(τ) = (1/2)
∑

(m,n)=1(mτ + n)−k.

3. Let M be a positive integer and k ≥ 4 an even integer. Show∑
(m,n)∈MZ×Z
(m,n)6=(0,0)

1

(mτ + n)k
= 2ζ(k) + 2

(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)e2πiMnτ .

5. Dimensions of Spaces of Modular Forms

Let Mk denote the set of all weight k modular forms for SL2(Z). It is a vector space
over C. In this section, we show each Mk is finite-dimensional and write down an explicit
dimension formula.

The proof will fall into four parts:

(1) Prove Mk = {0} for k < 0,
(2) Construct a modular form ∆(τ) of weight 12 that is nonvanishing on h.8

(3) Use (1) and (2) to compute dimMk for 0 ≤ k ≤ 10.
(4) Use (2) and (3) to compute dimMk for k ≥ 12.

Theorem 5.1. If k < 0 then Mk = {0}.

Proof. Pick f ∈ Mk and write its q-expansion as
∑

n≥0 anq
n. We will prove each Fourier

coefficient an is 0, so f = 0.
The modularity condition for f and the imaginary part formula (2.2) raised to the k/2-

power say

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(
Im

(
aτ + b

cτ + d

))k/2
=

(Im τ)k/2

|cτ + d|k
,

8The minimal positive weight for a modular form that vanishes nowhere on h is 12 because if f ∈ Mk

and k 6≡ 0 mod 3 then f(e2πi/3) = 0, and if k 6≡ 0 mod 4 then f(i) = 0. See Exercise 3.3 for special cases.



20 KEITH CONRAD

for all ( a bc d ) ∈ SL2(Z). Therefore if we take the absolute value of f and multiply,∣∣∣∣f (aτ + b

cτ + d

)∣∣∣∣ (Im

(
aτ + b

cτ + d

))k/2
= |cτ + d|k|f(τ)|(Im τ)k/2

|cτ + d|k
= |f(τ)|(Im τ)k/2.

This says the continuous real-valued function |f(τ)|(Im τ)k/2 on h is SL2(Z)-invariant. (So
far we have not used k < 0.)

Any SL2(Z)-invariant function on h has all of its values achieved on the fundamental
domain F from Section 3. Break up F into two parts: that with Im τ ≤ B and that with
Im τ ≥ B for B to be determined. See the picture below.

B

0 1−1

Im τ ≥ B

Im τ ≤ B

As τ → i∞ in F , |f(τ)| is bounded and (Im τ)k/2 → 0 because k < 0. Therefore

|f(τ)|(Im τ)k/2 → 0 as τ → i∞, so there is some B > 0 such that |f(τ)|(Im τ)k/2 ≤ 1 for

Im τ ≥ B. On {τ ∈ F : Im τ ≤ B} the function |f(τ)|(Im τ)k/2 is bounded above since
a continuous real-valued function on a compact set is bounded. Putting these two parts
together, there is some C > 0 such that

(5.1) |f(x+ iy)|yk/2 ≤ C
for all x+ iy ∈ F and thus also for all x+ iy ∈ h by SL2(Z)-invariance.

Pick y > 0. In the q-expansion f(x+ iy) =
∑

n≥0 anq
n =

∑
n≥0 ane

−2πnye2πinx, multiply

both sides by e−2πimx and integrate from 0 to 1:∫ 1

0
f(x+ iy)e−2πimx dx =

∑
n≥0

ane
−2πny

∫ 1

0
e2πinxe−2πimx dx.

(Why can the series be integrated termwise?) Since
∫ 1
0 e

2πinxe−2πimx dx =
∫ 1
0 e

2πi(n−m)x dx
is 0 for n 6= m and is 1 for n = m, the integral produces the mth Fourier coefficient:∫ 1

0
f(x+ iy)e−2πimx dx = ame

−2πmy,

so

am = e2πmy
∫ 1

0
f(x+ iy)e−2πimx dx

(5.1)
=⇒ |am| ≤ e2πmy

∫ 1

0
Cy−k/2 dx =

Ce2πmy

yk/2
.

This holds for all y > 0. Letting y → 0+, the factor e2πmy tends to 1 and the factor yk/2

tends to ∞ since k < 0. Therefore |am| = 0, so am = 0 for all m. Thus f = 0. �

Theorem 5.2. There is a modular form ∆(τ) ∈M12 that is nonvanishing on h and it has
a simple zero at i∞: its q-expansion starts out as q + b2q

2 + · · · .
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Using Eisenstein series it is easy to construct a modular form of weight 12 whose q-
expansion starts out with q: since E3

4 = 1 + 720q + · · · and E2
6 = 1 − 1008q + · · · , the

difference (E3
4 − E2

6)/1728 has first term q in its q-expansion. What is not easy to see is
that this modular form vanishes nowhere on h. The way we will prove Theorem 5.2 is by
building a modular form of weight 12 in a different way. The argument is rather technical
(it will use a twisted version of Poisson summation), so for now we will accept Theorem
5.2 as proved and see how to use it to compute the dimensions (and bases) of every Mk for
k ≥ 0. At the end of this section we will return to prove Theorem 5.2.

Theorem 5.3. For k = 0, 2, 4, 6, 8, 10, dimMk is given in the following table.

k 0 2 4 6 8 10
dimMk 1 0 1 1 1 1

Proof. First we treat the cases k = 4, 6, 8, 10. Let f ∈ Mk and a0 = f(i∞). The difference
f(τ)− a0Ek(τ) lies in Mk and its q-expansion has constant term a0 − a0 = 0.

The ratio (f − a0Ek)/∆ lies in Mk−12: it is holomorphic on h since ∆(τ) 6= 0 for all
τ ∈ h, it easily satisfies the modularity condition for weight k − 12. and as q → 0 the ratio
has a finite limit since f − a0Ek has a zero at q = 0 and ∆ has a simple zero at q = 0.
By Theorem 5.1, Mk−12 = {0} since k − 12 < 0, so f − a0Ek = 0. Thus f = a0Ek, so
Mk = CEk is one-dimensional.

If k = 0, the constant function 1 lies in M0 and reasoning as above with 1 in place of Ek
shows f = a0 · 1 = a0, so M0 = C.

Finally, we will prove M2 = 0. Let f ∈ M2, so f(−1/τ) = τ2f(τ) for all τ ∈ h. Setting
τ = i we get f(i) = −f(i), so f(i) = 0. The square f2 lies in M4, and we already proved
M4 = CE4, so f(τ)2 = cE4(τ) for some c ∈ C and all τ . Setting τ = i on both sides and
using the q-expansion of E4,

0 = cE4(i) = c

1 + 240
∑
n≥1

σ3(n)e−2πn

 .

The sum on the right is positive, so c = 0 and thus f = 0. �

Theorem 5.4. Every space Mk is finite-dimensional. For even k ≥ 0,

dimMk =

{
[k/12] + 1, if k 6≡ 2 mod 12,

[k/12], if k ≡ 2 mod 12.

Proof. We have verified the theorem for k = 0, 2, 4, 6, 8, and 10.
For even k ≥ 12 and f ∈Mk with constant term a0, (f − a0Ek)/∆ lies in Mk−12 by the

reasoning used in the proof of Theorem 5.3. Therefore f = a0Ek + ∆g where g ∈ Mk−12,
so the C-linear map C ⊕Mk−12 → Mk given by (c, g) 7→ cEk + ∆g is surjective. To show
it is injective we show the kernel is 0: if cEk + ∆g = 0 in Mk then looking at the constant
term of the q-expansion on the left implies c = 0, so ∆g = 0, and thus g = 0.

Since C⊕Mk−12 ∼= Mk as C-vector spaces for k ≥ 12, Mk is finite-dimensional with di-
mension 1+dimMk−12. The dimension formula in the theorem satisfies the same recursion,
so we are done by induction on k. �

Here is an initial list of the dimensions of Mk for even k ≥ 0. Note in particular that
dimMk = 1 exactly for k = 0, 4, 6, 8, 10, and 14.
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k 0 2 4 6 8 10 12 14 16 18 20 22 24 26

dimMk 1 0 1 1 1 1 2 1 2 2 2 2 3 2

Example 5.5. The equations E8 = E2
4 and E10 = E4E6 follow from M8 and M10 being

one-dimensional; just check the constant terms on both sides agree.

Example 5.6. The space M12 has dimension 2, so E3
4 and E2

6 must be a basis since they
are nonzero and are not scalar multiples (look at the q-expansions).

Since E12 ∈ M12, there are complex numbers a and b such that E12 = aE3
4 + bE2

6 . We
can find a and b by looking at the constant and linear Fourier coefficients on both sides as
the first and second components of a vector equation:(

1

655020/691

)
= a

(
1

720

)
+ b

(
1

−1008

)
=

(
1 1

720 −1008

)(
a

b

)
.

Using linear algebra, a = 441/691 and b = 250/691. For example, if we look at the
coefficients of q2 in E12, E

3
4 , and E2

6 then

134250480

691
= 179280a+ 220752b.

Since modular forms lie in finite-dimensional spaces but their q-expansions have infinitely
many Fourier coefficients, there is some redundancy in the coefficients: knowing a suitable
finite list of Fourier coefficients is enough to determine the modular form. The following
theorem is one version of this idea.

Theorem 5.7. For each even k ≥ 0 there is an R ≥ 0 such that the first R Fourier
coefficients of any weight k modular form for SL2(Z) determine the form.

Proof. Let Lj : Mk → Cj by sending each modular form to the vector of its first j Fourier
coefficients:

Lj(f) = (a0, . . . , aj−1).

The kernels ker(Lj) are a decreasing sequence of subspaces of Mk: ker(Lj+1) ⊂ ker(Lj).
Since Mk is finite-dimensional, the kernel subspaces must eventually stabilize, say ker(LR) =
ker(Lj) for all j ≥ R.

This implies ker(LR) = 0, by contradiction. If this kernel were nonzero, there is a nonzero
f ∈ Mk whose first R coefficients vanish. Some later coefficient is nonzero, say the R′-th
coefficient, so ker(LR′) is a proper subspace of ker(LR), which contradicts the stabilization.
Thus ker(LR) = 0, so LR is injective and that means each f ∈Mk is determined by its first
R Fourier coefficients. �

Clearly R has to be at least as large as the dimension of Mk. It turns out that this
minimal choice always works, but that is not obvious and we omit the proof.

Now we return to the proof of Theorem 5.2, which says there is a weight 12 modular form
that is nonvanishing on h with a simple zero at i∞. The construction of this modular form
will use a “twisted” version of Poisson summation. The usual Poisson summation formula
says ∑

n∈Z
f(n) =

∑
n∈Z

f̂(n)

for suitably nice functions f : R→ C (e.g., it suffices for both f and f̂ to be continuous and
absolutely integrable). A twisted version of Poisson summation is the following equality of
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sums over odd integers:

(5.2)
∑
n∈Z
n odd

(−1)(n−1)/2f(n) =
i

2

∑
n∈Z
n odd

(−1)(n−1)/2f̂(n/4).

This formula can be proved using the ordinary Poisson summation formula on suitable

auxiliary functions (Exercise 5.5c). We will use (5.2) for the function f(x) = xe−πax
2
,

where a > 0. Its Fourier transform is f̂(y) = (−iy/a3/2)e−πy2/a (Exercise 5.5b). Both f(x)

and f̂(y) are continuous and absolutely integrable on R, which suffices to justify using (5.2).
Thus ∑

n∈Z
n odd

(−1)(n−1)/2ne−πan
2

=
i

2

∑
n∈Z
n odd

(−1)(n−1)/2
−i(n/4)

a3/2
e−πn

2/16a

=
1

8a3/2

∑
n∈Z
n odd

(−1)(n−1)/2ne−πn
2/16a.

Replacing a with a/4 throughout,∑
n∈Z
n odd

(−1)(n−1)/2ne−πan
2/4 =

1

a3/2

∑
n∈Z
n odd

(−1)(n−1)/2ne−πn
2/4a.

In each sum, the terms at n and −n are equal, so combine the terms and divide by 2:

(5.3)
∑
n≥1
n odd

(−1)(n−1)/2ne−πan
2/4 =

1

a3/2

∑
n≥1
n odd

(−1)(n−1)/2ne−πn
2/4a.

For τ ∈ h, define

θ(τ) =
∑
n≥1
n odd

(−1)(n−1)/2neπin
2τ/4 = eπiτ/4 − 3eπi9τ/4 + 5eπi25τ/4 − · · · .

Writing τ = x+ iy,

θ(x+ iy) =
∑
n≥1
n odd

(−1)(n−1)/2ne−πn
2y/4eπin

2x/4,

which converges very rapidly; it is holomorphic on h (as the series converges uniformly on
compact subsets of h) and θ(i∞) = 0. Along the imaginary axis

θ(iy) =
∑
n≥1
n odd

(−1)(n−1)/2ne−πn
2y/4

=
1

y3/2

∑
n≥1
n odd

(−1)(n−1)/2ne−πn
2/4y by (5.3)

=
1

y3/2
θ(i/y)

=
1

y3/2
θ

(
− 1

iy

)
.
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Therefore θ(−1/iy) = y3/2θ(iy). Raise both sides to the 8th power:

θ

(
−1

iy

)8

= y12θ(iy)8 = (iy)12θ(iy)8.

It follows from this that θ(−1/τ)8 = τ12θ(τ)8 on h since both sides are holomorphic and we
proved they are equal on the imaginary axis in h, so they must be equal everywhere.

It is left to the reader to check θ(τ + 1) = 1+i√
2
θ(τ) (Exercise 5.6). Since (1 + i)/

√
2 is an

8th root of unity, θ(τ + 1)8 = θ(τ)8.

Definition 5.8. For τ ∈ h, define ∆(τ) = θ(τ)8.

The function ∆(τ) is holomorphic on h, since θ(τ) is, and we proved ∆(τ + 1) = ∆(τ)
and ∆(−1/τ) = τ12∆(τ). Therefore ∆ ∈M12, and since θ(i∞) = 0 also ∆(i∞) = 0.

Proof. (of Theorem 5.2) To show the q-expansion of ∆ starts with q, since ∆(i∞) = 0 we
know there is a q-expansion ∆(τ) =

∑
n≥1 anq

n =
∑

n≥1 ane
2πinτ and we want to show

a1 = 1 (most importantly, that a1 6= 0). Since θ(τ) is defined as a power series in eπiτ/4

whose first term is eπiτ/4, its 8th power has first term (eπiτ/4)8 = e2πiτ = q.
To prove ∆ is nonvanishing on h, we will prove θ is novanishing on h. Suppose θ(τ0) = 0

for some τ0. Then θ(γτ0) = 0 for all γ ∈ SL2(Z), so we may assume τ0 ∈ F (the fundamental
domain for SL2(Z)). In the equation

0 = θ(τ0) =
∑
n≥1
n odd

(−1)(n−1)/2neπin
2τ0/4

bring the term at n = 1 over to the left side and take absolute values:

(5.4) |eπiτ0/4| ≤
∑
n≥3
n odd

n|eπin2τ0/4|

Set τ0 = x0 + iy0, so y0 ≥
√

3/2 because τ0 ∈ F . Then (5.4) becomes

e−πy0/4 ≤
∑
n≥3
n odd

ne−πn
2y0/4,

so

1 ≤
∑
n≥3
n odd

ne−π(n
2−1)y0/4 ≤

∑
n≥3
n odd

ne−π(n
2−1)

√
3/8.

The sum on the right is rapidly convergent and without caring about error estimates the
sum of the first few terms is approximately .013, which is much less than 1, so it appears
we have a contradiction.

To make that last step rigorous, we will prove
∑

odd n≥3 ne
−π(n2−1)

√
3/8 < 1. Writing odd

n ≥ 3 as 2m+ 1 for m ≥ 1 and doing some algebra,∑
odd n≥3

ne−π(n
2−1)

√
3/8 =

∑
m≥1

(2m+ 1)e−π(m
2+m)

√
3/2.

Since m2 +m ≥ 2m,∑
m≥1

(2m+ 1)e−π(m
2+m)

√
3/2 ≤

∑
m≥1

(2m+ 1)e−πm
√
3.
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This upper bound is a power series in e−π
√
3 ≈ .0043. For 0 < x < 1, set

f(x) =
∑
m≥1

(2m+ 1)xm = 2
∑
m≥1

mxm +
∑
m≥1

xm =
2x

(1− x)2
+

x

1− x
.

This rational function is strictly increasing on (0, 1) (its derivative is (3 +x)/(1−x)3). The
unique number in (0, 1) where f has value 1 is (5 −

√
17)/4 ≈ .218, which is greater than

e−π
√
3 ≈ .0043, so f(e−π

√
3) < 1, and therefore the sum we care about is also less than 1.

More precisely, f(e−π
√
3) ≈ .01309, so the sum we care about is less than .01309. �

Our method of proving finite-dimensionality of the spaces Mk depended in a crucial way
on the existence of a modular form that is nonvanishing on h with a simple 0 at i∞. The
modular forms of positive weight for groups other than SL2(Z) do not typically include a
form that is nowhere zero on h, so proving finite-dimensionality of spaces of modular forms
in general requires more sophisticated ideas, such as the Riemann-Roch theorem.

Exercises.

1. From E8 = E2
4 deduce for n ≥ 1 that σ7(n) = σ3(n) + 120

∑n−1
m=1 σ3(m)σ3(n−m).

2. Let f ∈ Mk and g ∈ M`. Show kf(τ)g′(τ) − `f ′(τ)g(τ) ∈ Mk+`+2, where the
differentiation is with respect to τ . This is a special case of a more general bilinear
operation Mk×M` →Mk+`+2n for each n ≥ 0 called the nth Rankin–Cohen bracket.
When n = 0 it is ordinary multiplication of modular forms, and when n = 1 it is
essentially the operation described in this exercise. (Hint: Start by taking the
derivative with respect to τ of both sides of the modularity condition. Do not
confuse (f((aτ + b)/(cτ + d)))′ with f ′((aτ + b)/(cτ + d)).)

3. Show the ratio E6/E4 satisfies the modularity condition for weight 2. Why doesn’t
this contradict M2 = {0}?

4. If f ∈Mk is nonvanishing on h then prove 12 | k and f equals ∆k/12 up to multipli-
cation by a nonzero constant.

5. (a) Let f : R→ C be an absolutely integrable function. For a > 0 and b ∈ R, set
fa,b(x) = f(ax+ b). Prove the Fourier transform of fa,b is

f̂a,b(y) =
e2πib/a

a
f̂
(y
a

)
.

(b) Prove xe−πx
2

has Fourier transform −iyeπy2 and then use part (a) to find the

Fourier transform of xe−πax
2

for a > 0.
(c) Prove (5.2). (Hint: Write

∑
odd n(−1)(n−1)/2f(n) as∑

m∈Z
f(4m+ 1)−

∑
m∈Z

f(4m− 1)

and apply the usual Poisson summation formula to the functions f(4x+1) and
f(4x− 1), whose Fourier transforms are described by part (a).)

6. For θ(τ) =
∑

odd n≥1(−1)(n−1)/2neπin
2τ/4, show θ(τ + 1) = 1+i√

2
θ(τ).

7. Use the fact that f(x) = e−πax
2

has Fourier transform f̂(y) = (1/
√
a)eπy

2/a to prove

that the function θ̃(τ) :=
∑

n∈Z e
πin2τ = 1 +

∑
n≥1 2eπin

2τ satisfies θ̃(−1/τ)4 =

−τ2θ̃(τ)4.
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6. The Eisenstein basis

We computed dimMk without writing down a basis (when k > 12). In this section we
describe an explicit basis built out of Eisenstein series, and more precisely it will be built
from E4 and E6.

How did Eisenstein series play a role leading up to Theorem 5.4? We used E4(i) > 0 in
the proof that M2 = {0}, and when we showed (f − a0Ek)/∆ is a modular form the only
property we needed of Ek is that it lies in Mk and has constant term 1. For every even
k ≥ 4 we can write k = 4a + 6b for some nonnegative integers a and b, so Ea4E

b
6 is in Mk

with constant term 1. Therefore we can prove Theorem 5.4 using only the Eisenstein series
E4 and E6: no Ek for k > 6 is needed for the proof.

Theorem 6.1. For even k ≥ 0, the set {Ea4Eb6 : a, b ≥ 0, 4a+ 6b = k} is a basis of Mk.

Proof. Let Nk be the number of solutions to 4a + 6b = k in nonnegative integers a and b.
By a direct check, Nk = dimMk for k ≤ 12. Since Nk = 1+Nk−12 for k ≥ 12, Nk = dimMk

for all k. So the proposed basis {Ea4Eb6 : a, b ≥ 0, 4a+ 6b = k} has the right size.
To show this set is linearly independent, we may suppose k ≥ 14. Let∑

4a+6b=k
a,b≥0

ca,bE4(τ)aE6(τ)b = 0

for all τ . If there is a pure E4 term, say cA,0E4(τ)A, then setting τ = i shows cA,0E4(i)
A = 0

since E6(i) = 0 (Exercise 3.3). Since E4(i) > 0, cA,0 = 0. Therefore all nonzero terms in
the sum have b ≥ 1. As E6 is not identically 0, we may divide by it and get∑

ca,bE4(τ)aE6(τ)b−1 = 0,

a linear relation in weight k − 6. By induction the remaining coefficients are 0. �

Definition 6.2. The basis {Ea4Eb6 : 4a+ 6b = k} of Mk will be called the Eisenstein basis.

The following application of the Eisenstein basis depends on E4 and E6 having all rational
Fourier coefficients.

Theorem 6.3. If k > 0 and f ∈Mk has q-expansion
∑

n≥0 anq
n with an ∈ Q for all n ≥ 1,

then a0 ∈ Q.

Proof. Before we do anything with modular forms, we will prove a result from abstract
algebra that describes rational numbers using field automorphisms of the complex numbers.

There are two known field automorphisms of C: the identity and complex conjugation.
Many additional field automorphisms of C exist, since Zorn’s lemma (the axiom of choice)
can be used to prove for any subfield F ⊂ C that any field automorphism of F can be
extended (somehow, usually in many ways) to a field automorphism of C. For a proof, see
Corollary 4 of http://www.math.uconn.edu/~kconrad/blurbs/zorn2.pdf.

As an example, if F = Q(
√

2) then the automorphism a+ b
√

2 7→ a− b
√

2 on F extends
(in infinitely many ways in fact) to an automorphism of C. Such an extension is neither the
identity nor complex conjugation, since the extension does not fix

√
2 but the identity and

complex conjugation both fix
√

2. No automorphism of C besides the identity or complex
conjugation is continuous, and the extra field automorphisms can’t be written down using
explicit formulas, so their existence really needs Zorn’s lemma.

Field automorphisms of C can tell us whether or not a complex number is rational.

http://www.math.uconn.edu/~kconrad/blurbs/zorn2.pdf
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Claim: If a ∈ C is not rational then there is a field automorphism σ : C → C that does
not fix a.

Proof of claim: We take cases depending on if a is algebraic or transcendental over Q.
If a is algebraic over Q and a 6∈ Q, let F be the splitting field of Q(a) over Q. By Galois
theory, there is a field automorphism of F that does not fix a. Any extension σ of this
automorphism to C will not fix a. If a is instead transcendental over Q, let F = Q(a). Then
F is isomorphic to the rational function field Q(X) for an indeterminate X, so a 7→ 1/a (or
a 7→ −a) defines a field automorphism of F not fixing a. This automorphism of F extends
to an automorphism of C and does not fix a. This concludes the proof of the claim.

Now we turn to the part of the proof that involves modular forms.
Each modular form for SL2(Z) is determined by its q-expansion, so we can embed the

vector space Mk into the ring of formal power series C[[q]] by thinking about each modular
form as its q-expansion ∑

n≥0
anq

n, an ∈ C,

viewed purely formally in C[[q]]. For example, the two Eisenstein series E4 and E6 are
viewed as series in C[[q]] that both have all coefficients in Q.

For any field automorphism σ of C we can define a ring automorphism rσ of C[[q]]
by mapping every formal power series

∑
anq

n to the formal power series
∑
σ(an)qn. If

f =
∑

n≥1 anq
n is in Mk, is rσ(f) =

∑
σ(an)qn the q-expansion of a modular form?

Yes! To prove this, we can assume k is even and at least 4, since otherwise Mk is {0} or
C. Write f as a C-linear combination of the Eisenstein basis for Mk:

f =
∑

4a+6b=k

cabE
a
4E

b
6

for some complex numbers cab. Viewing both sides in C[[q]] and applying rσ to this equation,

rσ(f) = rσ

( ∑
4a+6b=k

cabE
a
4E

b
6

)
=

∑
4a+6b=k

σ(cab)rσ(E4)
arσ(E6)

b.

Since the q-expansion coefficients of E4 and E6 are rational, rσ(E4) = E4 and rσ(E6) = E6.
Thus

rσ(f) =
∑

4a+6b=k

σ(cab)E
a
4E

b
6.

This is a C-linear combination of the q-expansions of modular forms of weight k, so rσ(f)
is the q-expansion of a modular form of weight k (the same weight as f).

Now suppose all the q-expansions coefficients of f are in Q except perhaps for its constant
term a0. Then the q-expansion coefficients of f and rσ(f) agree everywhere except possibly
in their constant terms, which are a0 and σ(a0). Since f and rσ(f) are both in Mk, their
difference f−rσ(f) is a constant function in Mk. The only constant function of weight k > 0
is 0. Therefore rσ(f)−f = 0, so rσ(f) = f , which implies σ(a0) = a0 for all automorphisms
σ of C. Thus, by the claim at the start of this proof, a0 ∈ Q. �

If
∑
anq

n is the q-expansion of a modular form and an ∈ Z for n ≥ 1, it is generally false
that a0 ∈ Z. An example is

1

240
E4 =

1

240
+
∑
n≥1

σ3(n)qn =
1

240
+ q + 9q2 + 28q3 + . . .
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We can now use modular forms to prove a property of the Riemann zeta-function.

Theorem 6.4. For even k ≥ 8, ζ(k) is a rational multiple of πk.

Proof. Apply Theorem 6.3 to the Eisenstein series

Gk(τ)

2(2πi)k/(k − 1)!
=

ζ(k)

(2πi)k/(k − 1)!
+
∑
n≥1

σk−1(n)qn,

whose q-expansion does not depend on prior knowledge of zeta-values at even integers k ≥ 8.
Since all the higher-degree Fourier coefficients σk−1(n) are rational, the constant term is
also rational, so ζ(k)/πk is rational. �

The proof of Theorem 6.4 depends on Theorem 6.3, whose proof in turns depends on
rationality of all the Fourier coefficients of the Eisenstein basis. The rationality of the Fourier
coefficients of E4 and E6 requires knowing ζ(4)/π4 and ζ(6)/π6 are rational. Therefore our
proof using modular forms that ζ(k)/πk ∈ Q for even integers k ≥ 8 needs this result to
be known already for k = 4 and k = 6 (the case k = 2 does not matter). You can check
we never relied on the Eisenstein series with weight > 6 for anything but examples, so
deducing the rationality of ζ(k)/πk for even k ≥ 8 from the cases k = 4 and 6 is not a
circular argument.

This method of deducing rationality properties of zeta-values from their appearance in
the constant term of a modular form can be generalized to zeta-values of all totally real
number fields at positive even integers, by constructing modular forms in which the zeta-
values appear in the constant term. This is the Klingen–Siegel theorem.

Are there any linear relations between forms of different weights?

Lemma 6.5. Modular forms with different weights are linearly independent over C.

Proof. Let f1, f2, . . . , fm be nonzero modular forms with respective weights k1 < k2 < · · · <
km. All weights are nonnegative. Assume the fi satisfy a nontrivial linear relation:

(6.1) α1f1(τ) + α2f2(τ) + · · ·+ αmfm(τ) = 0

for all τ ∈ h, where not all αj equal 0. We may assume this is an example with m ≥ 2
minimal, so all αj are nonzero.

Pick γ in SL2(Z) with lower left entry c 6= 0 (i.e., γ 6= ±Tn for any n ∈ Z). Replacing τ
with γτ in (6.1), the modularity condition implies

(6.2) α1(cτ + d)k1f1(τ) + α2(cτ + d)k2f2(τ) + . . . αm(cτ + d)kmfm(τ) = 0

for all τ .
Let fj(τ) have q-expansion

∑
n≥0 a

(j)
n e2πinτ , so∑

n≥0
(α1(cτ + d)k1a(1)n + · · ·+ αm(cτ + d)kma(m)

n )e2πinτ = 0.

Look at this along the imaginary axis: for τ = iy with y > 0,

(6.3)
∑
n≥0

(α1(ciy + d)k1a(1)n + · · ·+ αm(ciy + d)kma(m)
n )e−2πny = 0.

For n > 0, yre−2πny → 0 as y →∞ for any r ≥ 0, so if we divide through (6.3) by e−2πNy

for the smallest N such that some a
(j)
N is nonzero and then let y → 0, we are left with

lim
y→∞

α1(ciy + d)k1a
(1)
N + · · ·+ αm(ciy + d)kma

(m)
N = 0.
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All αj are nonzero, some a
(j)
N is nonzero, and the weights kj are distinct, so the left side is

the limit of a nonconstant polynomial in y as y →∞. We have a contradiction. �

The proof hardly used the modularity condition for SL2(Z); only one γ 6= ±Tn was
needed.

Since MkM` ⊂ Mk+`, the C-linear combinations of modular forms of all weights for
SL2(Z) is not only a vector space, but a ring containing M0 = C. (The sum of modular
forms of different weights is is not a modular form.) By Theorem 6.1, the forms Ea4E

b
6 for

general a, b ≥ 0 span the C-algebra generated by all modular forms, so the ring generated
over C by modular forms for SL2(Z) is C[E4, E6].

Theorem 6.6. The modular forms E4 and E6 are algebraically independent over C.

Proof. Suppose P (X,Y ) is a nonzero polynomial in C[X,Y ] such that P (E4(τ), E6(τ)) = 0

for all τ . For each monomial aijX
iY j in P (X,Y ), the function aijE

i
4E

j
6 is a modular form of

weight 4i+6j, so if we collect together in P (E4, E6) all monomial terms of a common weight
then Lemma 6.5 gives us equations Qk(E4, E6) = 0 where each monomial term appearing in
here has the same weight k. By Theorem 6.1 the coefficients occurring in Qk(X,Y ) (which
are all coefficients from P (X,Y )) are all 0, so P = 0. �

Corollary 6.7. The ring generated over C by all modular forms for SL2(Z) is isomorphic
to the polynomial ring C[X,Y ].

Proof. The ring is C[E4, E6], so the algebraic independence of E4 and E6 over C implies
C[E4, E6] ∼= C[X,Y ]. �

Exercises.

1. (a) Express E18 as a linear combinations of E3
6 and E3

4E6.
(b) Express each of E2

12, E6E8E10, and E24 as linear combinations of E6
4 , E3

4E
2
6 ,

and E4
6 .

7. Modular forms in terms of SL2(Z)-invariant functions

Let f : h → C be a modular form of weight k for SL2(Z). We saw in the proof of

Theorem 5.1 that the real-valued function |f(τ)|(Im τ)k/2 is SL2(Z)-invariant (the theorem
was concerned with k < 0, but this part of the proof goes through for all integers k).
Although it might seem at first that taking absolute values on f destroys some information
about f being a modular form, we can nearly recover the modularity condition from the
SL2(Z)-invariance of |f(τ)|(Im τ)k/2 if we remember f is holomorphic. Here is a general
version of this type of result.

Theorem 7.1. Let Γ be a subgroup of SL2(R). If f : h → C is holomorphic then the
following conditions are equivalent:

(1) |f(τ)|(Im τ)k/2 is a Γ-invariant function: |f(γτ)|(Im γτ)k/2 = |f(τ)|(Im τ)k/2 for
all γ ∈ Γ and τ ∈ h,

(2) there is a group homomorphism χ : Γ→ S1 such that f(γτ) = χ(γ)(cγτ + dγ)kf(τ)
for all γ = (

∗ ∗
cγ dγ ) in Γ.

Proof. That (2) implies (1) follows by the same reasoning as in the proof of Theorem 5.1
since |χ(γ)| = 1 for all γ ∈ Γ.
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To prove (1) implies (2), this is obvious if f is identically 0 (let χ be any homomorphism,
even the trivial one), so we can assume f is not identically 0. Then for each γ ∈ Γ,

|f(γτ)|(Im γτ)k/2 = |f(τ)|(Im τ)k/2 ⇐⇒ |f(γτ)| =
(

Im τ

Im γτ

)k/2
|f(τ)|

⇐⇒ |f(γτ)| =
(

Im τ

(Im τ)/|cγτ + dγ |2

)k/2
|f(τ)|

⇐⇒ |f(γτ)| = |cγτ + dγ |k|f(τ)|,

so f(γτ) and g(τ) := (cγτ + dγ)kf(τ) are both holomorphic in τ and are not identically 0,
and |f(γτ)| = |g(τ)| for all τ ∈ h. We want to show there is some number α ∈ S1 such that
f(γτ) = αg(τ) for all τ .

There is a ball B in h on which f(τ) is nonvanishing. Then f(γτ) and g(τ) are nonvan-
ishing on B, so their ratio f(γτ)/g(τ) is holomorphic on B and has values in the unit circle.
The Open Mapping Theorem from complex analysis says a nonconstant holomorphic func-
tion on a connected open subset Ω of C sends open subsets to open subsets. In particular,
a holomorphic function with values in S1 must be constant, so there is a number α ∈ S1

such that f(γτ)/g(τ) = α on B. Then f(γτ) = αg(τ) on B, so by rigidity of holomorphic
functions on h we get f(γτ) = αg(τ) for all τ ∈ h.

The constant α depends on the choice of γ, so write it as χ(γ): for each γ ∈ Γ we
showed there is some χ(γ) ∈ S1 such that f(γτ) = χ(γ)g(τ) = χ(γ)(cγτ + dγ)kf(τ) for

all τ ∈ h. Why is χ : Γ → S1 a homomorphism? For γ1 = ( a1 b1c1 d1
) and γ2 = ( a2 b2c2 d2

) in Γ

and any τ ∈ h, γ1γ2 has second row entries c1a2 + d1c2 and c1b2 + d1d2 so f((γ1γ2)τ) =
χ(γ1γ2)((c1a2 + d1c2)τ + (c1b2 + d1d2)τ)kf(τ), and also

f((γ1γ2)τ) = f(γ1(γ2τ))

= χ(γ1)(c1(γ2τ) + d1)
kf(γ2τ)

= χ(γ1)

(
c1

(
a2τ + b2
c2τ + d2

)
+ d1

)k
χ(γ2)(c2τ + d2)

kf(τ)

= χ(γ1)χ(γ2)
(c1(a2τ + b2) + d1(c2τ + d2))

k

(c2τ + d2)k
(c2τ + d2)

kf(τ)

= χ(γ1)χ(γ2)((c1a2 + d1c2)τ + (c1b2 + d1d2))
kf(τ).

The two expressions we found for f(γ1γ2τ) are exactly the same except for the factors
χ(γ1γ2) and χ(γ1)χ(γ2), so (since f is not identically 0) we get χ(γ1γ2) = χ(γ1)χ(γ2). �

This theorem suggests generalizing the concept of modular forms to allow modular forms
“with character.” For example, if χ : SL2(Z)→ S1 is a homomorphism (a one-dimensional
character) then a modular form of weight k with character χ for SL2(Z) would be a holo-
morphic function f : h→ C that satisfies the condition

f

(
aτ + b

cτ + d

)
= χ

(
a b
c d

)
(cτ + d)kf(τ)

for all ( a bc d ) ∈ SL2(Z) and is bounded as τ → i∞. A modular form in its original definition
would be a modular form with trivial character. Theorem 7.1 tells us a modular form of
weight k with some character is a holomorphic function f : h→ C bounded as τ → i∞ such
that |f(τ)|(Im τ)k/2 is an SL2(Z)-invariant function.
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Homomorphisms SL2(Z)→ S1 are trivial on the commutator subgroup [SL2(Z), SL2(Z)],
which turns out to be a subgroup of index 12, and there are 12 characters on SL2(Z).

8. Coefficient estimates in q-expansions

When we write a modular form f ∈Mk as a q-expansion
∑

n≥0 anq
n, how quickly do the

coefficients grow? Even a cursory glance at the coefficients of Eisenstein series shows they
seem to get large (in absolute value) quickly. We will prove in this section an upper bound
on |an|, showing it grows no faster than a simple power of n depending on the weight of f .

Example 8.1. For the Eisenstein series Ek = 1−(2k/Bk)
∑

n≥1 σk−1(n)qn, the nth Fourier

coefficient is (−2k/Bk)σk−1(n). Since k ≥ 4, the divisor sum σk−1(n) grows no faster than
a constant multiple of nk−1:

σk−1(n) =
∑
d|n

dk−1 = nk−1
∑
d|n

1

(n/d)k−1
≤ nk−1

∑
m≥1

1

mk−1 = ζ(k − 1)nk−1

and trivially σk−1(n) ≥ nk−1, so the nth Fourier coefficient of Ek grows like nk−1 as n→∞,
to within constant multiples above and below.

To expand this example to an estimate on |an| in the general case, we need to focus
attention on the modular forms that vanish at i∞.

Definition 8.2. A modular form f ∈ Mk is called a cusp form if the constant term of its
q-expansion is 0. The set of all cusp forms of weight k is denoted Sk.

The letter S in Sk is taken from the word Spitzenform which is German for cusp form:
Spitze means “cusp” (or “tip, spike”) in German.9 The reason for this terminology is that
for modular forms on groups other than SL2(Z) the notion of a cusp form includes vanishing
conditions at points besides i∞ where the fundamental domain for the group touches the
boundary of the upper half-plane, and the shape of the fundamental domain near those
boundary points looks like a cusp (see the fundamental domain for Γ0(2) near 0).

The space Sk of cusp forms in Mk is the kernel of the linear map Mk → C given by
evaluating modular forms at i∞. Thus Mk/Sk ∼= C when Mk 6= {0}, so dimSk = dimMk−1
when Mk 6= {0}. In particular, Sk 6= {0} if and only if dimMk ≥ 2, so the first k where
Sk 6= 0 is k = 12: dimS12 = dimM12 − 1 = 2− 1 = 1.

Example 8.3. The modular form ∆(τ) = q + · · · is a cusp form in S12. Since S12 is
1-dimensional, any two methods of constructing a cusp form of weight 12 for SL2(Z) will
lead to the same function to within a constant multiple.

Unlike Eisenstein series, whose Fourier coefficients have explicit formulas, the Fourier
coefficients of cusp forms usually do not admit simple general formulas and their size is
much smaller than those of Eisenstein series.

Theorem 8.4. If f =
∑

n≥1 anq
n is a cusp form of weight k for SL2(Z) then an = O(nk/2).

Proof. We use an idea from the proof that the only modular form of negative weight is zero
(Theorem 5.1). In that proof we showed |f(τ)|(Im τ)k/2 is an SL2(Z)-invariant function no
matter what the weight is (positive, negative, or 0).

9In French the term is forme parabolique, and the Russian term is similar to this, because cusps are also
called parabolic points.
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When f ∈ Sk, so its q-expansion starts out as a1q + · · · (the coefficient a1 may or
may not be 0), then as a function on the open unit disc we can say |f(q)| = O(|q|) as
q → 0. Therefore if τ = x + iy and y → ∞ we have |f(τ)| = O(e−2πy) as y → ∞. Thus

|f(τ)|yk/2 = O(e−2πyyk/2)→ 0 as y →∞, and the boundedness of |f(τ)|(Im τ)k/2 on h now
follows just as in the proof of Theorem 5.1.

Letting |f(τ)|(Im τ)k/2 ≤ C for all τ , we get

(8.1) |an| ≤ Ce2πnyy−k/2

for all y > 0 as in the proof of Theorem 5.1. In that proof we let y → 0+ to show an = 0
since k < 0, but for k ≥ 0 we don’t get progress by letting y → 0+. Instead, simply set
y = 1/n to see that |an| ≤ Ce2πnk/2 = O(nk/2). �

Theorem 8.5. For even k ≥ 4 and f =
∑

n≥0 anq
n in Mk, an = O(nk−1), and an grows

like nk−1 to within a constant multiple if and only if f is not a cusp form.

Proof. We know by Theorem 8.4 that an = O(nk/2) if f is a cusp form, so it remains to
show if f is not a cusp form that Ank−1 ≤ |an| ≤ Bnk−1 for all n and some constants A
and B (depending perhaps on k).

Both f and a0Ek are in Mk with constant term a0, so the difference g := f − a0Ek is a
cusp form of weight k. Letting g =

∑
n≥0 bnq

n, we have

an = a0

(
− 2k

Bk

)
σk−1(n) + bn.

Since a0 6= 0 the first term grows like nk−1 to within constant multiples while the second
term grows at most like nk/2. �

9. Modular Forms and Dirichlet Series

A Dirichlet series is an infinite series of the form∑
n≥1

an
ns
.

For example, if an = 1 for all n then this Dirichlet series is the Riemann zeta-function
ζ(s) =

∑
n≥1 1/ns, which is absolutely convergent when Re(s) > 1 because∑

n≥1

∣∣∣∣ 1

ns

∣∣∣∣ =
∑
n≥1

1

nRe(s)
<∞

when Re(s) > 1 by the integral test from calculus. Dirichlet series are not an all-purpose
tool like power series in analysis, but they are very important series in number theory.

The convergence properties of Dirichlet series are both similar to and different from power
series. For example, if a power series

∑
n≥0 cnz

n converges at a number z0 then in the disc

{z : |z| < |z0|} the power series is absolutely convergent and also uniformly convergent on
compact subsets of that disc, which justifies termwise differentiation of the power series. If a
Dirichlet series converges at a number s0 then in the right half-plane {s : Re(s) > Re(s0)},
which is pictured below, the series is convergent10 and is also uniformly convergent on
compact subsets of the half-plane {s : Re(s) > Re(s0)}, which implies the Dirichlet series is

10Absolute convergence at s0 implies absolute convergence for Re(s) > Re(s0), but just having con-
vergence at s0 only implies absolute convergence for Re(s) > Re(s0) + 1. For example, the “alternating
zeta-function”

∑
n≥1(−1)n−1/ns converges for Re(s) > 0 but is absolutely convergent only for Re(s) > 1.
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holomorphic for Re(s) > Re(s0) and can be differentiated termwise there. Proofs of these
convergence properties of Dirichlet series can be found in analytic number theory textbooks.

s0

Although the Dirichlet series defining ζ(s) only converges for Re(s) > 1, Riemann used
other formulas for the zeta-function to show ζ(s) has an analytic continuation to C except
for a simple pole at s = 1 (with residue 1) and there is a functional equation relating ζ(s)
to ζ(1− s):

(9.1) ζ(1− s) =
2

(2π)s
cos
(πs

2

)
Γ(s)ζ(s),

where the Gamma-function Γ(s) is the meromorphic function on C defined for Re(s) > 0
as the integral

∫∞
0 tse−s dt/t and continued to the rest of C by the formula Γ(s+1) = sΓ(s)

(proved for Re(s) > 0 with integration by parts). As an example of the functional equation,
taking s = 2 we get

ζ(−1) =
2

4π2
cos(π)Γ(2)ζ(2) = − 1

2π2
π2

6
= − 1

12
.

(For some other s one needs to be careful about cancellation of zeros and poles in different
factors of (9.1) in order to evaluate the right side at s: at s = 1 there is a simple zero in
cos(πs/2) and a simple pole in ζ(s), which cancel out and leave ζ(0) = −1/2.) Riemann
found (9.1) is equivalent to a cleaner functional equation for the “completed zeta-function”

Z(s) = π−s/2Γ(s/2)ζ(s):

(9.2) Z(1− s) = Z(s).

Riemann’s proof of the analytic continuation of ζ(s) or Z(s) used the Jacobi theta-

function Θ(y) =
∑

n∈Z e
−πn2y. He showed for Re(s) > 1 that

Z(s) =
1

2

∫ ∞
0

(Θ(y)− 1)ys/2
dy

y
,

then split up the integral into two integrals over [0, 1] and [1,∞), rewrote the integral over
[0, 1] as an integral over [1,∞), and used the transformation law Θ(1/y) =

√
yΘ(y) to put

the integrals in a form that were visibly unchanged when s is replaced with 1− s, which is
the functional equation (9.2). The transformation law for Θ(1/y), involving a square root
of y, reflects that Θ(y) is closely related to a modular form of weight 1/2. Nowadays many
years after Riemann, we know many Dirichlet series besides ζ(s) that converge on some right
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half-plane and have a meromorphic continuation to C that satisfies a functional equation
like (9.2) after the Dirichlet series is multiplied by exponential and Γ-functions like ζ(s) is
to form Z(s). Essentially the only known method of proving the meromorphic continuation
and functional equation is to connect the coefficients of the Dirichlet series to something like
a modular form. In this section, we illustrate that connection by showing how to associate
a Dirichlet series directly to a modular form and use properties of the modular form to get
the meromorphic continuation and functional equation for the Dirichlet series.

Definition 9.1. The L-function of a modular form f ∈ Mk with q-expansion
∑

n≥0 anq
n

is L(f, s) =
∑

n≥1 an/n
s.

The coefficient a0 does not appear in L(f, s), but we’ll see how L(f, s), as an analytic
function, knows what a0 is. Our first order of business is to say where L(f, s) converges.

Theorem 9.2. The series L(f, s) is absolutely convergent for Re(s) > k, where k is the
weight of f .

Proof. Let f have q-expansion
∑

n≥0 anq
n. Then |an| ≤ Ckn

k−1 for some constant Ck, by
Theorem 8.5, so ∑

n≥1

∣∣∣an
ns

∣∣∣ ≤∑
n≥1

Ck
1

nRe(s)−(k−1) = Ck
∑
n≥1

1

nRe(s)−k+1
.

For Re(s) > k the exponent on n is greater than 1, so the series is absolutely convergent. �

Example 9.3. For even k ≥ 4, the L-function of Ek is essentially a product of two zeta-
functions:

L(Ek, s) = − 2k

Bk

∑
n≥1

σk−1(n)

ns
= − 2k

Bk
ζ(s)ζ(s− k + 1).

Remark 9.4. Theorem 9.2 is not saying L(f, s) is never absolutely convergent outside
Re(s) > k. For example, if f is a cusp form of weight k then its coefficients grow at most

like O(nk/2) by Theorem 8.4, so L(f, s) converges absolutely for Re(s) > k/2 + 1. If the

O(nk/2)-estimate can be sharpened then the half-plane of absolute convergence of L(f, s)
would become even larger (there are results in this direction: the Ramanujan-Petersson
conjecture, proved by Deligne).

Theorem 9.5. For even k ≥ 4 and f ∈Mk, the “completed L-function” of f

Λ(f, s) = (2π)−sΓ(s)L(f, s)

has an analytic continuation to C except for at worst simple poles at s = 0 and s = k with
residues

Ress=0 Λ(f, s) = −a0, Ress=k Λ(f, s) = (−1)k/2a0,

where a0 is the constant term of the q-expansion of f . The function Λ(f, s) satisfies the
functional equation

Λ(f, k − s) = (−1)k/2Λ(f, s).

This theorem shows how L(f, s) “knows” the constant term a0 of f even though a0 is
not a coefficient in this Dirichlet series: it appears in the residue of (2π)−sΓ(s)L(f, s) at 0.

If a0 = 0, namely f is a cusp form, then the residues at s = 0 and s = k both vanish so
the theorem is saying Λ(f, s) is an entire function.
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Proof. Here is the plan of the proof. For s ∈ C having Re(s) > k, L(f, s) is already defined.
We will express Λ(f, s) for such s as an integral over [0,∞), break up the integral into a sum
of integrals over [0, 1] and [1,∞), and convert the integral over [0, 1] into an integral over
[1,∞) by a change of variables. The two integrals over [1,∞) will each make sense for all
s ∈ C and provide the analytic continuation of Λ(f, s) to all of C. The modularity condition
for f(−1/τ), along the positive imaginary axis, will be used to combine the two integrals
over [1,∞) into a single integral that has the desired symmetry under the substitution

s 7→ k − s. Along the way we will pick up polar terms −a0/s and (−1)k/2a0/(s− k).
Fix s ∈ C with Re(s) > k. Then

(2π)−sΓ(s)L(f, s) = (2π)−sΓ(s)
∑
n≥1

an
ns

=
∑
n≥1

an
(2πn)s

Γ(s)

=
∑
n≥1

an
(2πn)s

∫ ∞
0

tse−t
dt

t

=
∑
n≥1

an

∫ ∞
0

(
t

2πn

)s
e−t

dt

t
.

In the integral, make the change of variables y = t/2πn, so dt/t = dy/y and

(2π)−sΓ(s)L(f, s) =
∑
n≥1

an

∫ ∞
0

yse−2πny
dy

y
.

The series on the right converges absolutely and uniformly on compact subsets of Re(s) >
k + 1, so we can interchange the sum and integral:

Λ(f, s) =

∫ ∞
0

∑
n≥1

ane
−2πny

 ys
dy

y
.

The series inside the integral is f(iy) without its constant term, so f(iy)− a0. Thus

Λ(f, s) =

∫ ∞
0

(f(iy)− a0)ys
dy

y
=

∫ 1

0
(f(iy)− a0)ys

dy

y
+

∫ ∞
1

(f(iy)− a0)ys
dy

y
.

For y ≥ 1, f(iy) − a0 = O(e−2πy), so the integral over [1,∞) (this is key – keep the
integral bounded away from the point y = 0) converges for all s ∈ C and can be proved

to be holomorphic in s. In the integral over [0, 1], the term −
∫ 1
0 a0y

sdy/y is −a0/s. In∫ 1
0 f(iy)ys dy/y, make the change of variables y 7→ 1/y to convert the integral into one over

[1,∞). Since f(i/y) = f(−1/iy) = (iy)kf(iy) = (−1)k/2ykf(iy),

Λ(f, s) =

∫ 1

0
f(iy)ys

dy

y
− a0

s
+

∫ ∞
1

(f(iy)− a0)ys
dy

y

=

∫ 1

∞
f(i/y)y−s

(
−dy
y

)
− a0

s
+

∫ ∞
1

(f(iy)− a0)ys
dy

y

=

∫ ∞
1

(−1)k/2f(iy)yk−s
dy

y
− a0

s
+

∫ ∞
1

(f(iy)− a0)ys
dy

y
.(9.3)
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In this last formula, the first integral makes sense since f(iy) is bounded as y → ∞
and |yk−s/y| = 1/yRe(s)−k+1 has exponent greater than 1 in the denominator. Since∫∞
1 yk−s dy/y = 1/(k − s) when Re(s) > k, we can add and subtract a0y

k−s/y in the
first integral:∫ ∞

1
(−1)k/2f(iy)yk−s

dy

y
= (−1)k/2

∫ ∞
1

(f(iy)− a0)yk−s
dy

y
+ (−1)k/2

∫ ∞
1

a0y
k−s dy

y

= (−1)k/2
∫ ∞
1

(f(iy)− a0)yk−s
dy

y
+ (−1)k/2

a0
s− k

.(9.4)

Since |f(iy) − a0| ≤ Ce−2πy for y ≥ 1 and some constant C, this last integral over [1,∞)
converges for all s and is entire. Feeding (9.4) into (9.3),

Λ(f, s) =

∫ ∞
1

(f(iy)− a0)(ys + (−1)k/2yk−s)
dy

y
− a0

s
+ (−1)k/2

a0
s− k

.

The integral here is entire and the two other terms provide at worst simple poles (they are

not poles if a0 = 0) at s = 0 with residue −a0 and at s = k with residue (−1)k/2a0. We can
use this final expression to define Λ(f, s) for all s ∈ C.

If we replace s with k − s, the formula changes only by an overall factor of (−1)k/2, so

Λ(f, k − s) = (−1)k/2Λ(f, s). �

More can be proved about Λ(f, s) than we have done here: it is bounded in vertical strips
if we ignore small discs around the two poles in case they exist and lie in the strips.

Remark 9.6. The q-expansion of a modular form f makes essential use of the modularity
condition f(τ + 1) = f(τ), but keeps the modularity condition f(−1/τ) = τkf(τ) obscure.
In the proof of the meromorphic continuation of Λ(f, s) to C we made essential use of the
second modularity condition.

Corollary 9.7. For even k ≥ 4 and f ∈ Mk, the Dirichlet series L(f, s) has an analytic
continuation to C except for a simple pole at s = k if f is not a cusp form.

Proof. In the equation Λ(f, s) = (2π)−sΓ(s)L(f, s) solve for L(f, s):

L(f, s) =
(2π)s

Γ(s)
Λ(f, s).

On the right side, 1/Γ(s) is an entire function with simple zeros at integers s ≤ 0, and
Λ(f, s) is an entire function if f is a cusp form and is entire except for simple poles at s = 0
and s = k if f is not a cusp form. Therefore if f is a cusp form, L(f, s) is entire. If f is
not a cusp form, the simple pole of Λ(f, s) at 0 is canceled by the simple zero of 1/Γ(s) at
s = 0, but the simple pole of Λ(f, s) at s = k is not canceled since Γ(k) = 1/(k − 1)!. �

Hecke (in 1936) proved a converse to Theorem 9.5 and its corollary. We will state the
version without poles: if a Dirichlet series D(s) =

∑
n≥1 an/n

s converges in some right

half-plane and the function D(s) := (2π)−sΓ(s)D(s) extends to an entire function that is
bounded in vertical strips and satisfies

D(k − s) = (−1)k/2D(s)

for an even integer k ≥ 0, then
∑

n≥1 ane
2πinτ is a cusp form of weight k for SL2(Z).
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Example 9.8. Since S12 has dimension 1, up to scaling there is only one Dirichlet series∑
n≥1 ann

−s that converges in a right half-plane and D(s) = (2π)−sΓ(s)
∑

n≥1 an/n
s ex-

tends to an entire function that is bounded in vertical strips and satisfies D(12−s) = D(s):∑
ane

2πinτ is in S12 so it is a scalar multiple of ∆(τ).

Thirty years after Hecke proved his converse theorem, Weil generalized it to characterize
modular forms on certain finite-index subgroups of SL2(Z) in terms of the analytic behavior
of their corresponding Dirichlet series and the twists of these Dirichlet series by Dirichlet
characters.

Appendix A. The Hyperbolic Plane

The hyperbolic plane is the upper half-plane h with a definition of lines (also called
geodesics) and distances that differ from the usual meaning of these notions in the Euclidean
plane R2.

Lines in h are the vertical lines in h or the semicircles in h that meet the x-axis in a
90-degree angle (the x-axis is the diameter of the semicircle). In the picture below, if P and
Q have the same x-coordinate then the line PQ through P and Q is the part of the usual
Euclidean (vertical) line through P and Q that is in h. If P and Q do not have the same
x-coordinate then PQ is the unique Euclidean semicircle through P and Q with diameter
on the x-axis.

P

Q P
Q

R

On the right side of the picture two lines drawn through a point R not on PQ don’t
intersect PQ. This contradicts the parallel postulate of Euclidean geometry, which says a
point not on a line L has exactly one line through it that doesn’t meet L. In R2 the parallel
postulate is true, but in h it is not.

The hyperbolic distance between two points P and Q in h is defined using integration
along PQ:

dH(P,Q) =

∫ Q

P

√
(dx/dt)2 + (dy/dt)2

y(t)
dt,

where the integral is taken along the hyperbolic line in h from P to Q using any smooth
parametrization (x(t), y(t)) of the segment in PQ from P to Q.

Example A.1. To compute the distance between y0i and y1i, parametrize the vertical line
between them as (x(t), y(t)) = (0, (1− t)y0 + ty1) for 0 ≤ t ≤ 1. Then

dH(y0i, y1i) =

∫ 1

0

√
02 + (y1 − y0)2

(1− t)y0 + ty1
dt = | log y1 − log y0| = | log(y1/y0)|.

For example, dH(yi, i) = | log y| and the midpoint between y0i and y1i when y0 6= y1 is√
y0y1i, which is (always) different from the Euclidean midpoint.

The action of SL2(R) on h by linear fractional transformations preserves hyperbolic dis-
tances: for each A ∈ SL2(R), dH(A(P ), A(Q)) = dH(P,Q) for all P and Q in h. A function
h → h that preserves distances is called an isometry, and SL2(R) acting by linear frac-
tional transformation is the group of all orientation-preserving isometries of the hyperbolic
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plane.11 An example of an isometry of h that reverses orientation is τ 7→ −τ , or equivalently
x+ yi 7→ −x+ yi, and every orientation-reversing isometry is this example composed with
the action by a matrix in SL2(R).

Appendix B. A lattice sum

This section proves a result used in Section 4 to show Eisenstein series of weight k ≥ 4
are absolutely convergent.

From calculus, the series
∑

n≥1 1/ns converges for s > 1 and diverges for 0 < s ≤ 1. We

will generalize this result to a sum over the d-dimensional integral lattice Zd for any d ≥ 1.

For any x = (x1, . . . , xd) in Rd, set ||x|| =
√
x21 + · · ·+ x2d. This is the length of x.

Theorem B.1. For s > 0, the infinite series
∑

a∈Zd−{0}

1

||a||s
converges for s > d and

diverges for 0 < s ≤ d.

Proof. We will first collect together all the terms of the same size (that is, all vectors in
Zd with the same length), and then use an identity called summation by parts, which is
a discrete analogue of integration by parts. Then we will rewrite the desired sum as an
integral, and our problem will be reduced to the fact that

∫∞
1 dx/xt converges for t > 1 and

diverges for 0 < t ≤ 1.
The squared length ||a||2 of any a ∈ Zd is a positive integer. For n ≥ 1, set

rd(n) = |{a ∈ Zd : ||a||2 = n}|.

Then ∑
a∈Zd−{0}

1

||a||s
=

∑
a∈Zd−{0}

1

(||a||2)s/2
=
∑
n≥1

rd(n)

ns/2
= lim

N→∞

N∑
n=1

rd(n)

ns/2
.

For n ≥ 1 set S(n) = rd(1) + · · · + rd(n) = |{a ∈ Zd : ||a||2 ≤ n}| and S(0) = 0, so
rd(n) = S(n)− S(n− 1) for n ≥ 1. Then

N∑
n=1

rd(n)

ns/2
=

N∑
n=1

S(n)− S(n− 1)

ns/2
.

For a sum of the form
∑N

n=1 un(vn−vn−1), which resembles
∫
u dv, there is the following

analogue of integration by parts, called summation by parts:

N∑
n=1

un(vn − vn−1) = uNvN − u1v0 −
N−1∑
n=1

vn(un+1 − un).

Using un = 1/ns/2 and vn = S(n), so v0 = 0, summation by parts implies

(B.1)
N∑
n=1

S(n)− S(n− 1)

ns/2
=
S(N)

N s/2
−
N−1∑
n=1

S(n)

(
1

(n+ 1)s/2
− 1

ns/2

)
.

11Strictly speaking, since A and −A act in the same way, the group of orientation-preserving isometries
is SL2(R)/{±I2}.
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Write the difference 1/(n + 1)s/2 − 1/ns/2 as an integral using the Fundamental Theorem
of Calculus:

1

(n+ 1)s/2
− 1

ns/2
=

∫ n+1

n

d

dx

(
1

xs/2

)
dx = −s

2

∫ n+1

n

1

xs/2+1
dx.

Substituting this into (B.1),

N∑
n=1

S(n)− S(n− 1)

ns/2
=

S(N)

N s/2
+
s

2

N−1∑
n=1

S(n)

∫ n+1

n

dx

xs/2+1

=
S(N)

N s/2
+
s

2

N−1∑
n=1

∫ n+1

n

S(n)

xs/2+1
dx.

For real x ≥ 1, which need not be integers, set

S(x) =
∑

1≤n≤x
rd(n) = |{a ∈ Zd : 1 ≤ ||a||2 ≤ x}|,

so S(x) = S(n) where n ≤ x < n+ 1. Then

N∑
n=1

S(n)− S(n− 1)

ns/2
=

S(N)

N s/2
+
s

2

N−1∑
n=1

∫ n+1

n

S(x)

xs/2+1
dx

=
S(N)

N s/2
+
s

2

∫ N

1

S(x)

xs/2+1
dx.

To determine how S(N)/N s/2 and the integral from 1 to N behave as N → ∞, we will
estimate S(x) for large x using geometry.

The number S(x) counts nonzero integral points inside the ball {x ∈ Rd : ||x|| ≤
√
x}

with radius
√
x, and the number of such integral points is approximately the volume of that

ball. A ball of radius r in Rd has volume Cdr
d for some constant Cd depending only on d

(for example, C2 = π). Using r =
√
x, it turns out there are positive constants Ad and Bd

such that

(B.2) Adx
d/2 ≤ S(x) ≤ Bdxd/2

for large x. Intuitively, (B.2) is due to volumes and lattice points counts of a ball in Rd

growing at the same rate (for large radii). We give a more careful justification of (B.2) at
the end.

Dividing through the inequality (B.2) by xs/2+1, we get

(B.3)
Adx

(d−s)/2

x
≤ S(x)

xs/2+1
≤ Bd
x(s−d)/2+1

If 0 < s ≤ d then the first inequality in (B.3) tells us S(x)/xs/2+1 ≥ Ad/x for large x, which

implies
∫ N
1 S(x)/xs/2+1 dx→∞ as N →∞, and thus our original lattice sum diverges.

If s > d then the second inequality in (B.3) tells us 0 ≤ S(x)/xs/2+1 ≤ Bd/x
1+ε for

large x, where ε = (s− d)/2 > 0, so
∫ N
1 S(x)/xs/2+1 dx converges as N →∞. Using (B.2),

S(N)/N s/2 ≤ Bd/N (s−d)/2 → 0, so our lattice sum converges and in fact∑
a∈Zd−{0}

1

||a||s
=
s

2

∫ ∞
1

S(x)

xs/2+1
dx.
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It remains to explain (B.2) for large x. Instead of counting integral vectors a that satisfy
a Euclidean-norm condition ||a|| ≤ R for some R > 0, let’s first count integral vectors a
that are bounded for another norm on Rd: ||a||max ≤ R, where

||x||max = max(|x1|, . . . , |xd|).
Set

Smax(R) := |{a ∈ Zd : ||a||max ≤ R}|.
The number of integers n satisfying −R ≤ n ≤ R is 2bRc+ 1 (check this when R = 1), so
Smax(R) = (2bRc+ 1)d from the way || · ||max is defined. When R ≥ 1, R ≤ 2bRc+ 1 ≤ 3R,
so

(B.4) Rd ≤ Smax(R) ≤ 3dRd.

Qualitatively, this is the type of upper and lower bound we want for S(x) in (B.2), with
x = R2, so let’s bound || · || in terms of || · ||max from above and below in order to convert
(B.4) into (B.2).

Check that ||x||max ≤ ||x|| ≤
√
d||x||max for all x in Rd, so

||x|| ≤ R =⇒ ||x||max ≤ R and ||x||max ≤ R =⇒ ||x|| ≤
√
dR.

Therefore when x ≥ 1, S(x) = |{a ∈ Zd : ||a|| ≤
√
x}| ≤ Smax(

√
x) ≤ 3dxd/2 by (B.4)

since
√
x ≥ 1. To get a lower bound on S(x), if ||a||max ≤ R then ||a|| ≤

√
dR =

√
dR2,

so Smax(R) ≤ S(dR2). Thus S(x) ≥ Smax(
√
x/d), and if x ≥ d (so

√
x/d ≥ 1) we get

Smax(
√
x/d) ≥

√
x/d

d
= xd/2/dd/2 by (B.4). We have proved (B.2) when x ≥ d using

Ad = 1/dd/2 and Bd = 3d. �
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