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Introduction (1/3)

Classically one might consider fixing a number field K and asking how
various primes p split in K .

I Dirichlet’s Theorem
I Chebotarev’s Theorem

Others have worked on fixing p and varying K with fixed Galois
group.

I Bhargava, Cohen, Datskovsky, Davenport, Heilbronn, Taylor, Wood,
Wright, and more.

We will construct a field Kp depending on p and K and for fixed K
we will give distribution conjectures and results for how p splits in Kp

as p varies. In this talk we will focus on the case where [K : Q] = 3.
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Introduction (2/3)
When K satisfies certain conditions, there will be a unique quadratic
extension of K ramified only at a particular prime p of K and the
infinite places.

We denote this extension Kp.
We let p be a rational prime which splits completely in K ; p = p1p2p3.
We let Kp be the composite of all three Kpi .
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Introduction (3/3)

We will see that there are only two ways p can split in Kp. Our goal
is to determine how often p splits one way verses the other.
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Construction of Kp (1/4)

Notation:

h(K ) denotes the class number of K .

U denotes the units of the ring of integers of K .

UT denotes the totally positive units.

m∞ denotes the product of all infinite places in K .

Theorem (M)

Let K be a number field such that

K is totally real

h(K ) is odd

UT = U2

Let p be a prime in K which is prime to 2. Then the ray class field of
conductor pm∞ has a unique quadratic subextension, which we will denote
Kp.
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Construction of Kp (2/4)

Many number fields satisfy the necessary conditions. (Later we will also
need K/Q to be Galois, cyclic, and cubic).

Armitage and Frohlich have a theorem which gives an easy condition
implying UT = U2.

Example: If K is the unique cubic subextension of the l th cyclotomic
field for l ≡ 1 mod 3 prime, then all we need is h(K ) to be odd,
(which happens often) and we will have met all the conditions.
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Construction of Kp (3/4)

Let K be a number field such that

K is totally real

h(K ) is odd

UT = U2

K/Q is Galois, cyclic, and cubic

Let p 6= 2 be a rational prime which splits completely in K ; p = p1p2p3.

Define Kp to be the composite of all three Kpi . Recall that Kpi is the
unique quadratic subextension of the ray class field over K of
conductor pim∞.

In other words, pi and the infinite places are the only places which
ramify in the quadratic extension Kpi/K .
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Construction of Kp (4/4)

We have the following diagram.

We ask how p splits in Kp.

Christine McMeekin (Cornell University) On The Distribution of Splitting Behavior in Number Fields Depending on pAugust 13, 2016 9 / 18



How can p split in Kp? (1/2)

Note that Kp/Q is Galois. Also note that in the case of cubic K ,
[Kp : Q] = 24.

We know e = 2 (e=ramification index of p in Kp/Q)

We know 3|g (g=number of distinct primes above p in Kp/Q)

So f can only be 1, 2, or 4. (f=inertia degree of p in Kp/Q)
However, f can not be 4 because residue field extensions are cyclic
and embed into the Galois group but Kp/K has no cyclic
subextension of degree 4.

Therefore there are only two ways p can split in Kp/Q; f = 1 or f = 2.
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How can p split in Kp? (2/2)

Let f (pi )j denote the inertia degree of pi in Kpj/K .

Remark

Due to the action of Gal(K/Q) on {Kp1 ,Kp2 ,Kp3}, we have
f (p1)2 = f (p2)3 = f (p3)1 and f (p2)1 = f (p1)3 = f (p3)2

Therefore, the way p splits in Kp is completely determined by
knowing only how p1 splits in Kp2 and how p2 splits in Kp1 .

If one or both of f (p1)2 or f (p2)1 is 2, then f = 2 in Kp/Q.
Otherwise f = 1.
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Spin (1/3)

Definition

Let σ ∈ Gal(K/Q). Given an odd principal ideal a we define the spin of a
to be

spin(a, σ) :=
( α
aσ

)
where (α) = a, α is totally positive, and

(
α
b

)
denotes the quadratic residue

symbol in K .

Friedlander, Iwaniec, Mazur, and Rubin have results on the
distribution of spin. We will relate spin to how p splits in Kp to
obtain distribution results there.
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Spin (2/3)
Let αi denote a totally positive generator for pi .

Theorem (M)(
αi

pj

)
= 1 if and only if pi splits in Kpj .

Idea of proof:

Lemma

Kpi = K (
√
uiαi ) for some unit ui well-defined modulo squares.

Lemma (
ujαj

pi

)
=

(
αi

pj

)
Let bi denote a prime in Kpj above pi . The injective homomorphism

OK/pi → OKpj
/bi

is surjective iff f (pi )j = 1 iff
(

ujαj

pi

)
= 1.
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Spin (3/3)

Let σ be the generator of Gal(K/Q) mapping the indices of pi
according the the permutation (123).

Let f (pi )j denote the inertia degree of pi in Kpj/K . (This can only be
1 or 2.)

Corollary

spin(p1, σ) = −1 ⇐⇒ f (p1)2 = 2

spin(p1, σ
2) = −1 ⇐⇒ f (p2)1 = 2
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FIMR results (1/2)

Recall K satisfies the following:

K is totally real

h(K ) is odd

UT = U2

K is Galois, cyclic, and cubic.

Theorem (FIMR)

Letting p run over odd prime principal ideals in K,∣∣∣∣∣∣
∑

N(p)<x

spin(p, σ)

∣∣∣∣∣∣ << x1−
1

10656
+ε

Idea: spin=1 half the time and spin=-1 half the time
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FIMR results (2/2)

Theorem (Main Theorem- M)

f = 2 for p in Kp/Q at least 50% of the time

Due to FIMR results, we know f (p1)2 = 2 half the time and
f (p2)1 = 2 half the time.

We do not know these events are independent, but if we knew that
the following conjecture would be true.

Conjecture (M)

The probability that f = 1 for p in Kp/Q is 1
4 and the probability that

f = 2 is 3
4
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Data (1/1)
Let p run over the first 10,000 primes which split completely in K
excluding 2. The first column l defines the number field K , which is the
unique cubic subextension of the l th cyclotomic field for prime l ≡ 1
mod 3. The second column gives the number of times f = 1 in Kp/Q.

l f = 1

7 2480
13 2455
19 2511
31 2434
37 2559
43 2502
61 2503
67 2516
73 2472
79 2495
97 2485
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Further Work (1/1)

Show f (p1)2 and f (p2)1 are independent to prove conjecture.

A generalization of FIMR’s Theorem to the case when [K : Q] > 3
(and thus a generalization of splitting results for p in Kp) relies on a
conjectural improvement on Burgess’s Theorem on short character
sums.

If a similar result to FIMR worked for imaginary quadratic fields, there
would be interesting applications to elliptic curves.
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