On The Distribution of Splitting Behavior in Number Fields Depending on p

Christine McMeekin

Cornell University

August 13, 2016

Outline

- Introduction
- Construction of K_p
- 3 How can p split in K_p ?
- 4 Spin
- FIMR results
- Data
- Further Work

- Classically one might consider fixing a number field K and asking how various primes p split in K.
 - Dirichlet's Theorem
 - Chebotarev's Theorem
- Others have worked on fixing p and varying K with fixed Galois group.
 - ▶ Bhargava, Cohen, Datskovsky, Davenport, Heilbronn, Taylor, Wood, Wright, and more.
- We will construct a field K_p depending on p and K and for fixed K we will give distribution conjectures and results for how p splits in K_p as p varies. In this talk we will focus on the case where $[K:\mathbb{Q}]=3$.

• When K satisfies certain conditions, there will be a unique quadratic extension of K ramified only at a particular prime $\mathfrak p$ of K and the infinite places.

- When K satisfies certain conditions, there will be a unique quadratic extension of K ramified only at a particular prime p of K and the infinite places.
- We denote this extension $K_{\mathfrak{p}}$.

- When K satisfies certain conditions, there will be a unique quadratic extension of K ramified only at a particular prime p of K and the infinite places.
- We denote this extension $K_{\mathfrak{p}}$.
- We let p be a rational prime which splits completely in K; $p = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$.

- When K satisfies certain conditions, there will be a unique quadratic extension of K ramified only at a particular prime p of K and the infinite places.
- We denote this extension $K_{\mathfrak{p}}$.
- We let p be a rational prime which splits completely in K; $p = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$.
- ullet We let K_p be the composite of all three $K_{\mathfrak{p}_i}$.

• We will see that there are only two ways p can split in K_p . Our goal is to determine how often p splits one way verses the other.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ○ ○

Notation:

- h(K) denotes the class number of K.
- *U* denotes the units of the ring of integers of *K*.
- U_T denotes the totally positive units.
- \mathfrak{m}_{∞} denotes the product of all infinite places in K.

Notation:

- h(K) denotes the class number of K.
- *U* denotes the units of the ring of integers of *K*.
- ullet U_T denotes the totally positive units.
- ullet \mathfrak{m}_{∞} denotes the product of all infinite places in K.

Theorem (M)

Let K be a number field such that

- K is totally real
- h(K) is odd
- $U_T = U^2$

Let $\mathfrak p$ be a prime in K which is prime to 2. Then the ray class field of conductor $\mathfrak p\mathfrak m_\infty$ has a unique quadratic subextension, which we will denote $K_\mathfrak p$.

Many number fields satisfy the necessary conditions. (Later we will also need K/\mathbb{Q} to be Galois, cyclic, and cubic).

- Armitage and Frohlich have a theorem which gives an easy condition implying $U_T = U^2$.
- Example: If K is the unique cubic subextension of the I^{th} cyclotomic field for $I \equiv 1 \mod 3$ prime, then all we need is h(K) to be odd, (which happens often) and we will have met all the conditions.

Let K be a number field such that

Let K be a number field such that

- K is totally real
- h(K) is odd
- $U_T = U^2$
- K/\mathbb{Q} is Galois, cyclic, and cubic

Let K be a number field such that

- K is totally real
- h(K) is odd
- $U_T = U^2$
- K/\mathbb{Q} is Galois, cyclic, and cubic

Let $p \neq 2$ be a rational prime which splits completely in K; $p = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$.

Let K be a number field such that

- K is totally real
- h(K) is odd
- $U_T = U^2$
- K/\mathbb{Q} is Galois, cyclic, and cubic

Let $p \neq 2$ be a rational prime which splits completely in K; $p = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$.

• Define K_p to be the composite of all three $K_{\mathfrak{p}_i}$. Recall that $K_{\mathfrak{p}_i}$ is the unique quadratic subextension of the ray class field over K of conductor $\mathfrak{p}_i\mathfrak{m}_{\infty}$.

Let K be a number field such that

- K is totally real
- h(K) is odd
- $U_T = U^2$
- K/\mathbb{Q} is Galois, cyclic, and cubic

Let $p \neq 2$ be a rational prime which splits completely in K; $p = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$.

- Define K_p to be the composite of all three $K_{\mathfrak{p}_i}$. Recall that $K_{\mathfrak{p}_i}$ is the unique quadratic subextension of the ray class field over K of conductor $\mathfrak{p}_i\mathfrak{m}_{\infty}$.
- In other words, \mathfrak{p}_i and the infinite places are the only places which ramify in the quadratic extension $K_{\mathfrak{p}_i}/K$.

We have the following diagram.

We ask how p splits in K_p .

Note that K_p/\mathbb{Q} is Galois. Also note that in the case of cubic K, $[K_p:\mathbb{Q}]=24$.

• We know e=2 (e=ramification index of p in K_p/\mathbb{Q})

- We know e = 2 (e=ramification index of p in K_p/\mathbb{Q})
- We know 3|g| (g=number of distinct primes above p in K_p/\mathbb{Q})

- We know e=2 (e=ramification index of p in K_p/\mathbb{Q})
- We know 3|g| (g=number of distinct primes above p in K_p/\mathbb{Q})
- So f can only be 1, 2, or 4. (f=inertia degree of p in K_p/\mathbb{Q})

- We know e=2 (e=ramification index of p in K_p/\mathbb{Q})
- We know 3|g| (g=number of distinct primes above p in K_p/\mathbb{Q})
- So f can only be 1, 2, or 4. (f=inertia degree of p in K_p/\mathbb{Q}) However, f can not be 4 because residue field extensions are cyclic and embed into the Galois group but K_p/K has no cyclic subextension of degree 4.

Note that K_p/\mathbb{Q} is Galois. Also note that in the case of cubic K, $[K_p:\mathbb{Q}]=24$.

- We know e=2 (e=ramification index of p in K_p/\mathbb{Q})
- We know 3|g| (g=number of distinct primes above p in K_p/\mathbb{Q})
- So f can only be 1, 2, or 4. (f=inertia degree of p in K_p/\mathbb{Q}) However, f can not be 4 because residue field extensions are cyclic and embed into the Galois group but K_p/K has no cyclic subextension of degree 4.

Therefore there are only two ways p can split in K_p/\mathbb{Q} ; f=1 or f=2.

Let $f(\mathfrak{p}_i)_j$ denote the inertia degree of \mathfrak{p}_i in $K_{\mathfrak{p}_j}/K$.

Remark

Due to the action of $Gal(K/\mathbb{Q})$ on $\{K_{\mathfrak{p}_1}, K_{\mathfrak{p}_2}, K_{\mathfrak{p}_3}\}$, we have $f(\mathfrak{p}_1)_2 = f(\mathfrak{p}_2)_3 = f(\mathfrak{p}_3)_1$ and $f(\mathfrak{p}_2)_1 = f(\mathfrak{p}_1)_3 = f(\mathfrak{p}_3)_2$

Let $f(\mathfrak{p}_i)_j$ denote the inertia degree of \mathfrak{p}_i in $K_{\mathfrak{p}_j}/K$.

Remark

Due to the action of $Gal(K/\mathbb{Q})$ on $\{K_{\mathfrak{p}_1}, K_{\mathfrak{p}_2}, K_{\mathfrak{p}_3}\}$, we have $f(\mathfrak{p}_1)_2 = f(\mathfrak{p}_2)_3 = f(\mathfrak{p}_3)_1$ and $f(\mathfrak{p}_2)_1 = f(\mathfrak{p}_1)_3 = f(\mathfrak{p}_3)_2$

• Therefore, the way p splits in K_p is completely determined by knowing only how \mathfrak{p}_1 splits in $K_{\mathfrak{p}_2}$ and how \mathfrak{p}_2 splits in $K_{\mathfrak{p}_1}$.

Let $f(\mathfrak{p}_i)_j$ denote the inertia degree of \mathfrak{p}_i in $K_{\mathfrak{p}_j}/K$.

Remark

Due to the action of $Gal(K/\mathbb{Q})$ on $\{K_{\mathfrak{p}_1}, K_{\mathfrak{p}_2}, K_{\mathfrak{p}_3}\}$, we have $f(\mathfrak{p}_1)_2 = f(\mathfrak{p}_2)_3 = f(\mathfrak{p}_3)_1$ and $f(\mathfrak{p}_2)_1 = f(\mathfrak{p}_1)_3 = f(\mathfrak{p}_3)_2$

- Therefore, the way p splits in K_p is completely determined by knowing only how \mathfrak{p}_1 splits in $K_{\mathfrak{p}_2}$ and how \mathfrak{p}_2 splits in $K_{\mathfrak{p}_1}$.
- If one or both of $f(\mathfrak{p}_1)_2$ or $f(\mathfrak{p}_2)_1$ is 2, then f=2 in K_p/\mathbb{Q} . Otherwise f=1.

Spin (1/3)

Definition

Let $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$. Given an odd principal ideal $\mathfrak a$ we define the spin of $\mathfrak a$ to be

$$\mathsf{spin}(\mathfrak{a},\sigma) := \left(\frac{\alpha}{\mathfrak{a}^{\sigma}}\right)$$

where $(\alpha) = \mathfrak{a}$, α is totally positive, and $(\frac{\alpha}{\mathfrak{b}})$ denotes the quadratic residue symbol in K.

Spin (1/3)

Definition

Let $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$. Given an odd principal ideal $\mathfrak a$ we define the spin of $\mathfrak a$ to be

$$\mathsf{spin}(\mathfrak{a},\sigma) := \left(\frac{\alpha}{\mathfrak{a}^{\sigma}}\right)$$

where $(\alpha) = \mathfrak{a}$, α is totally positive, and $(\frac{\alpha}{\mathfrak{b}})$ denotes the quadratic residue symbol in K.

• Friedlander, Iwaniec, Mazur, and Rubin have results on the distribution of spin. We will relate spin to how p splits in K_p to obtain distribution results there.

Let α_i denote a totally positive generator for \mathfrak{p}_i .

Theorem (M)

$$\left(rac{lpha_i}{\mathfrak{p}_j}
ight)=1$$
 if and only if \mathfrak{p}_i splits in $K_{\mathfrak{p}_j}.$

Let α_i denote a totally positive generator for \mathfrak{p}_i .

Theorem (M)

$$\left(rac{lpha_i}{\mathfrak{p}_j}
ight)=1$$
 if and only if \mathfrak{p}_i splits in $K_{\mathfrak{p}_j}$.

Idea of proof:

Let α_i denote a totally positive generator for \mathfrak{p}_i .

Theorem (M)

$$\left(rac{lpha_i}{\mathfrak{p}_j}
ight)=1$$
 if and only if \mathfrak{p}_i splits in $K_{\mathfrak{p}_j}$.

Idea of proof:

Lemma

 $K_{\mathfrak{p}_i} = K(\sqrt{u_i\alpha_i})$ for some unit u_i well-defined modulo squares.

Let α_i denote a totally positive generator for \mathfrak{p}_i .

Theorem (M)

$$\left(rac{lpha_i}{\mathfrak{p}_j}
ight)=1$$
 if and only if \mathfrak{p}_i splits in $K_{\mathfrak{p}_j}$.

Idea of proof:

Lemma

 $K_{\mathfrak{p}_i} = K(\sqrt{u_i \alpha_i})$ for some unit u_i well-defined modulo squares.

Lemma

$$\left(\frac{u_j\alpha_j}{\mathfrak{p}_i}\right) = \left(\frac{\alpha_i}{\mathfrak{p}_j}\right)$$

Let α_i denote a totally positive generator for \mathfrak{p}_i .

Theorem (M)

$$\left(rac{lpha_i}{\mathfrak{p}_j}
ight)=1$$
 if and only if \mathfrak{p}_i splits in $K_{\mathfrak{p}_j}.$

Idea of proof:

Lemma

 $K_{\mathfrak{p}_i} = K(\sqrt{u_i \alpha_i})$ for some unit u_i well-defined modulo squares.

Lemma

$$\left(\frac{u_j\alpha_j}{\mathfrak{p}_i}\right) = \left(\frac{\alpha_i}{\mathfrak{p}_j}\right)$$

Let \mathfrak{b}_i denote a prime in $K_{\mathfrak{p}_i}$ above \mathfrak{p}_i . The injective homomorphism

$$\mathcal{O}_{\mathcal{K}}/\mathfrak{p}_i o \mathcal{O}_{\mathcal{K}_{\mathfrak{p}_i}}/\mathfrak{b}_i$$

is surjective iff
$$f(\mathfrak{p}_i)_j=1$$
 iff $\left(\frac{u_j\alpha_j}{\mathfrak{p}_i}\right)=1$.

Spin (3/3)

- Let σ be the generator of $Gal(K/\mathbb{Q})$ mapping the indices of \mathfrak{p}_i according the the permutation (123).
- Let $f(\mathfrak{p}_i)_j$ denote the inertia degree of \mathfrak{p}_i in $K_{\mathfrak{p}_j}/K$. (This can only be 1 or 2.)

Corollary

$$spin(\mathfrak{p}_1,\sigma)=-1\iff f(\mathfrak{p}_1)_2=2$$

$$spin(\mathfrak{p}_1, \sigma^2) = -1 \iff f(\mathfrak{p}_2)_1 = 2$$

FIMR results (1/2)

Recall *K* satisfies the following:

- K is totally real
- h(K) is odd
- $U_T = U^2$
- *K* is Galois, cyclic, and cubic.

FIMR results (1/2)

Recall *K* satisfies the following:

- K is totally real
- h(K) is odd
- $U_T = U^2$
- K is Galois, cyclic, and cubic.

Theorem (FIMR)

Letting p run over odd prime principal ideals in K,

$$\left| \sum_{N(\mathfrak{p}) < x} spin(\mathfrak{p}, \sigma) \right| << x^{1 - \frac{1}{10656} + \epsilon}$$

FIMR results (1/2)

Recall *K* satisfies the following:

- K is totally real
- h(K) is odd
- $U_T = U^2$
- *K* is Galois, cyclic, and cubic.

Theorem (FIMR)

Letting p run over odd prime principal ideals in K,

$$\left| \sum_{N(\mathfrak{p}) < x} spin(\mathfrak{p}, \sigma) \right| << x^{1 - \frac{1}{10656} + \epsilon}$$

Idea: spin=1 half the time and spin=-1 half the time

FIMR results (2/2)

Theorem (Main Theorem- M)

f=2 for p in K_p/\mathbb{Q} at least 50% of the time

FIMR results (2/2)

Theorem (Main Theorem- M)

f=2 for p in K_p/\mathbb{Q} at least 50% of the time

• Due to FIMR results, we know $f(\mathfrak{p}_1)_2=2$ half the time and $f(\mathfrak{p}_2)_1=2$ half the time.

FIMR results (2/2)

Theorem (Main Theorem- M)

f=2 for p in K_p/\mathbb{Q} at least 50% of the time

- Due to FIMR results, we know $f(\mathfrak{p}_1)_2 = 2$ half the time and $f(\mathfrak{p}_2)_1 = 2$ half the time.
- We do not know these events are independent, but if we knew that the following conjecture would be true.

Conjecture (M)

The probability that f=1 for p in K_p/\mathbb{Q} is $\frac{1}{4}$ and the probability that f=2 is $\frac{3}{4}$

Data (1/1)

Let p run over the first 10,000 primes which split completely in K excluding 2. The first column I defines the number field K, which is the unique cubic subextension of the I^{th} cyclotomic field for prime $I \equiv 1 \mod 3$. The second column gives the number of times f = 1 in K_p/\mathbb{Q} .

1	f=1
7	2480
13	2455
19	2511
31	2434
37	2559
43	2502
61	2503
67	2516
73	2472
79	2495
97	2485

Further Work (1/1)

• Show $f(\mathfrak{p}_1)_2$ and $f(\mathfrak{p}_2)_1$ are independent to prove conjecture.

Further Work (1/1)

- Show $f(\mathfrak{p}_1)_2$ and $f(\mathfrak{p}_2)_1$ are independent to prove conjecture.
- A generalization of FIMR's Theorem to the case when $[K:\mathbb{Q}]>3$ (and thus a generalization of splitting results for p in K_p) relies on a conjectural improvement on Burgess's Theorem on short character sums.

Further Work (1/1)

- Show $f(\mathfrak{p}_1)_2$ and $f(\mathfrak{p}_2)_1$ are independent to prove conjecture.
- A generalization of FIMR's Theorem to the case when $[K:\mathbb{Q}]>3$ (and thus a generalization of splitting results for p in K_p) relies on a conjectural improvement on Burgess's Theorem on short character sums.
- If a similar result to FIMR worked for imaginary quadratic fields, there would be interesting applications to elliptic curves.