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Overview

• Classical hypergeometric functions are well-understood.
They are related to

� periods of algebraic varieties

� comb. identities and orthogonal poly.s

� (arithmetic) triangle groups

� · · ·
• Hypergeometric functions over finite fields are developed
by Evans, Greene, Katz, McCarthy, Ono, · · ·
� computing L-functions of algebraic varieties

� proving supercongruences (Apéry or Ramanujan
types)

� obtaining character sum identities and estimate

� computing arithmetic invariants of hypergeometric
varieties
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Hypergeometric ⇔ Finite Hypergeometric
Functions Functions

Hyper. Varieties or
Hyper. Motives
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Motivations and applications

• GL(2)-type Galois representations and automorphic
forms (Li-Liu-L.)
• 2-dim’l abelian varieties admitting quaternionic
multiplication (QM) (Deines-Fuselier-L.-Swisher-Tu)
• L-functions of algebraic varieties and related
supercongruences (Deines-Fuselier-L.-Swisher-Tu)
• Characterization of intersecting families of maximum size
in PSL(2, q) (L.-Plaza-Sin-Xiang)
• Translating the symmetries of hypergeometric functions
to finite hypergeometric functions
(Fuselier-L.Ramakrishna-Swisher-Tu)
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Notation in the classical setting

Gamma function

Γ(x) :=

∫ ∞
0

tx−1e−t dt.

Satisfying

Γ(x+ 1)/Γ(x) = x if x /∈ Z≤0

Γ(n+ 1) = n! when n ∈ N.

Reflection formula.

Γ(a)Γ(1− a) =
π

sin aπ

Multiplication formula, e.g. duplication formula

Γ(2a)Γ

(
1

2

)
= 22a−1Γ(a)Γ

(
a+

1

2

)
,∀a ∈ C.
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Notation in the classical setting

• Beta function

B(a, b) :=

∫ 1

0

xa−1(1 − x)b−1 dx =
Γ(a)Γ(b)

Γ(a+ b)

• (a)k := a(a+ 1) · · · (a+ k − 1) = Γ(a+ k)/Γ(a)

• Binomial theorem

(1− x)−a =
∞∑
k=0

(
−a
k

)
(−x)k =

∞∑
k=0

(a)k
k!

xk.

• Use ζN to denote a primitive Nth root of unity.
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Classical 2F1 functions

Definition

For fixed parameters a, b, c and argument z, let

2F1

[
a b

c
; z

]
:= 1 +

∑
k≥1

(a)k(b)k
(c)k

zk

k!
.

It satisfies an order-2 ordinary differential equation

HDE(a, b; c; z) : z(1− z)F ′′+ [(a+ b+ 1)z− c]F ′+ abF = 0,

with 3 regular singularities at 0, 1, and ∞ with a, b playing
symmetric roles.
There are generalized hypergeometric functions n+1Fn
which can be defined similarly and recursively.
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Theorem (Schwarz)

Let f, g be two independent solutions to the differential
equation HDE(a, b; c; z) at a point z ∈ H, and let
p = |1− c|, q = |c− a− b|, and r = |a− b|. Then the
Schwarz map D = f/g gives a bijection from H ∪ R onto a
curvilinear triangle, denoted by ∆(p, q, r), with vertices
D(0), D(1), D(∞) and corresponding angles pπ, qπ, rπ, as
illustrated below.

D(0)

D(1)

D(∞)

pπ

qπ

rπ

D

H
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Uniformization Theorem

Assume a, b, c ∈ Q. The universal cover of ∆(p, q, r) is
either the Euclidean plane, the unit sphere, or the
hyperbolic plane, depending on whether
p+ q + r = 1, > 1, < 1 respectively.
Examples:
1. (a, b, c) = (1

2
, 1

2
, 1), (p, q, r) = (0, 0, 0), a hyperbolic

triangle, biholomorphic to the fundamental domain of Γ(2)
2. (a, b, c) = (1

6
, 2

3
; 4

3
), (p, q, r) = (1

3
, 1

2
, 1

2
), a spherical

triangle,
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Some properties of the 2F1 functions

Transformation formulas, e.g. Pfaff transform

2F1

[
a b

c
; z

]
= (1− z)−a 2F1

[
a c− b

c
;

z

z − 1

]
.

Evaluation formulas, e.g. Gauss summation formula

2F1

[
a b

c
; 1

]
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

Algebraic identities, e.g.

2F1

[
a a− 1

2
2a

; z

]
=

(
1 +
√

1− z
2

)1−2a
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A quadratic transformation formula

2F1

[
c b
c− b+ 1

; z

]
= (1−z)−c 2F1

[
c
2

1+c
2
− b

c− b+ 1
;
−4z

(1− z)2

]
.

The corresponding Schwarz triangle to the left,
∆(|b− c|, |b− c|, |1− 2b|), can be tiled by two copies of the
Schwarz triangle ∆(|b− c|, 1

2
, 1

2
|1− 2b|) to the right.

|b− c|π|b− c|π

1
2
|1− 2b|π
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The 2P1 period functions

For a, b, c ∈ C with Re(c) > Re(b) (can be relaxed), define

2P1

[
a b

c
; z

]
:=

∫ 1

0

xb−1(1 − x)c−b−1(1 − zx)−adx

Note that a, b play asymmetric roles.
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Euler integral formula

2P1

[
a b

c
; z

]
:=

∫ 1

0

xb−1(1− x)c−b−1(1− zx)−adx

binomial
=

∫ 1

0

xb−1(1− x)c−b−1

∞∑
k=0

(a)k
k!

(zx)kdx

=
∞∑
k=0

(a)kz
k

k!

∫ 1

0

xb−1+k(1− x)c−b−1dx

Beta
=

∞∑
k=0

(a)kz
k

k!
B(b+ k, c− b)

= B(b, c− b)2F1

[
a b

c
; z

]
.
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Two essential ingredients

• The Beta function

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)
.

• Binomial Theorem

(1 − x)−a =
∞∑
k=0

(
−a
k

)
(−1)kxk =

∞∑
k=0

(a)k
k!

xk.
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Hypergeometric functions as normalized period
functions

Consider

2F1

[
a b

c
; z

]
=

1

B(b, c− b) 2P1

[
a b

c
; z

]
as the normalized period function.

Note that B(b, c− b) is also the value of 2F1

[
a b

c
; 0

]
.
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The Legendre curves Eλ : y2 = x(1− x)(1− λx)

• Eλ is a double over of CP 1 which ramifies at 0, 1, 1
λ
,∞.

0 1

∞
1
λ

0
0

1
1∞

∞ ∞ 10
1
λ
1
λ

1
λ

• Holomorphic differential: ωλ := dx
y = dx

(x(1−x)(1−λx))1/2

• Periods: τ1 := 2
∫ 1

0 ωλ = 2π · 2F1

[
1
2

1
2
1

; λ

]
, τ2 =

∫
γ2
ωλ

• CM criterions: i) values of j(Eλ); ii) τ1/τ2 ∈ Q, · · ·
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Galois representations arising from Eλ, λ ∈ Q \ {0, 1}.

• Galois representations. For any fixed prime `, from the
torsion points Eλ[`

n] ∼= (Z/`nZ)2 permuting by
GQ := Gal(Q/Q), taking inverse limit, and enlarging
coefficients, one obtains a continuous homomorphism

ρEλ,` : GQ → GL2(Q`),

such that

TrρEλ,`(Frobp) = p+ 1−#(Eλ/Fp),

where Frobp is the geometric Frobenius at p.
• Modularity theorem, ∃ a wt-2 modular form
fλ =

∑
n≥1 an(fλ)q

n s. t. for each prime p - Nλ,

ap(fλ) = TrρEλ,`(Frobp).
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Notation for finite fields

� Fq: finite field, q = pe odd

� F×q : a cyclic group of size q − 1.

� Let Fqs denote the degree s extension field of Fq.
� A multiplicative character χ is a homo. F×q → C×.

� F̂×q : cyclic group of all multiplicative characters on F×q
� ε: trivial character

� φ: quadratic character. For x ∈ F×q , φ(x) = 1 iff

x = a2 for some a ∈ F×q , i.e. x is a quadratic residue.

In particular, when q = p, φ(x) =
(
x
p

)
, the Legendre

symbol.

� χ(0) = 0 for each χ ∈ F×q
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Computing #(Eλ/Fq)

Recall

Eλ : y2 = x(1− x)(1− λx) := fλ(x).

For x ∈ Fq, the equation has 1 + φ(fλ(x)) =

 1
2
0

solutions

for y. Thus the total number of Fq-solutions equals

1 +
∑
x∈Fq

(1 + φ(fλ(x))) = 1 + q +
∑
x∈Fq

φ(x(1− x)(1− λx)).

Thus TrρEλ,`(Frobp) = −
∑

x∈Fp φ(x(1− x)(1− λx)).
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TrρEλ,`(Frobp) = −
∑
x∈Fp

(
x(1− x)(1− λx)

p

)
.

In comparison,

2P1

[
a b

c
; z

]
=

∫ 1

0

(x(1− x)(1− λx))−1/2dx.

It suggests the following correspondences

a = i
N
↔ A ∈ F̂×p of order N

xa ↔ A(x)
−a ↔ A∫ 1

0
dx ↔

∑
x∈F

.

In this vein, we view characters like
∑

x∈Fp

(
x(1−x)(1−λx)

p

)
as

period functions over finite fields.
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Two ingredients

Given multiplicative characters A,B corresponding to a, b

• Jacobi sum (Beta function):

J(A,B) =
∑
x∈Fq

A(x)B(1− x)

(
B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)
.

)

• Binomial Theorem:

A(1− x) = δ(x) +
1

q − 1

∑
χ∈F̂×

q

J(A,χ)χ(x)

(
(1− x)a =

∞∑
k=0

(
a

k

)
(−1)kxk.

)
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Finite period/hypergeometric functions

Given A,B,C ∈ F̂×q , define
• the finite period function: ( slightly modified from
Greene’s version)

2P1

[
A B

C
;λ; q

]
:=
∑
x∈Fq

B(x)CB(1− x)A(1− λx).

(
2P1

[
a b

c
; z

]
:=

∫ 1

0

xb−1(1− x)c−b−1(1− zx)−adx

)
• the finite hypergeometric function: ( slightly
modified from McCarthy’s version)

2F1

[
A B

C
;λ; q

]
:=

1

J(B,CB)
2P1

[
A B

C
;λ; q

]
(

2F1

[
a b

c
; z

]
:=

1

B(b, c− b) 2P1

[
a b

c
; z

])
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Gauss Sums

Let Ψ be a fixed nontrivial additive character of Fq. Define

the Gauss sum of A ∈ F̂×q as

g(A) :=
∑
x∈Fq

A(x)Ψ(x).

Similar to B(a, b) = Γ(a)Γ(b)
Γ(a+b)

, one has when AB is nontrivial,

J(A,B) =
g(A)g(B)

g(AB)
.

The Gauss sums satisfies reflection formula,

g(A)g(A) = qA(−1),∀A ∈ F̂×q , A 6= ε. (1)

Duplication and other multiplication formula:

g(A)g(φA) = g(A2)g(φ)A(4),

where φ is the quadratic character.
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Dictionary between C and Fq settings

Remark

Gauss sums are finite field analogues of the Gamma
function. Jacobi sums are finite field analogues of the beta
function.

a = i
N
↔ A ∈ F̂×q of order N

xa ↔ A(x)
xa+b ↔ A(x)B(x) = AB(x)
−a ↔ A

Γ(a) ↔ g(A)
B(a, b) ↔ J(A,B)∫ 1

0
dx ↔

∑
x∈F
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Under the definitions and the dictionary, one can
immediately obtain the finite field analogues of classical
formulas, such as the Pfaff transformation.

2F1

[
a b

c
; z

]
= (1− z)−a 2F1

[
a c− b

c
;

z

z − 1

]

which can be obtained from the Euler integral formula and
the binomial theorem.
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The proof generalizes straightforwardly to the finite field
verion:
For A, B, C ∈ F̂×q , and λ ∈ Fq, λ 6= 1, we have

2F1

[
A B

C
; λ

]
= A(1− λ) 2F1

[
A BC

C
;

λ

λ− 1

]
.

(
2F1

[
a b

c
; z

]
= (1− z)−a 2F1

[
a c− b

c
;

z

z − 1

])
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The proof of

(1−z)−c 2F1

[
c
2

1+c
2
− b

c− b+ 1
;
−4z

(1− z)2

]
= 2F1

[
c b
c− b+ 1

; z

]
is mainly based on the binomial theorem and the properties
of Γ(x) including the duplication formula.

27/41



Overview Hypergemetric functions Hypergeometric varieties Finite hypergeometric functions Outcomes

Theorem

Let B,D ∈ F̂×q , and set C = D2. When D 6= φ and B 6= D,
we have

C(1− x) 2F1

[
DφB D

CB
;
−4x

(1− x)2

]

= 2F1

[
B C

CB
; x

]
−δ(1−x)

J(C,B
2
)

J(C,B)
−δ(1+x)

J(B,Dφ)

J(C,B)
.

The main difficult lies in analyzing the degenerate cases.

(
(1− z)−c 2F1

[
c
2

1+c
2 − b

c− b+ 1
;
−4z

(1− z)2

]
= 2F1

[
c b

c− b+ 1
; z

]
.

)
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This approach is particularly handy for translating to the
finite field setting a classical transformation formula that
satisfies the following condition:

(∗) it can be proved using only the binomial
theorem, the reflection and multiplication formulas,
or their corollaries.

But not every formula satisfies this condition. The
underlining geometry allows us to go beyond the (∗)
condition.
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Consistent way to assign characters as q varies

Fix N ≥ 2 and let K = Q(ζN), and OK be its ring of
integers. Let p be a finite prime ideal of OK , coprime to N
and let Fp = OK/p where qp := |OK/p| ≡ 1 (mod N).

Definition

For any given i ∈ Z, ιp
(
i
N

)
: p→ F̂×p as

ιp

(
i

N

)
(x) ≡ xi·(|OK/p|−1)/N mod p.
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Theorem

Let a, b, c ∈ Q with least common denominator N such that
a, b, a− c, b− c /∈ Z and λ ∈ Q \ {0, 1}. Let K = Q(ζN)
with the ring of integers OK, and let ` be any prime. Then
there is a 2-dimensional representation σλ,` of
GK := Gal(K/K) over Q`(ζN), depending on a, b, c, such
that for each unramified prime ideal p of OK for which λ
and 1− λ can be mapped to nonzero elements in the residue
field, σλ,` evaluated at the arithmetic Frobenius conjugacy
class Frobp at p is an algebraic integer (independent of the
choice of `), satisfying

Trσλ,`(Frobp) = −2P1

[
ιp(a) ιp(b)

ιp(c)
;λ; q(p)

]
. (2)

31/41



Overview Hypergemetric functions Hypergeometric varieties Finite hypergeometric functions Outcomes

Key Ingredient
Generalized Legendre Curves (Wolfart and Archinard)

By definition, 2P1

[
a b

c
; λ

]
=
∫ 1

0
ωλ with ωλ being a

period of

C
[N ;i,j,k]
λ : yN = xi(1− x)j(1− λx)k where

N = lcd(a, b, c), i = N(1− b), j = N(1 + b− c), k = Na.

For example,

• (a, b, c) = (1
6
, 1

3
, 5

6
), (p, q, r) = (1

6
, 1

3
, 1

6
), it corresponds

to the triangle group (3, 6, 6), which is arithmetic. For
this case, N = 6, i = 4, j = 3, k = 1.

•(a, b, c) = ( 1
12
, 1

4
, 5

6
), (p, q, r) = (1

6
, 1

6
, 1

2
), it corresponds

to the arithmetic triangle group (2, 6, 6). For this case,
N = 12, i = 9, j = 5, k = 1.
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• Assume: 1 ≤ i, j, k < N,N - i+ j + k, λ ∈ Q \ {0, 1}
• X [N ;i,k,j]

λ : the smooth model;

• J [N ;i,j,k]
λ : its Jacobian variety .

• End(J
[N ;i,j,k]
λ ) contains Z[ζN ] due to

ζ : (x, y) 7→ (x, ζ−1
N y)

• Differentials has a basis consisting of the form
xb0 (1−x)b1 (1−λx)b2

yn
dx with 0 ≤ n ≤ N − 1, bi ∈ Z.

• The period matrix can be written explicitly in terms
of hypergeometric series.
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• If d | N , J
[d;i,j,k]
λ is isogeous to a subvariety of J

[N ;i,j,k]
λ

• Jnewλ : the primitive part of J
[N ;i,j,k]
λ defined over Q.

• dim Jnewλ = ϕ(N), the Euler number of N .

• Let ρnewλ,` : GQ → GL2ϕ(N)(Q`) be the `-adic Galois
representation arising from Jnewλ .

• For each unramified prime ideal p, compute
ρnewλ,` |GQ(ζN )

(Frobp) using character sums which can be
written in terms of explicit finite period functions.

• Due to ζ, ρnewλ,` |GQ(ζN )
is a direct sum of 2-dimensional

Galois representations, which also gives the matching
in the final claim.
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The Galois perspective gives important guidelines

To look for finite field analogue of

2F1

[
a a− 1

2
2a

; z

]
=

(
1 +
√

1− z
2

)1−2a

,

it is tempting to use the dictionary directly. However, the
Galois perspective tells us that won’t work.
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Theorem

Let z ∈ F×q , and A ∈ F̂×q have order larger than 2. Then

2F1

[
A Aφ

A2 ; z

]
=

(
1 + φ(1− z)

2

)
·(

A
2
(

1 +
√

1− z
2

)
+ A

2
(

1−
√

1− z
2

))
.

(
2F1

[
a a− 1

2
2a

; z

]
=

(
1 +
√

1− z
2

)1−2a)
.

36/41



Overview Hypergemetric functions Hypergeometric varieties Finite hypergeometric functions Outcomes

2-dimensional abelian varieties with QM

One of our motivations was to use Jnewλ to construct
2-dimensional abelian varieties whose endomorphism
algebra contains a quaternion algebra.

For (3, 6, 6): λ ∈ Q \ {0, 1}, the primitive part of X
[6;4,3,1]
λ

gives a family of 2-dimensional abelian varieties
parameterized by the Shimura curve for (3,6,6) [Deines,
Fuselier, L. Swisher, Tu]. A different construction was
given by Shiga-Petkova using Picard curves.
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For (2, 6, 6): λ ∈ Q \ {0, 1}, the primitive part of X
[12;9,5,1]
λ

is a 4-dimensional abelian variety. It is natural to ask how
it decomposes.
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As an application of the finite quadratic formula, one has

Theorem

Let λ ∈ Q such that λ 6= 0,±1. Let Jnewλ,1 (resp. Jnewλ,2 ) be the

primitive part of the Jacobian variety of X
[6;4,3,1]
λ (resp.

X
[12;9,5,1]
λ ). Then

Jnew−4λ

(1−λ)2
,2
∼ Jnewλ,1 ⊕ Jnewλ,1

over some number field depending on λ.
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What we discuss here can be generalized to other n+1Fn
hypergeometric functions via recursion. Consequently, we
obtains explicit algebraic models for varieties whose periods
are the desired hypergeometric functions.

For hypergeometric motives over Q, a different realization
using toric varieties has been given by Beukers, Cohen, and
Mellit.
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Thank you!
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