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We start with two results of Gauss:

1. (Gauss sum) Let p be an odd prime and a be an integer prime to p. For a nontrivial Dirichlet character
χ : (Z/pZ)× → C×, we define χ(0) = 0 so that χ is now defined on the field Z/pZ. Define the Gauss
sum

τa(χ) =
p−1∑
x=0

χ(x)e(
ax

p
),

here e(z) = e2πiz. Then it satisfies the property that |τa(χ)| = √
p;

2. (counting number of solutions of equations over finite fields) Again let p be an odd prime. We are
interested in the number

Np = ]{(x, y) ∈ (Z/pZ)× (Z/pZ)|y2 = x3 − x}.

Gauss computed this number and his result can be stated as follows: when p ≡ 3(mod 4), Np = p;
when p ≡ 1(mod 4), we can find integers r and s such that p = r2 + s2. If we further require that
r is odd, s is even and r + s ≡ 1(mod 4) then r and s are uniquely determined. Under this setting,
Np = p− 2r. In particular, we have the estimation |Np − p| ≤ 2

√
p as |r| ≤ √

p.

Question: is there any relation between the above two results? In the following, I will use an example to
explain the relation between the Gauss sum and number of solutions of equations over finite fields.

Exercise 1. Prove the above statements. (Hint: Actually only the computation of Np when p ≡ 1(mod 4)
is complicated. A good reference of this result is [4] Chapter 11).

Remark 1. Let ( ·p ) be the Legendre symbol. Then we have

Np =
∑

x∈Z/pZ
(1 + (

x3 − x

p
)) = p +

∑

x∈Z/pZ
(
x3 − x

p
).

So the above estimation becomes

|
∑

x∈Z/pZ
(
x3 − x

p
)| ≤ 2

√
p.

Since the Legendre is the quadratic character of (Z/pZ)×, we see that the number Np can be expressed as the
sum of some values of characters. We will use this idea in the following discussion.
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Now let p be an arbitrary prime and q be a power of p. Let k = Fq be the finite field with q elements.
We consider the homogeneous equation

a0x
n
0 + a1x

n
1 + . . . + arx

n
r = 0 (2)

over k, for ai ∈ k×, i = 0, . . . r. We make a further assumption q ≡ 1(mod n) to simplify the notations. We
want to study the number of solutions of this homogenous equation over k, which is denoted by Nq.

For each (r + 1)-tuple u = (u0, u1, . . . , ur), define a linear equation L(u) = a0u0 + a1u1 + . . . arur. Then
the homogenous equation (2) is equivalent to the following system of equations:





L(u) = 0
xn

0 = u0

. . .

xn
r = ur

(3)

So we have
Nq =

∑

L(u)=0

N0(u0) . . . Nr(ur),

here Ni(ui) is the number of solutions of the equation xn
i = ui over k. More precisely, we have:

Ni(ui) =





1, if ui = 0
n, if ui is an n-th power in k×

0, otherwise
(4)

Notice that here we use the assumption that q ≡ 1(mod n). Since the multiplicative group k× is cyclic, it
has a unique subgroup of order n.

As mentioned in Remark 1, we want to express the number Ni(ui) as the sum of some values of characters
of k×. First we need a concrete description of such characters. Fix a generator w of k×, then any character
of k× is of the form

χα(w) = e2πiα,

for some α ∈ Q satisfying (q − 1)α ∈ Z. As before, we extend χα to k by requiring

χα(0) =

{
0, if α /∈ Z
1, if α ∈ Z (5)

Under the above notations, we have:

Ni(ui) =
∑

α∈[0,1),nα∈Z
χα(ui).

Exercise 2. Verify this equality. (Hint: When ui = 0, both sides are equal to 1. When ui 6= 0, the right
hand side becomes

∑n−1
i=0 ζi, for ζ = χ 1

n
(u). Notice that ζ = 1 if and only if u is an n-th power).

Now we can write Nq as the sum:

Nq =
∑

L(u)=0

(
∑

α=(α0,...,αr),αi∈[0,1),nαi∈Z
χα0(u0) . . . χαr

(ur))

=
∑

α=(0,...,0)

∑

L(u)=0

χα0(u0) . . . χαr
(ur) +

∑

some αi are 0, but not all
(

∑

L(u)=0

χα0(u0) . . . χαr
(ur))

+
∑

α=(αi∈(0,1),nαi∈Z

∑

L(u)=0

χα0(u0) . . . χαr (ur)
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Exercise 3. Compute the first two sums in the above expression and show that
∑

α=(0,...,0)

∑

L(u)=0

χα0(u0) . . . χαr
(ur) = qr,

and ∑

some αi are 0, but not all
(

∑

L(u)=0

χα0(u0) . . . χαr
(ur)) = 0

(Hint: For the second sum, without loss of generality, you can assume that α0 = . . . = αs = 0 and αs+1, . . . αr

are nonzero for some 0 ≤ s ≤ r − 1. Then do the computation.)

By the above exercise, we have:

Nq = qr +
∑

α=(α0,...,αr),αi∈(0,1),nαi∈Z

∑

L(u)=0

χα0(u0) . . . χαr (ur).

Replacing ui by ui/ai, the sum becomes

Nq = qr +
∑

α=(α0,...,αr),αi∈(0,1),nαi∈Z
χα0(a

−1
0 ) . . . χαr (a

−1
r )S(α)

where
S(α) =

∑
u0+...ur=0

χα0(u0) . . . χαr (ur)

We can decompose S(α) into two parts:

S(α) =
∑

u0+...ur=0,u0=0

χα0(u0) . . . χαr
(ur) +

∑

u0+...ur=0,u0 6=0

χα0(u0) . . . χαr
(ur).

Since χα0(0) = 0, the first sum in the above expression is 0. For the second sum, since u0 6= 0, we can do
the change of variables ui = u0vi, i = 1, . . . , r. Then

S(α) =
∑

1+v1+...+vr=0

χα1(v1) . . . χαr
(vr)

∑

u0 6=0

χβ(u0),

for β = α0 + . . . + αr.

Exercise 4. Show that
∑

u0 6=0

χβ(u0) =

{
q − 1, if β ∈ Z
0, if β /∈ Z

For any (r + 1)-tuple α = (α0, . . . , αr) satisfying αi ∈ (0, 1), nαi ∈ Z and
∑r

i=0 αi ∈ Z, define

J(α) =
∑

1+v1+...+vr=0

χα1(v1) . . . χαr (vr) =
1

q − 1

∑
u0+...ur=0

χα0(u0) . . . χαr (ur),

which is called the Jacobi sum of the characters χα0 , . . . , χαr
. Under this definition, we have

Nq = qr + (q − 1)
∑

αi∈(0,1),nαi∈Z,
Pr

i=0 αi∈Z
χα0(a

−1
0 ) . . . χαr (a

−1
r )J(α).
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The Jacobi sum is closely related to the Gauss sum, which we will define now. If χ : k× → C× is a
nontrivial character, for any a ∈ k×, define the Gauss sum as

τa(χ) =
∑

t∈k

χ(t)ζTr(at)
p ,

where ζp = e
2πi

p and Tr : k → Fp is the trace map. Notice that when k = Fp, this definition coincides
with the definition we give at the beginning and similarly we have |τa(χ)| =

√
q. For simplicity, we set

τ(χ) = τ1(χ). Under this definition, we have:

J(α) =
1
q
τ(χα0) . . . τ(χαr ).

Exercise 5. Prove the above equality. (Hint: You can start with some simple cases, e.g. k = Fp and r = 2
to get some feeling about what this equality says.)

As a consequence of the above equality, we have an estimation

|Nq − qr| = M(q − 1)q
r−1
2 ,

here M is the cardinality number of the set {α = (α0, . . . , αr)|αi ∈ (0, 1), nαi ∈ Z,
∑r

i=0 αi ∈ Z}.
Since the equation (2) is homogenous, it defines a hypersurface S in the projective space Pr(k). Recall

that
Pr(k) = {[X0, X1, . . . , Xr] ∈ kr+1|X ′

is are not all zero}/ ∼,

and [X0, X1, . . . , Xr] ∼ [Y0, Y1, . . . , Yr] if and only if there exists c ∈ k× such that Xi = cYi for all i.
Let N ′

q be the number of k-rational points on the hypersurface S. Then

N ′
q =

Nq − 1
q − 1

= 1 + q + . . . + qr−1 +
∑
α

χα0(a
−1
0 ) . . . χαr

(a−1
r )J(α).

Since the hypersurface S is defined over k, we can do similar discussion as above for any finite extension of
k. To be more precise, for any positive integer s, let ks/k be the finite extension of degree s so ks has qs

elements. Let N ′
qs be the number of ks-rational points on S. Then from the above discussion, we have

N ′
qs = 1 + qs + . . . + qs(r−1) +

∑
α

χ(s)
α0

(a−1
0 ) . . . χ(s)

αr
(a−1

r )J (s)(α),

here χ
(s)
α is the character of k×s which sends a fixed generator w(s) to e2πiα.

If we want to compare the numbers N ′
q and N ′

qs , we need to know relations between characters of k×

and k×s . In fact, let Nm : k×s → k× be the norm map, which is known to be surjective. Hence the norm map
must maps a generator of k×s to a generator of k×. If we choose the generators suitably, we will have the
equality χ

(s)
α = χα ◦ Nm. Based on this fact, Davenport and Hasse proved the following relation on Jacobi

sums (see [4] Chapter 11 or [4]):
Js(α) = (−1)(s−1)(r−1)J(α)s.

From this we have:

N ′
qs = 1 + qs + . . . + qs(r−1) +

∑
α

(−1)(s−1)(r−1)(χα0(a
−1
0 ) . . . χαr

(a−1
r )J(α))s. (6)
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If we want to record the numbers N ′
qs for all s, we can consider the formal power seris

f(U) =
∞∑

s=1

N ′
qsUs−1.

Using the equality (6), and the identity

∞∑
s=1

XsUs−1 =
d

dU
(− log(1−XU)),

we have

f(U) =
r−1∑

i=0

d
dU

(− log(1− qiU)) + (−1)r
∑
α

d
dU

(− log(1− C(α)U))

here C(α) = (−1)r−1χα0(a
−1
0 ) . . . χαr

(a−1
r )J(α).

Definition 7. The zeta function of the hypersurface S/k is defined to be the formal power series

Z(S/k, U) = exp(
∞∑

s=1

N ′
qs

s
Us).

From the above discussion, we see that the zeta function is of the form

Z(S/k, U) =
P (U)(−1)r

(1− U)(1− qU) . . . (1− qr−1U)
,

for P (U) =
∏

α(1− C(α)U).
Here are some observations on the zeta function:

1. Z(S/k, U) is a rational function of U ;

2. Write P (U) = (1− b1U) . . . (1− bmU), then all the bi’s are algebraic integers with absolute value q
r−1
2 .

Moreover, the map b 7→ qr−1/b is a permutation of the set {b1, b2, ..., bm}.

A.Weil made a conjecture predicting some properties of the zeta functions of smooth projective varieties
over finite fields and gave a proof for projective curves. In the following, I will give the precise statement of
Weil’s conjecture and explain his proof for curves.

Weil conjecture for curves over finite fields: Let C/Fq be a smooth projective curve over the finite
field Fq. Define the zeta function of C/Fq as

Z(C/Fq, T ) = exp(
∞∑

m=1

Nm

m
Tm),

here Nm is the number of Fqm -rational points on C/Fq. Then this function satisfies the following properties:

1. (rationality) There exists an integer g ≥ 0 (the genus of C/Fq) and a polynomial P (T ) ∈ Z[T ] of degree
2g such that

Z(C/Fq, T ) =
L(T )

(1− T )(1− qT )
;
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2. (functional equation)

Z(C/Fq, T ) = qg−1T 2g−2Z(C/Fq,
1

qT
);

3. (Riemann hypothesis) There exists algebraic integers α1, . . . , α2g,such that

L(T ) = (1− α1T ) . . . (1− α2gT ),

and |αi| = √
q for i = 1, . . . , 2g.

Corollary 8. For all m ≥ 1, we have

Nm = 1 + qm −
2g∑

i=1

αm
i .

In particular, when g = 1, Nm > 0 for all m, i.e. any genus one curve over Fq (equivalently, any elliptic
curve over Fq) has a rational point.

Remark 9. 1. Without assuming the Riemann hypothesis, the functional equation is equivalent to the
fact that the map α 7→ q

α is a permutation of the set {α1, . . . , α2g};
2. If we define ζ(C/Fq, s) = Z(C/Fq, q

−s). Then the last part of Weil conjecture is equivalent to the fact
that if s is a zero of ζ(C/Fq, s), then <(s) = 1

2 . This is why it is called the Riemann hypothesis.

First we will prove the rationality and functional equation of the zeta functions. Before we start the
proof, we need to introduce some tools in algebraic geometry. We start with divisors on curves.

Definition 10. Let C/k be a projective smooth curve over an algebrically closed field k. A divisor of C/k
is a formal finite sum D =

∑
P nP · P , where P ∈ C(k)’s are k-rational points of C, nP ∈ Z and nP = 0

for all but finitely many P ’s. The set Div(C/k) of divisors of C/k forms an abelian group in the obvious
way. For any divisor D =

∑
P nP · P , its degree is defined to be the number degD =

∑
P nP . We introduce

a partial order on Div(C/k):

D =
∑

P

nP · P ≥ D′ =
∑

P

n′P · P if and only if nP ≥ n′P for all P.

A divisor D =
∑

P nP · P is called effective if and only if D ≥ 0, i.e. nP ≥ 0 for all P .

Now we turn to the case that k is not necessarily algebraically closed. A naive guess is to define

Div(C/k) = {
∑

P

nP · P |nP ∈ Z, P ∈ C(k) and nP = 0 for all but finitely many P}.

The problem is that the curve C may have very few k-rational pionts when k is not algebraically closed.
Then the above set will be too small and useless for the study of the curve. Before we give the correct
definition, first let’s see an example.

Example 1. Let C = P1/Q be the projective line over Q and consider the divisor D = P1 + P2, here P1

(resp.P2) is the point on C with coordinate [
√

2 : 1] (resp. [−√2 : 1]). Neither of the points P1, P2 are defined
over Q, but we may think that the divisor D is defined over Q as the two points P1, P2 are the zeroes of
the rational homogenous function X2 − 2Y 2. Moreover, the two points P1, P2 are defined over the quadratic
extension Q(

√
2) of Q, and the nontrivial element in Gal(Q(

√
2)/Q) switches the two points.
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In the following discussion, we assume that k = Fq is a finite field and fix an algebraic closure k̄ of k.
Let P be a k̄-rational point on C. Then we can find a finite extension K/k of k such that P is defined over
K. We can choose K such that there is no intermediate field K ′ between K and k on which the point P is
defined. As is indicated from the above example, we can consider the divisor

D =
∑

σ∈Gal(K/k)

σ(P ).

This divisor is effective and stable under the action of Gal(K/k). So it is expected that D is ’defined’ over
k.

Definition 11. We define the divisor group Div(C/k) of C/k as the subgroup of Div(C/k̄) generated by
divisors of the above form. The divisors constructed above are called irreducible divisors over k as they cannot
be written as the sum of two nonzero effective divisors in Div(C/k).

Definition 12. Define Div0(C/k) as the subgroup of Div(C/k) of degree 0. Let f 6= 0 be a rational function
on the curve C/k, it defines a divisor

div(f) =
∑

P∈C(k̄)

ordP (f)P,

here ordP (f) is the order of f at P . Since f is defined over k, the divisor div(f) belongs to Div(C/k). Such
a divisor is called principal and its degree is 0. So the set of principal divisors Prin(C/k) is a subgroup of
Div0(C/k). Finally, two divisors D1 and D2 are called linearly equivalent (denoted by D1 ∼ D2) if D1−D2

is principal.

Exercise 6. Show that the equality Prin(C/k) = Div0(C/k) holds (i.e. all the divisors of degree 0 are
principal) if and only if C = P1/k.

By the language of divisors, we can rewrite the zeta function as

Z(C/k, T ) =
∏

D

(1− T degD) =
∞∑

n=0

AnTn,

here in the product D ranges in the set of irreducible effective divisors over k, and in the last sum, An is the
number of effective divisors of degree n over k.

in fact, let Φl be the number of irreducible effective divisors of degree m over k. Then we have the
relation:

Nm =
∑

n|m
nΦn,

as an irreducible divisor of degree n will provide exactly n Fqn -rational points on C if n|m. Then we have

log Z(C/k, T ) =
∞∑

m=1

Nm

m
Tm =

∞∑
m=1

∑

n|m

nΦn

m
Tm

m=nh=
∞∑

n=1

∞∑

h=1

nΦn

hn
Tnh =

∞∑
n=1

Φn(− log(1− Tn))

=
∞∑

n=1

∑

degD=n

− log(1− T deg(D)),
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and the first equality follows.

∏

D

(1− T degD)−1 =
∏

D

(
∞∑

m=0

TmdegD) =
∞∑

n=0

(
∑

m1degD1+...+mrdegDr=n

1)Tn =
∞∑

n=1

AnTn,

then the second equality follows. To compute the zeta function, it is enough to compute the numbers An’s,
and now we need the Riemann-Rock theorem.

Definition 13. Let D be a divisor of C/k. Define a set

L(D) = {f ∈ k(C)|f 6= 0,div(f) + D ≥ 0} ∪ {0},
here k(C) is the filed of rational functions on C.

Remark 14. Since ordP (f1 + f2) ≥ min(ordP (f1), ordP (f2)), and a principal divisor has degree 0, we have
the following properties for L(D):

1. L(D) is a finite dimensional vector space over k, and we denote its dimension by l(D);

2. If D ∼ D′, then l(D) = l(D′);

3. L(0) = k and hence l(0) = 1;

4. l(D) = 0 if degD < 0.

Theorem 1. Let C/k be a smooth projective curve. Then there exists an integer g ≥ 0 (called the genus of
C/k) and a divisor KC (called the canonical divisor of C/k) such that for all divisor D, we have

l(D)− l(KC −D) = degD − g + 1.

Remark 15. The canonical divisor is unique up to linear equivalence. When C/k = P1/k, KC = −2P , here
P is an arbitrary k-rational point on the projective line. For other curves, there is a holomorphic differential
ω on C/k (unique up to constant scalars). The canonical divisor can be taken as KC = div(ω) (we can
associate a divisor to a holomorphic differential in a similar manner as what we do for rational functions).
For example, we consider the elliptic curve with Weierstrass equation y2 = x3 + ax + b. One can check that
the formula

ω =
dx

2y
=

dy

3x2 + a

defines a holomorphic 1-form on E. Moreover, it has no zeroes or poles. So KE = 0.

Taking D = 0,KC in the Riemann-Rock theorem, we have:

Corollary 16. 1. l(KC) = g;

2. deg(KC) = 2g − 2;

3. If degD ≥ 2g − 1, then l(D) = degD − g + 1.

Now we are able to prove the rationality of the zeta functions. Let h be the cardinality number of the
group Div0(C/k)/Prin(C/k), which is known to be a finite number. We assume the following fact:

Assumption : there exists a divisor c1 of degree 1 on C/k.

This fact can be proved by Galois cohomology, but we do not give a proof here to make the notes in a
reasonable length.
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Under this assumption, we have a bijection of sets:

{D ∈ Div(C/k)|degD = n} ↔ {D ∈ Div(C/k)|degD = 0}
c ↔ c− nc1

Let Σ0 be a set of representatives of Div0(C/k)/Prin(C/k), then Σn = {c + nc1|c ∈ Σ0} is a set of represen-
tatives of divisors of degree n under linear equivalence. Then

{D|D is an effective divisor of C/k,degD = n} =
⊔

c∈Σn

{D|D is an effective divisor of C/k,degD = n,D ∼ c}

=
⊔

c∈Σn

{c + div(f)|0 6= f ∈ k(C), c + div(f) ≥ 0}.

In view of Definition 13, we can compute the number An as:

An =
∑

c∈Σn

ql(c) − 1
q − 1

=
1

q − 1
(
∑

c∈Σn

ql(c) −
∑

c∈Σn

1) =
1

q − 1
(
∑

c∈Σn

ql(c) − h).

If n = deg(c) > 2g − 2, l(c) = deg(c)− g + 1 = n− g + 1. So the zeta function becomes

Z(C/k, T ) =
1

q − 1
(
2g−2∑
n=0

∑

c∈Σn

ql(c)Tn +
∞∑

n=2g−1

hqn+1−gTn − h
∞∑

n=0

Tn)

Define

A(T ) =
2g−2∑
n=0

∑

c∈Σn

ql(c)Tn, B(T ) =
∞∑

n=2g−1

qn+1−gTn −
∞∑

n=0

Tn

Then A(T ) ∈ Z[T ] of degree ≤ 2g − 2 and B(T ) = qgT 2g−1

1−qT − 1
1−T . If we define the polynomial

L(T ) =
1

q − 1
(A(T )(1− qT )(1− T ) + h((1− T )qgT 2g−1 − (1− qT ))) ∈ Q[T ],

which is of degree at most 2g, then the zeta function is of the form

Z(C/k, T ) =
L(T )

(1− T )(1− qT )
.

Moreover, we have L(1) = h,L( 1
q ) = hq−g+1. Since Z(C/k, T ) ∈ Z[[T ]], we have L(T ) ∈ Z[T ]. So we see

that the zeta function is a rational function of T .
We continue to prove the functional equation. The map c 7→ KC − c = c′ is a bijection of the set

{c|0 ≤ degc ≤ 2g − 2} and by the Riemann-Rock theorem, we have

l(c′) = l(c)− deg(c)− 1 + g.

So

qg−1T 2g−2A(
1

qT
) =

2g−2∑
n=0

∑

c∈Σn

ql(c)+g−1−nT 2g−2−n

=
2g−2∑
n=0

∑

c∈Σn

ql(c′)T deg(c′) = A(T ).
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On the other hand, by direct computation we have

B(T ) = qg−1T 2g−2B(
1

qT
).

So the zeta function satisfies the desired functional equation, which implies that the degree of the polynomial
L(T ) is 2g. Since L(T ) ∈ Z[T ] and has constant term 1, we can find algebraic integers α1, . . . , α2g, such that

L(T ) =
2g∏

i=1

(1− αiT ),

and the map α 7→ q
α is a permutation of the set {α1, . . . , α2g}.

It remains to prove the Riemann Hypothesis, i.e. |αi| = √
q for all i = 1, . . . , 2g. We need to make some

preparation on algebraic geometry before the proof.
We start with the definition of the degree of smooth projective curves. Given a polynomial f(X) =

anXn + . . . + a0 ∈ C[X] with no multiple roots, we know that its degree is n if an 6= 0. We can interpret the
degree of a polynomial in a geometric way.

The equation Y = f(X) defines a curve on the affine plane. It intersects the line Y = 0 at n points. So
we can regard the degree n as the intersection number of these two plane curves. Notice that on the affine
plane, two lines may have intersection number 0 or 1, depending on whether they are parallel or not. This
suggests that we’d better work in the projective spaces to get a satisfactory intersection theory.

In P2, if a smooth projective curve is defined as the zero locus of a single homogenous polynomial
F (X, Y, Z), then the degree of C is defined to be the degree of F (X, Y, Z). In general, in Pn, if a smooth
projective curve C is defined by n−1 homogeneous polynomials F1, . . . , Fn−1, then the degree of C is defined
to be the product

∏n−1
i=1 deg(Fi). However, not all the projective curves can be defined in this way (the above

curves are called complete intersections and this is a very strong condition on the curves). To define the
degree of a general curve, we need a geometric definition of the degree. In fact, the degree of a curve C ⊂ Pn

is the number of intersection points of C and H, where H is a hyperplane in Pn which intersects with C
transversally. The last sentence means that if P ∈ H ∩ C, then the tangent space of H and C at P should
span the tangent space of Pn at P . In the general situation, we can define a multiplicity for each intersection
point and the degree of the curve is equal to the sum of these multiplicities.

Remark 17. Unlike the genus, the degree of a curve is not intrinsic. It depends on the embedding of the
curve to the projective space. For example, consider the elliptic curve E : Y 2Z = X3 + AXZ2 + BZ3 in P2.
Under this embedding, E has degree 3. On the other hand, we can embed E in to P3:

E → P3

[X : Y : Z] 7→ [Z2 : XZ : Y Z : X2].

Under this embedding, E has degree 4.

Theorem 2. (Bézout) Let C1 and C2 be two distinct curves (not necessarily smooth) in P2 of degree d1 and
d2. Then the intersection of C1 and C2 is finite and the number of intersection points is d1d2 (counted with
multiplicity).

Let S/k be an algebraic surface over an algebraically closed field k. A divisor of S is a formal finite
sum

∑
C nCC, where C’s are irreducible projective curves (not necessarily smooth) on S, and as before we

can define the group of divisors Div(S/k), the principal divisor div(f) associated to any nonzero rational
function f on S and the notion of linear equivalence.

When S = P2, by Bézout Theorem, we can define a bilinear form on Div(S/k), such that C1 ·C2 = d1d2

if C1 6= C2 and C · C = (degC)2. This construction can be generalized to an arbitrary smooth projective
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surface S. If D1, D2 ∈ Div(S/k), then D1 ·D2 is called the intersection number of D1 and D2. It satisfies the
property that D · div(f) = 0 for any divisor D and nonzero rational function f . However, Bézout Theorem
is not true for general surfaces, and the definition of the self intersection number of a curve C on S could
be tricky. If we can find another curve C ′ which is linearly equivalent to C, then C ·C = C ·C ′ as C −C ′ is
principal, and the number C · C ′ is defined. But one may not find such a curve C ′. In algebraic geometry,
we define the self intersection number of C as the degree of the line bundle NS/C , where NS/C is the normal
bundle of the embedding C ⊂ S. As we will see in the computation below, C ·C can be negative or 0 if S is
not P2.

The reason that we care the intersection theory on surfaces is that we can interpret the number Nq =
]C(Fq) as an intersection number, here C/Fq is a smooth projective curve of genus g. To be more precise,
let Frob : C → C be the Frobenius map. Then C(Fq) are exactly the Frob-invariant points in C(F̄q). Let S
be the surface C × C over Fq. We define several curves on S: let Γ be the graph of the Frobenius map, i.e.
Γ is the image of the morphism (id,Frob) : C → C × C; let ∆ be the diagonal curve of C × C, i.e. ∆ is the
image of the morphism (id, id) : C → C × C; finally, set F1 = C × {P} and F2 = {P} × C, for a fixed point
P ∈ C(F̄q).

Lemma 18. (calculation of the intersection numbers) Under the above notations, we have

Γ ·∆ = Nq,∆ ·∆ = 2− 2g, Γ · Γ = q(2− 2g),Γ · F1 = q, and Γ · F2 = 1.

Proof. The equalities Γ ·∆ = Nq,Γ · F1 = q, and Γ · F2 = 1 can be checked by the geometric interpretation
of intersection numbers. The calculation of ∆ ·∆ relies on the adjunction formula: if C1 ⊂ S is a smooth
projective curve, then

KC1 = (KS + C1)|C1 ,

where KC1 is the canonical divisor on C1, and KS is the canonical divisor on S. More precisely, we have

KS = p∗1KC + p∗2KC = KC × C + C ×KC ,

where pi : S → C is the projection map to the i-th factor, for i = 1, 2.
Taking the degrees of both sides of the adjunction formula, we have

degKC1 = KS · C1 + C1 · C1.

Now we take C1 = ∆, and we have

KS ·∆ + ∆ ·∆ = degK∆ = 2g − 2 as ∆ ∼= C. (19)

On the other hand, we have

KS ·∆ = (KC × C) ·∆ + (C ×KC) ·∆ = (2g − 2) + (2g − 2).

Then equation (19) gives ∆ ·∆ = 2− 2g. Notice that this self intersection number is negative if g > 1.
Finally, notice that Γ is the pre-image of ∆ under the map Frob× idC : S → S, so we have

Γ · Γ = deg(Frob× idC)∆ ·∆ = q(2− 2g).

To prove the Riemann hypothesis, we need the following:

Theorem 3. (Castelnuovo inequality) Let D be a divisor on the surface S = C × C. If d1 = D · F1,
d2 = D · F2, then

D ·D ≤ 2d1d2.
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We refer to [3] Chapter 2 or [4] for a proof of the above theorem.
For any integers r and s, define a divisor D = rΓ + s∆ on S. Then

d1 = D · F1 = rq + s, d2 = D · F2 = r + s.

By Castelnuovo inequality,

D ·D = r2q(2− 2g) + 2rsNq + s2(2− 2g) ≤ 2(rq + s)(r + s).

So we have
gqr2 + (q + 1−Nq)rs + gs2 ≥ 0 for all r, s ∈ Z.

This implies that
|q + 1−Nq| ≤ 2g

√
q.

From the rationality of the zeta function, this is equivalent to

|
2g∑

i=1

αi| ≤ 2g
√

q.

We can repeat the above argument for any finite extension Fqm of Fq, and we have

|
2g∑

i=1

αm
i | ≤ 2g

√
qm.

Then the Riemann hypothesis follows from the following lemma:

Lemma 20. If λ1, . . . , λk ∈ C, such that there exists a constant C satisfying

|
k∑

i=1

λn
i | ≤ C

for all n ≥ 1, then |λi| ≤ 1 for all i.

Exercise 7. Prove the above lemma.

By this lemma, we have
|αi| ≤ √

q,

for all i. On the other hand, from the functional equation of the zeta function, we see that the map α 7→ q
α

preserves the set {α1, . . . , α2g}. So we have
| q

αi
| ≤ √

q,

for all i. Combining the above two equalities together, we have |αi| = √
q for all i.
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