
PROJECT ON COMPUTING THE Up-EIGENVALUES OF FAMILIES OF
OVERCONVERGENT AUTOMORPHIC FORMS

Abstract. In this project, we use SAGE to compute the Up-eigenvalues of families of
overconvergent automorphic forms on a definite quaternion algebra.

The style of writing is: we write general theory in black and our example in blue.

Acknowledgments. The entire project is originated from the thesis of Daniel Jacobs [Ja04],
which was later further refined by Daqing Wan, L.X., and Jun Zhang in [WXZ14+]. We thank
them for the foundational works.

1. Automorphic forms on a definite quaternion algebra

1.1. The quaternion algebra. Let D be a definite quaternion algebra over Q which splits
at a fixed prime p. As our first example which we shall test, we take

D = Q〈i, j〉/(i2 = j2 = −1, ij = −ji),

and p = 3. We often put k = ij so that i = jk = −kj and j = ki = −ik.
We need to introduce some local information of D.

• D ⊗ R is isomorphic to the Hamiltonian quaternion H. For our example, D ⊗ R ∼=
R〈i, j〉 ∼= H.
• There is a finite set ΣD of prime numbers such that a prime ` does not belong to

ΣD if and only if D ⊗ Q`
∼= M2(Q`) (and we fix such an isomorphism). This set

ΣD always consists of odd number of primes; these are called ramified primes. Our
assumption on D requires that p /∈ ΣD. For our example, ΣD = {2}, i.e. our D is
only ramified at 2 (and at ∞).

For later application, we need to specify an isomorphism D ⊗Q Q3
∼= M2(Q3). We

take it so that

(1.1) 1↔
(

1 0
0 1

)
, i↔

(
ν3 1
1 −ν3

)
, j↔

(
0 −1
1 0

)
, and k↔

(
1 −ν3

−ν3 −1

)
,

where ν3 is the square root of −2 that is congruent to 1 modulo 3; explicitly, we have
a 3-adic expansion

ν3 = 1 + 3 + 2 · 32 + 2 · 35 + 37 + · · · .

• For ` ∈ ΣD, D ⊗ Q` is a division algebra (or a non-commutative field). Explicitly,
we can write it as Q`2($), where Q`2 is the unique unramified extension of Q`,
and $ is an element such that $2 = ` and $a = σ(a)$ for all a ∈ Q`2 and
σ ∈ Gal(Q`2/Q`). For our example, D ⊗ Q2 = Q2〈i, j〉 is a non-commutative field,
such that (a+ bi + cj + dk)−1 = a−bi−cj−dk

a2+b2+c2+d2
if a, b, c, d ∈ Q2 not all zero. (The upshot

is that whenever a, b, c, d ∈ Q2 not all zero, a2 + b2 + c2 + d2 6= 0.)
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The key statement we introduce here is the Jacquet–Langlands correspondence, which
roughly says that a large part of the information regarding modular forms can be seen on
this definite quaternion algebra. It gives an isomorphism

(1.2) Sk(Γ0(Npm);ψm)ΣD-new ∼= SDk (K0(Npm);ψm),

where the left hand side is the space of ΣD-new forms of the given level, and the right hand
side is the automorphic forms on D, and the isomorphism preserves the action of all Hecke
operators. For the particular case appearing in our project, we look at the isomorphism

(1.3) Sk(Γ0(18);ψ9)2-new ∼= SDk (K0(18);ψ9).

We now explain the terms involved in this isomorphism.

1.2. Level structure for modular forms. We need to interpret the level structure of
modular forms as open compact subgroups of (D ⊗ Af )

×, where Af is the ring of finite
adeles of Q. For the purpose of this project, we limit our consideration to level structures of
the following kind.

• We choose an integer N such that
– N is square-free,
– p does not divide N , and
– for every prime ` in ΣD, `|N .

This is the prime-to-p part of the level for modular forms. In our example, we require
N to be an even square-free number, or rather just N = 2.
• for the level at p, we take Γ0(pm)-level (with m ≥ 1) with a nebentypus charac-

ter ψm : (Z/pmZ)× → Qp(ζpm−1)× of conductor pm (namely doesn’t factor through
(Z/pm−1Z)×) (in our case, we consider the Γ0(9)-level with nebentypus character
(Z/9Z)× → Q(ζ3)×, sending 2 to ζ6).

So on the modular forms side, we consider the level group Γ0(Npm) with Nebentypus char-
acter ψm : (Z/NpmZ)× → (Z/pmZ)× → Qp(ζpm−1)×. Namely, we look at Sk(Γ0(Npm);ψm)
consisting of modular cuspforms that satisfies

f
(az + b

cz + d

)
= (cz + d)kψm(d)f(z)

with
(
a b
c d

)
∈ SL2(Z) such that Npm|c.

Here and after, we implicitly assume the following

Hypothesis 1.3. The weight k satisfies k ≥ 2 and ψm(−1) · (−1)k = 1.

1.4. Hecke operators. For each prime ` - Np, there is a well-defined Hecke operator T` act-
ing on the space of modular forms Sk(Γ0(Npm);ψm). More precisely, for f(q) =

∑∞
n=1 anq

n,
we put

T`(f)(q) :=
∞∑
n=1

a`nq
n + ψm(`)`k−1

∞∑
n=1

anq
`n.

Different Hecke operators commutes with each other, and as a fact that they act semisimply
on the space of modular forms Sk(Γ0(Npm);ψm) (namely, the generalized eigenspaces are
eigenspaces).
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There is a distinguished Hecke operator Up acting on the Sk(Γ0(Npm);ψm) such that for
f(q) =

∑∞
n=1 anq

n,

Up(f)(q) :=
∞∑
n=1

apnq
n.

The action of Up commutes with all other Hecke operators T`. (For a very special reason ,
namely ψm has conductor exactly pm, the action of Up is also semisimple.)

Using the commuting actions of Up and T` for all ` - Np, we may decompose Sk(Γ0(Npm);ψm)
into eigenspaces

(1.4) Sk(Γ0(Npm);ψm) ∼=
⊕
π

Sπ,

where π denotes a collection of eigenvalues for the operators Up and T`, and Sπ the corre-
sponding eigenspaces.

A modular form f ∈ Sπ is called an eigenform; it is called normalized if a1(f) = 1. In this
case the eigenvalue for the operator Up is exactly ap(f), and the eigenvalue for the operator
T` is exactly a`(f).

1.5. New form theory. For each prime number ` ∈ ΣD (and hence a divisor of N), there
are two natural embeddings

i
(1)
` , i

(2)
` : Sk(Γ0(Npm/`);ψm) −→ Sk(Γ0(Npm);ψm)

i
(1)
` (f)(z) = f(z) and i

(2)
` (f)(z) = f(`z).

The sum of the images Im(i
(1)
` )+Im(i

(2)
` ) is called the space of `-old forms of Sk(Γ0(Npm);ψm),

denoted by (Sk(Γ0(Npm);ψm)`-old.
It turns out that (Sk(Γ0(Npm);ψm)`-old is the direct sum of some factors Sπ appearing in

(1.4). The direct sum of other factors is called the space of `-new forms.
Applying this construction to all ` | ΣD, we define the space of ΣD-new forms to be

Sk(Γ0(Npm);ψm)ΣD-new :=
⋂
`∈ΣD

Sk(Γ0(Npm);ψm)`-new;

it is the direct sum of those factors Sπ in (1.4) that do not appear in the image of i
(1)
` or i

(2)
`

for all ` ∈ ΣD (nor in the sum of all these images).
In the example we consider, there are two embeddings

i
(1)
2 , i

(2)
2 : Sk(Γ0(9);ψ9)→ Sk(Γ0(18);ψ9),

which induces a direct sum decomposition:

Sk(Γ0(18);ψ9) = Im(i
(1)
2 )⊕ Im(i

(2)
2 )⊕ Sk(Γ0(18);ψ9)2-new

respecting the action of U3 and all other T` for primes ` 6= 2, 3.
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1.6. Coefficients. A key feature of modular forms that allows us to do arithmetic with it
is that the space of modular forms Sk(Γ0(Npm);ψm) admits a basis consisting of modular
forms whose q-expansions have coefficients in Q(ψm). So it makes sense to talk about modular
forms with coefficients in Q(ψm) and hence modular forms with coefficients in Qp(ψm) :=
Qp(Im(ψm)) = Qp(ζpm−1).

From now on, when we write Sk(Γ0(Npm);ψm), we think of modular forms with coefficients
in Qp(ψm).

We now complete the explanation of the left hand side of the isomorphism (1.2) (and
(1.3)). We now turn to defining the space of automorphic forms on D.

1.7. Adelic groups. To properly define automorphic forms on D, we need to take the adelic
setup. We begin with describing the adelic group (D ⊗Q Af )

×.
The ring of finite adeles Af is a subring of the direct product

∏
` prime Q` given explicitly

as
Af :=

{
(x`)` ∈

∏
` prime

Q`

∣∣ all but finitely many x` ∈ Z`
}
.

It is topological ring in which subgroups of the form
∏

` prime `
a`Z`, where each a` ∈ Z≥0 and

only finitely many a` are nonzero, form a system of open neighborhood of 1.
In a similar manner, recall that D ⊗Q Q`

∼= M2(Q`) for all ` /∈ ΣD (and we fix such an
isomorphism for each ` and identify them).1 Then

(D ⊗Q Af )
× :=

{
(x`)` ∈

∏
` prime

(D ⊗Q Q`)
× ∣∣ all but finitely many x` ∈ GL2(Z`)

}
.

Note that the condition does not make sense for ` ∈ ΣD but that only involves finitely many
primes and hence does not affect the effect of the statement.

The adelic group (D ⊗Q Af )
× is a topological group such that the subgroups of the form∏

` prime K`, where K` ⊆ (D ⊗Q Q`)
× open and K`

∼= GL2(Z`) for all but finitely many `,

form a system of open neighborhood of 1. Such subgroup
∏

` prime K` is compact if (and only

if) each K` is.

1.8. Level subgroups. We now interpret the level structure on modular forms in terms
of open compact subgroups of (D ⊗ Af )

×. Recall that we consider only a special type of
level structure: Γ0(Npm), where N is a square-free integer divisible by all primes in ΣD.
Accordingly, we take the open compact subgroup of (D ⊗Q Af )

× to be the following.

• If ` - Np, we take K` := GL2(Z`).
• If ` | N but ` /∈ ΣD, we take

K` :=

(
Z×` Z`
`Z` Z×`

)
⊆ GL2(Z`).

• If ` = p, we take

Kp :=

(
Z×p Zp
pmZp Z×p

)
⊆ GL2(Zp).

• If ` ∈ ΣD, the multiplicative division algebra D ⊗Q Q`
∼= Q`2〈$〉, we take K` =

Z`2〈$〉× = Z×`2 +$Z`2〈$〉.
1Rigorously speaking, we should first take an order OD of D and then identify OD ⊗Z Z` with M2(Z`) for

all but finitely many `. This way, we keep the global integral structure up to finitely many primes.
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We denote the total product
∏

`∈ prime K` as K0(Npm).
In the our particular example, we have

K0(18) = Z4〈$2〉× ×
(
Z×3 Z3

9Z3 Z×3

)
×

∏
`6=2,3 prime

GL2(Z`).

Definition 1.9. Consider the monoid

(1.5) M :=

(
Zp Zp
pZp Z×p

)det6=0

.

It acts from the right on Qp[x]deg≤k−2 by

h‖( a b
c d

)(z) = ψm(d)(cz + d)k−2h
(az + b

cz + d

)
.

We define the space of automorphic forms SDk (K0(Npm);ψm) to be the space of functions
ϕ : (D ⊗Q Af )

× → Qp(ψm) such that

(1.6) ϕ(δxu) = ϕ(x)‖up for δ ∈ D×, u ∈ K0(Npm),

where up denotes the p-component of u (hence belongs to Kp).
It is clear that in each double coset D×γK0(Npm), if we know the value at one element,

then formula (1.6) will tell us the value at all other elements.

Fact 1.10. The number of double cosets D×\(D ⊗Q Af )
×/K0(Npm) is finite. When Npm

is sufficiently large, we can write

(D ⊗Q Af )
× =

t∐
i=1

D×γiK0(Npm).

such that for each i, the natural map

D× ×K0(Npm) // D×γiK0(Npm)

(δ, u) � // δγiu

is two-to-one and sending (δ, u) and (−δ,−u) to the same element. We call this Npm neat.
Moreover, in the way we setup the level structure, we may always take each γi to satisfy the
following properties:

• γi,p = 1,
• det(γi,`) ∈ Z×` for each prime `.

For the proof of this existence, see [WXZ14+, Notation 4.1].
For our particular D and K0(18), we there is only one γ (which we may take to be just 1.

More precisely, we have a bijection

(1.7) D× ×{±1} K0(18)
∼= // (D ⊗Q Af )

×

(δ, u) � // δu

We include the proof of this fact in the appendix (which will be important when we try to
generalize our computation beyond this particular case).
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Corollary 1.11. When Npm is neat, evaluating at the chosen coset representatives γi gives
an isomorphism (assuming Hypothesis 1.3)

(1.8) SDk (K0(Npm);ψm)
∼= // ⊕ti=1Qp[x]deg≤k−2

ϕ � // ϕ(γi).

In view of this, the space of automorphic forms on D is much much simpler than the space
of modular forms!

1.12. Hecke actions. To compare with classical modular forms, we need to define Hecke
actions.

Let ` be a prime that does not divide Np; then K` ' GL2(Z`). We write K`

(
` 0
0 1

)
K` =∐`

i=0K`wi, with wi =
(
` 0
i 1

)
for i = 0, . . . , ` − 1 and w` =

(
1 0
0 `

)
, viewed as elements in

GL2(Ql) ' D ⊗Q Ql. We define the action of the operator T` on SDk (K0(Npm);ψm) by

T`(ϕ) =
l∑

i=0

ϕ|wi
, with (ϕ|wi

)(g) := ϕ(gw−1
i ).2

At p, recall that Kp =
( Z×

p Zp

pmZp Z×
p

)
with m ≥ 1, so we have a decomposition

(1.9) Kp

(
p 0
0 1

)
Kp =

p−1∐
i=0

Kpvi, with vi =
(

p 0
ipm 1

)
.

Then the action of the operator Up on SDk (K0(Npm);ψm) is defined to be

(1.10) Up(ϕ) =

p−1∑
i=0

ϕ|vi , with (ϕ|vi)(g) := ϕ(gv−1
i )‖vi .

We point out that the definition of Up- and Tl-operators do not depend on the choices of the
double coset representatives wi and vi. But our choices may ease the computation.

These Up- and Tl-operators are viewed as acting on the space on the left (although the
expression seems to suggest a right action); they are pairwise commutative.

Proposition 1.13. In terms of the explicit description of the space of overconvergent au-
tomorphic forms, the Up- and T`- (for ` - Np) operators can be described by the following
commutative diagram.

SD,†(U ;κ)
ϕ7→(ϕ(γi)) //

ϕ 7→ Upϕ

ϕ 7→ T`ϕ ��

⊕t−1
i=0A⊗̂A

Map of

interest

Up

T` ��

SD,†(U ;κ)
ϕ7→(ϕ(γi)) // ⊕t−1

i=0A⊗̂A.

Here the right vertical arrow Up (resp. Tl) is given by a matrix with the following description.

(1) The entries of Up (resp. Tl) are sums of operators of the form ||δp, where δp is the
p-component of a global element δ ∈ D× of norm p (resp. norm `).

(2) There are exactly p (resp. ` + 1) such operators appearing in each row and each
column of Up (resp. T`).

2This looks slightly different from (1.10) below because |wi is trivial as wi is not in the p-component.
6



(3) Viewing the global element δ ∈ D× as an element of (D ⊗Q Qp)
×, we have δ ∈( pZp Zp

pmZp Z×
p

)
(resp. δ ∈

( Z×
p Zp

pmZp Z×
p

)
).

Proof. Set K := K0(Npm) for simplicity. We only prove this for the Up-operator and the
proof for the Tl-operator (l - Np) is similar. For each γi, we have

(Upϕ)(γi) =

p−1∑
j=0

ϕ(γiv
−1
j )‖vj .

Now we can write each γiv
−1
j uniquely as δ−1

i,j γλi,jui,j for δi,j ∈ D×, λi,j ∈ {0, . . . , t− 1}, and
ui,j ∈ K. Then we have

(Upϕ)(γi) =

p−1∑
j=0

ϕ(δ−1
i,j γλi,jui,j)‖vj =

p−1∑
j=0

ϕ(γλi,j)‖ui,j,pvj ,

where ui,j,p is the p-component of ui,j. Substitute back in ui,jvj = γ−1
λi,j
δi,jγi and note the

fact that both γi and γλi,j have trivial p-component by our choice in Fact 1.10. We have

(Upϕ)(γi) =

p−1∑
j=0

ϕ(γλi,j)‖δi,j,p ,

where δi,j,p is the same as the global element δi,j ∈ D× but viewed an element of (D⊗QQp)
×.

We now check the description of each δi,j:

δi,j = γλi,jui,jvjγ
−1
i ∈ γλi,jK

(
p 0
0 1

)
Kγ−1

i .

From this, we see that the p-component of δi,j lies in
( pZp Zp

pmZp Z×
p

)
. Moreover, the norm of

γλi,jK
(
p 0
0 1

)
Kγ−1

i lands in p
∏

` prime Z
×
` , because our choice of the representatives satisfies

Nm(γi) ∈
∏

` prime Z
×
` by Fact 1.10. Therefore, Nm(δi,j) ∈ Q×>0 ∩ p

∏
` prime Z

×
` = {p}. This

concludes the proof of the proposition. �

Everything we developed so far is meaningful because we have the following big theorem

Theorem 1.14 (Jacquet–Langlands). There is an isomorphism

Sk(Γ0(Npm);ψm)ΣD-new ∼= SDk (K0(Npm);ψm)

respecting the actions of T` and Up on both sides.
For the particular case appearing in our project, we have an isomorphism

(1.11) Sk(Γ0(18);ψ9)2-new ∼= SDk (K0(18);ψ9)

respecting the action of U3 and T` for all ` 6= 2, 3.

Remark 1.15. The upshot of this project is that: the computation of modular forms is
often very involved. But via the Jacquet–Langlands correspondence, we may transfer the
computation to the world of definite quaternion algebra, where everything is often simpler.
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2. Computation of our particular case

2.1. Proof of the isomorphism (1.7). This is of course coincidental for our choices of D,
p and K0(18). We first put OD := Z〈i, j〉/(i2 = j2 = −1, ij = −ji); it is the integral subring
of D. One can check that OD has 24 units:

O×D = {±1,±i,±j,±k, ±1±i±j±k
2

}.

We consider a maximal open compact subgroup of D×:

Kmax := Z4〈$〉× ×
∏

` 6=2 prime

GL2(Z`).

It is fact that (D ⊗Q Af )
× = D× · Kmax (see [Ja04, Lemma 1.22]). (This fact is special

to our particular quaternion algebra, and is probably true for a couple of more quaternion
algebras.)

Taking into account of the duplication, we have

D×f = D× ×O×
D
Kmax.

So it suffices to check that the image of O×D/{±1} in GL2(Z3)/{±1} turns out to form a
coset representative of Kmax/K0(18). (At least they both have cardinality 12.) This can be
checked easily by hand (as done in [Ja04, Theorem 2.1]) Indeed, we just simply list all 24
elements of O×D modulo 9 using our chosen identification of D⊗QQ3

∼= M2(Q3) in (1.1). Put

u1 = 1
2
(1+ i+j+k), u2 = 1

2
(−1+ i+j+k), u3 = 1

2
(1− i+j+k), u4 = 1

2
(1+ i−j+k),

u5 = 1
2
(1+i+j−k), u6 = 1

2
(−1−i+j+k), u7 = 1

2
(−1+i−j+k), and u8 = 1

2
(−1+i+j−k).

Then modulo 9, we have

±1↔ ±
(

1 0
0 1

)
, ±i↔ ±

(
4 1
1 5

)
, ±j↔ ±

(
0 8
1 0

)
, ±k↔ ±

(
1 5
5 8

)
,

±u1 ↔ ±
(

3 7
8 7

)
, ±u2 ↔ ±

(
2 7
8 6

)
, ±u3 ↔ ±

(
8 6
7 2

)
, ±u4 ↔ ±

(
3 8
7 7

)
,

±u5 ↔ ±
(

2 2
3 8

)
, ±u6 ↔ ±

(
7 6
7 1

)
, ±u7 ↔ ±

(
2 8
7 6

)
, ±u8 ↔ ±

(
1 2
3 7

)
.

Lemma 2.2. For the case considered in this section, the map U3 in Proposition 1.13 is given
by U3 = ||δ1 + ||δ2 + ||δ3, where

δ1 = ±(−1 + i− j), δ2 = ±1
2
(1 + i + 3j + k), and δ3 = ±1

2
(1− 3i− j− k).

The images of δ1, δ2, δ3 in GL2(Z3) are given by

±
(
ν3 − 1 2

0 −1− ν3

)
, ±

(
1 + ν3

2
−1− ν3

2
2− ν3

2
−ν3

2

)
, ±and

(
−3ν3

2
−1 + ν3

2

−2 + ν3
2

1 + 3ν3
2

)
.

Modulo 9, they are

±
(

3 2
0 4

)
, ±

(
3 6
0 7

)
, and ±

(
3 1
0 7

)
.

Proof. We follow the computation in Proposition 1.13. We need to compute

U3(ϕ)(1) =
3∑
j=1

ϕ(v−1
j )‖vj , for vj =

(
3 0
9j 1

)
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Using the bijection (1.1), we can write each v−1
j uniquely as δ−1

j uj for δj ∈ D× and uj ∈ U .
Then

ϕ(v−1
j )‖vj = ϕ(1)‖uj,3vj = ϕ(1)‖δj,3 ,

where uj,3 and δj,3 denote the 3-components of uj and δj, respectively. On the other hand,
we have

δj = ujvj ∈ D× ∩K3vj ⊆ D× ∩K3

(
3 0
0 1

)
K3 = D× ∩Kp

(
3 0
0 1

)
.

If we put δj = δ′j(1− i + j), then we have

δ′j ∈ D× ∩K3

(
3 0
0 1

)
(1− i + j)−1 = D× ∩K3

( 1+ν3 2
0 (1−ν3)/3

)
= D× ∩K3

(
5 2
0 2

)
=
{
± 1, ±1

2
(1 + i + j− k), ±1

2
(1− i− j + k)

}
The last equality follows from looking at the list of O×D modulo 3. (In the notation above,
this set is {±1,±u5,±u8}.)

It is then clear that all δj’s are among the collections of the above right-multiplied by
1− i + j. The rest of the lemma is straightforward. �

Conclusion 2.3. The action of U3 on Sk(Γ0(18);ψ3)2-new is the same as the action of the
following operator on Q3[x]deg≤k−2:

Up(h)(z) : = ζ3 · (−1− ν3)k−2h
((ν3 − 1)z + 2

−1− ν3

)
+ ζ2

3

(
(2− ν3

2
)z − ν3

2

)k−2
h
((2 + ν3)z − 2− ν3

(4− ν3)z − ν3

)
+ ζ2

3

(
(−2− ν3

2
)z + 1− 3ν3

2

)k−2
h
( −3ν3z − 2 + ν3

(−4 + ν3)z + 2 + 3ν3

)
.

Project 2.4. Realize this computation on SAGE. Do similar computation for other Hecke
operators T`, and other level structure. How do we generalize this to other definite quaternion
algebras?

3. p-adic family of overconvergent automorphic forms

A next-step question is to generalize the computation above to the case of p-adic families,
letting the weight k to vary p-adically. But at first sight, this does not make sense as the
dimension of the space SDk (K0(Npm);ψm) changes as k changes. So the idea is to make
everything infinite dimensional.

3.1. Universal characters. We shall only study a very special part of the overconvergent
automorphic forms. For general theory, see e.g. [Bu04] or [WXZ14+].

Let p be an odd prime. Recall that Z×p ∼= µp−1× (1 + pZp)×. So for each a ∈ Z×p , we write
[a] for the unique (p − 1)st root of unity in Zp that is congruent to a modulo p, and put
〈a〉 = a/[a] ∈ 1 + pZp. Then the isomorphism above is given by sending a 7→ ([a], 〈a〉).

Recall that we have a p-adic logarithmic map log : Z×p → pZp given by

log(a) := log(〈a〉) = 1 +
(
〈a〉 − 1

)
− 1

2

(
〈a〉 − 1

)2
+ 1

3

(
〈a〉 − 1

)3
+ · · · .
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Consider the Tate algebra

Zp〈T 〉 :=
{∑
n≥0

anT
n
∣∣ an ∈ Zp, and an → 0

}
, and Qp〈T 〉 := Zp〈T 〉

[1
p

]
.

We consider the universal character

ψuniv,m : Z×p −−−−−−−→ Zp[ζpm−2 ]〈T 〉×

ψuniv,m(a) = ψm(a) · exp(T · log a) = ψm(a) · (1 + T log a+ 1
2!

(T log a)2 + · · · ).
In particular, when specializing to T = k ∈ Z, this is usual character a 7→ ψm(a)〈a〉k.

3.2. Overconvergent automorphic forms. We consider the universal action of M (see
(1.5)) on Qp(ζpm−2)〈T 〉〈z〉 given by

h||( a b
c d

)(z) := ψuniv,m(d) exp
(
T · log(1 + c

d
z)
)
h
(
az+b
cz+d

)
.

Then we define the space SD,†ψuniv,m
(K0(Npm)) of overconvergent automorphic forms with

weight in ψuniv,m and levelNpm to be the space of functions ϕ : (D⊗QAf )
× → Qp(ζpm−2)〈T 〉〈z〉

such that

(3.1) ϕ(δxu) = ϕ(x)‖up for δ ∈ D×, u ∈ K0(Npm),

Similar to Corollary 1.11, evaluating at the coset representatives γi gives an isomorphism

(3.2) SD,†ψuniv,m
(K0(Npm))

∼=−−−−→
t⊕
i=1

Qp(ζpm−2)〈T 〉〈z〉,

and the Hecke actions are given by the same formulas explained in Section 1.12, which trans-
late to the action on the right hand side of (3.2) via Proposition 1.13.

Now, we wish to make the action of Up even more explicit, by expressing the action of
||( a b

c d

) on each direct summand Qp(ζpm−2)〈T 〉〈z〉 in terms of an infinite matrix with respect

to the basis 1, z, z2, . . .

3.3. Infinite matrices and generating functions. For an infinite matrix (where the row
and column indices start with 0 as opposed to 1)

(3.3) M =


m0,0 m0,1 m0,2 · · ·
m1,0 m1,1 m1,2 · · ·
m2,0 m2,1 m2,2 · · ·

...
...

...
. . .


with coefficients in a ring A, we consider the following formal power series:

HM(x, y) =
∑

i,j∈Z≥0

mi,jx
iyj ∈ AJx, yK.

It is called the generating series of the matrix M . Consider our case, we write H( a b
c d

)(x, y) ∈

Qp(ζpm−1)Jx, yK for the action of the matrix
(
a b
c d

)
∈M on the Tate algebra Qp(ζpm−2)〈T 〉〈z〉,

with respect to the basis 1, z, z2, . . . .
10



The following key calculation is due to Jacobs [Ja04, Proposition 2.6].

Proposition 3.4. The generating series of the operator ||( a b
c d

) acting on Qp(ζpm−2)〈T 〉〈z〉

(with respect to the basis 1, z, z2, . . . ) is given by

ψuniv,m(d) exp(T · log(1 + c
d
x))(cx+ d)

cx+ d− axy − by
.

Proof. This is straightforward. By definition,

H( a b
c d

)(x, y) =
∑
i∈Z≥0

yi · ψuniv,m(d) exp(T · log(1 +
c

d
x)) ·

(ax+ b

cx+ d

)i
= ψuniv,m(d) exp(T · log(1 +

c

d
x)) · 1

1− y · ax+b
cx+d

=
ψuniv,m(d) exp(T · log(1 + c

d
x))(cx+ d)

cx+ d− axy − by
. �

Combining Proposition 3.4 with Proposition 1.13, we can give a good description of the
infinite matrices for Up.

In our particular case, we can use this computation to give an estimate of the p-adic
valuations of the Up-action on the SD,†ψuniv,2

(K0(18)).

Theorem 3.5 (Jacobs). Evaluating T at w ∈ OC3 so that we are considering the character
κ = ψ2x

w. The slopes of the U3-operator acting on SD,†κ (K0(18)) are 1
2
, 1+ 1

2
, 2+ 1

2
, 3+ 1

2
, . . . .

(Note the sequence is independent of w.)

Proof. Exercise. �

Project 3.6. Write a SAGE code to compute the characteristic power series of the Up-action

on SD,†ψuniv,2
(K0(18)).

Generalize this code to deal with other situations. Eventually, we hope that this code can
get to efficiency close to [BP15+], and shed some light on the ghost conjecture in [BP16+].
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