How to Transform a Cubic (With a Rational Point) into Weierstrass Normal Form

Problem Overview:

We are given a cubic curve and we want to put a group structure to the set of points on the curve. In order to make the group operation as simple as possible, we will use a point at infinity (counted as a rational point on the curve in $\mathbb{A}^{2} \cup \mathbb{P}^{1}$) as the zero element of the group. Thus, it is necessary that the curve contains exactly one point at infinity.

Viewing the curve in \mathbb{P}^{2}, what this means is that the line $Z=0$ intersects the curve exactly once (as opposed to three times in the general case). In order to do this, we perform a change of coordinates in \mathbb{P}^{2} that gives a one-to-one correspondence between the rational points of the curve in both coordinate systems.

Process:

Suppose we have a cubic curve $f(u, v)=0$. Suppose further that we are given a rational point P on this curve, when viewed in the projective plane. We transform this curve to the desired form as follows.

1. Write it in homogeneous form $C: F(U, V, W)=0$.
2. Find the tangent line to C at point P. This will be the axis $Z=0$ in the new coordinate system.

3. Let point Q be the intersection of the curve C with the line $Z=0$. Take the axis $X=0$ to be the tangent line to C at point Q. Thus, in the new coordinate system, Q has coordinates $[0,1,0]$.
4. Finally, choose the axis $Y=0$ to be any line (other than $Z=0$) passing through point P. Thus, P has coordinates $[1,0,0]$ in this new coordinate system.
5. Upon this coordinate transformation in \mathbb{P}^{2} (also called projective transformation), our curve has the form $C^{\prime}: F^{\prime}(X, Y, Z)=0$. And C^{\prime} contains the points $P[1,0,0]$ and $Q[0,1,0]$.

Since F^{\prime} is a homogeneous polynomial of degree 3, it has the form

$$
F^{\prime}(X, Y, Z)=a X^{3}+b X^{2} Y+c X Y^{2}+d Y^{3}+e Z \cdot G(X, Y, Z)
$$

where G is a homogeneous polynomial of degree 2 . We will now show that a, b, and d must equal 0 .
(a) Since $P[1,0,0] \in C^{\prime}$, we see that $F^{\prime}(1,0,0)=a=0$.
(b) Since $Q[0,1,0] \in C^{\prime}$, we see that $F^{\prime}(0,1,0)=d=0$.
(c) Consider the intersection of the curve C^{\prime} with the line $Z=0$. The intersection consists of point P (twice) and point Q, and is given by the roots of the equation $F^{\prime}(X, Y, 0)=0$. Since we already know that $a=d=0$, we get $b X^{2} Y+c X Y^{2}=0$. Upon factoring, we get $X Y(b X+c Y)=0$. Each linear factor corresponds to a point of intersection. Thus, point Q satisfies $X=0$, and point P satisfies both $Y=0$ and $b X+c Y=0$. So, it follows that $b=0$.
6. Thus, the polynomial F^{\prime} (in the new coordinate system) has the form

$$
F^{\prime}(X, Y, Z)=c X Y^{2}+e Z \cdot G(X, Y, Z)
$$

When we dehomogenize the curve with respect to Z, the equation for C^{\prime} takes the form

$$
\begin{equation*}
f(x, y)=x y^{2}+a x^{2}+b x y+c y^{2}+d x+e y+g=0 \tag{*}
\end{equation*}
$$

Note that the only term in f with degree 3 is $x y^{2}$.
7. Finally, rewrite equation $(*)$ as follows.

$$
f(x, y)=(x+c) y^{2}+a x^{2}+b x y+d x+e y+g=0
$$

Replacing $x+c$ with x, we get the equation of the form

$$
x y^{2}+(a x+b) y=c x^{2}+d x+e
$$

Through further change of variables (see Silverman/Tate, p. 23, for details), we obtain an equation in Weierstrass form

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

This curve (assuming it is non-singular) has exactly one point at infinity where vertical lines meet. Using this point as the zero element of the group is optimal because the elliptic curve is symmetric about the x-axis. So, to find $P+Q$, we simply take $P * Q$ and reflect it about the x-axis.

Example:

As an example, we will transform the cubic curve

$$
f(u, v)=u^{3}+u v^{2}+v^{3}+u+v-2=0
$$

into Weierstrass normal form.

1. We first homogenize the curve by writing

$$
C: F(U, V, W)=U^{3}+U V^{2}+V^{3}+U W^{2}+V W^{2}-2 W^{3}=0
$$

Note that $P[1,0,1]$ is a rational point on the curve.
2. The tangent line to C at point P is given by the equation

$$
\frac{\partial F}{\partial U}(P)(U-1)+\frac{\partial F}{\partial V}(P)(V-0)+\frac{\partial F}{\partial W}(P)(W-1)=0
$$

which simplifies to

$$
\begin{equation*}
4 U+V-4 W=0 \tag{*}
\end{equation*}
$$

It is not a coincidence that this tangent line is a homogeneous polynomial. We thus set

$$
Z=4 U+V-4 W
$$

3. Now we find the intersection of the curve C with the line given by $(*)$. Since $(*)$ implies $V=-4(U-W)$, we substitute this into $F(U, V, W)=0$ to get

$$
U^{3}+16 U(U-W)^{2}-64(U-W)^{3}+U W^{2}-4(U-W) W^{2}-2 W^{3}=0
$$

We know that the intersection consists of three points: point P (twice) and point Q. Therefore ($* *$) should factor into three linear terms two of which are $(U-W)^{2}$. It does, and $(* *)$ can be rewritten as

$$
(U-W)^{2}(-47 U+66 W)=0
$$

Thus, point Q has coordinates $Q[66,-76,47]$. The plane tangent to C at point Q has the equation

$$
21053 U+9505 V-14194 W=0
$$

Thus we set

$$
X=21053 U+9505 V-14194 W
$$

4. Since $P[1,0,1]$ is on the line $U+V-W=0$, we let

$$
Y=U+V-W
$$

Note that the line $Y=0$ is different from the line $Z=0$.
5. Thus we have obtained the following (rational) transformation

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
21053 & 9505 & -14194 \\
1 & 1 & -1 \\
4 & 1 & -4
\end{array}\right]\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]
$$

Inverting the transformation matrix, we get

$$
\left[\begin{array}{l}
U \\
V \\
W
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{6859} & -\frac{22}{19} & -\frac{1563}{6859} \\
0 & \frac{4}{3} & -\frac{1}{3} \\
\frac{1}{6859} & -\frac{47}{57} & -\frac{1114}{1985}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Substituting these into the original curve $C: F(U, V, W)=0$, we get a new curve C^{\prime} with

$$
C^{\prime}: F(X, Y, Z)=X Y^{2}+a X^{2} Z+b X Y Z+c Y^{2} Z+d X Z^{2}+e Y Z^{2}+g Z^{3}=0
$$

where

$$
\begin{aligned}
a & =122536011 / 1774335401915 \\
b & =-1492216408 / 983011303 \\
c & =-28388 / 40845345 \\
d & =-226218384460168 / 704411154560255 \\
e & =45392975716595356 / 9756387182275 \\
g & =6989284338276485910259 / 20973842127031592625
\end{aligned}
$$

6. Finally, we dehomogenize the curve with respect to Z to get

$$
f(x, y)=x y^{2}+a x^{2}+b x y+c y^{2}+d x+e y+g=0
$$

Through further change of variables, we obtain a curve in Weierstrass form

$$
y^{2}=x^{3}-x^{2}-2 x-32
$$

